File size: 4,614 Bytes
4209f20
 
1c0f272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4209f20
2b57bed
 
 
 
ac43173
2b57bed
 
7f93ea6
2b57bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c0f272
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: apache-2.0
model-index:
- name: Soniox-7B-v1.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.91
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=soniox/Soniox-7B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.55
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=soniox/Soniox-7B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.38
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=soniox/Soniox-7B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 53.84
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=soniox/Soniox-7B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.06
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=soniox/Soniox-7B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.25
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=soniox/Soniox-7B-v1.0
      name: Open LLM Leaderboard
---

# Model Card for Soniox-7B-v1.0

Soniox 7B is a powerful large language model. Supports English and code with 8K context.
Matches GPT-4 performance on some benchmarks.
Built on top of Mistral 7B, enhanced with additional pre-training and fine-tuning for strong problem-solving capabilities.
Apache 2.0 License.
For more details, please read our [blog post](https://soniox.com/news/soniox-7B).

## Usage in Transformers

The model is available in transformers and can be used as follows:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "soniox/Soniox-7B-v1.0"
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_path)

device = "cuda"
model.to(device)

messages = [
    {"role": "user", "content": "12 plus 21?"},
    {"role": "assistant", "content": "33."},
    {"role": "user", "content": "Five minus one?"},
]
tok_prompt = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = tok_prompt.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## Inference deployment

Refer to our [documentation](https://docs.soniox.com) for inference with vLLM and other
deployment options.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_soniox__Soniox-7B-v1.0)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |66.50|
|AI2 Reasoning Challenge (25-Shot)|63.91|
|HellaSwag (10-Shot)              |82.55|
|MMLU (5-Shot)                    |64.38|
|TruthfulQA (0-shot)              |53.84|
|Winogrande (5-shot)              |78.06|
|GSM8k (5-shot)                   |56.25|