metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-odia-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: or
split: train+validation
args: or
metrics:
- name: Wer
type: wer
value: 1
wav2vec2-large-xls-r-300m-odia-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.9454
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.7758 | 24.97 | 400 | 3.3457 | 1.0 |
1.8583 | 49.97 | 800 | 0.9008 | 1.0 |
0.1326 | 74.97 | 1200 | 0.9277 | 1.0 |
0.0597 | 99.97 | 1600 | 0.9454 | 1.0 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.13.2