|
|
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import requests |
|
import torch |
|
import base64 |
|
import os |
|
from io import BytesIO |
|
from models.blip_feature_extractor import blip_feature_extractor |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
|
|
self.model_path = os.path.join(path,'model_large_retrieval_coco.pth') |
|
self.model = blip_feature_extractor( |
|
pretrained=self.model_path, |
|
image_size=384, |
|
vit='large', |
|
med_config=os.path.join(path, 'configs/med_config.json') |
|
) |
|
self.model.eval() |
|
self.model = self.model.to(device) |
|
|
|
image_size = 384 |
|
self.transform = transforms.Compose([ |
|
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
]) |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> Dict[str, List[float]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict like {"feature_vector": [0.6331314444541931,0.8802216053009033,...,-0.7866355180740356,]} containing : |
|
- "feature_vector": A list of floats corresponding to the image embedding. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", {"mode": "image"}) |
|
|
|
|
|
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) |
|
image = self.transform(image).unsqueeze(0).to(device) |
|
text="" |
|
with torch.no_grad(): |
|
feature_vector = self.model(image, text, mode=parameters["mode"])[0,0].tolist() |
|
|
|
return {"feature_vector": feature_vector} |