Spaces:
Sleeping
Sleeping
0504ankitsharma
commited on
Update app/main.py
Browse files- app/main.py +42 -44
app/main.py
CHANGED
@@ -9,10 +9,10 @@ from langchain.chains import create_retrieval_chain
|
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain_community.document_loaders import UnstructuredWordDocumentLoader as DocxLoader
|
11 |
from fastapi.middleware.cors import CORSMiddleware
|
12 |
-
from fastapi import FastAPI
|
13 |
from pydantic import BaseModel
|
14 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
15 |
-
import nltk
|
16 |
import time
|
17 |
|
18 |
# Set writable paths for cache and data
|
@@ -43,10 +43,18 @@ except Exception as e:
|
|
43 |
raise
|
44 |
|
45 |
def clean_response(response):
|
|
|
46 |
cleaned = response.strip()
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
cleaned = re.sub(r'\n+', '\n', cleaned)
|
|
|
|
|
49 |
cleaned = cleaned.replace('\\n', '')
|
|
|
50 |
return cleaned
|
51 |
|
52 |
app = FastAPI()
|
@@ -62,32 +70,29 @@ app.add_middleware(
|
|
62 |
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
63 |
llm = ChatOpenAI(
|
64 |
api_key=openai_api_key,
|
65 |
-
model_name="gpt-4-turbo-preview",
|
66 |
temperature=0.7
|
67 |
)
|
68 |
|
69 |
-
conversation_history = {} # Dictionary to maintain contextual memory
|
70 |
-
|
71 |
@app.get("/")
|
72 |
def read_root():
|
73 |
return {"Hello": "World"}
|
74 |
|
75 |
class Query(BaseModel):
|
76 |
-
session_id: str # Unique identifier for user session
|
77 |
query_text: str
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
)
|
92 |
|
93 |
def vector_embedding():
|
@@ -104,16 +109,16 @@ def vector_embedding():
|
|
104 |
|
105 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
106 |
chunks = text_splitter.split_documents(documents)
|
107 |
-
|
108 |
print(f"Created {len(chunks)} chunks.")
|
109 |
|
110 |
model_name = "BAAI/bge-base-en"
|
111 |
encode_kwargs = {'normalize_embeddings': True}
|
112 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
113 |
-
|
114 |
db = FAISS.from_documents(chunks, model_norm)
|
115 |
db.save_local("./vectors_db")
|
116 |
-
|
117 |
print("Vector store created and saved successfully.")
|
118 |
return {"response": "Vector Store DB Is Ready"}
|
119 |
|
@@ -127,40 +132,33 @@ def get_embeddings():
|
|
127 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
128 |
return model_norm
|
129 |
|
130 |
-
@app.post("/chat")
|
131 |
-
def
|
132 |
try:
|
133 |
-
session_id = query.session_id
|
134 |
-
if session_id not in conversation_history:
|
135 |
-
conversation_history[session_id] = []
|
136 |
-
|
137 |
embeddings = get_embeddings()
|
138 |
vectors = FAISS.load_local("./vectors_db", embeddings, allow_dangerous_deserialization=True)
|
139 |
except Exception as e:
|
140 |
print(f"Error loading vector store: {str(e)}")
|
141 |
return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
|
142 |
-
|
143 |
prompt1 = query.query_text
|
144 |
if prompt1:
|
145 |
start = time.process_time()
|
146 |
-
document_chain = create_stuff_documents_chain(llm,
|
147 |
retriever = vectors.as_retriever()
|
148 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
149 |
-
|
150 |
-
# Combine context from conversation history
|
151 |
-
context = "\n".join(conversation_history[session_id])
|
152 |
-
response = retrieval_chain.invoke({'input': prompt1, 'context': context})
|
153 |
-
|
154 |
-
cleaned_response = clean_response(response['answer'])
|
155 |
-
|
156 |
-
# Update conversation history
|
157 |
-
conversation_history[session_id].append(f"User: {prompt1}")
|
158 |
-
conversation_history[session_id].append(f"Assistant: {cleaned_response}")
|
159 |
-
|
160 |
print("Response time:", time.process_time() - start)
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
else:
|
163 |
-
return
|
164 |
|
165 |
@app.get("/setup")
|
166 |
def setup():
|
@@ -168,4 +166,4 @@ def setup():
|
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
import uvicorn
|
171 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
9 |
from langchain_community.vectorstores import FAISS
|
10 |
from langchain_community.document_loaders import UnstructuredWordDocumentLoader as DocxLoader
|
11 |
from fastapi.middleware.cors import CORSMiddleware
|
12 |
+
from fastapi import FastAPI
|
13 |
from pydantic import BaseModel
|
14 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
15 |
+
import nltk # Importing NLTK
|
16 |
import time
|
17 |
|
18 |
# Set writable paths for cache and data
|
|
|
43 |
raise
|
44 |
|
45 |
def clean_response(response):
|
46 |
+
# Remove any leading/trailing whitespace, including newlines
|
47 |
cleaned = response.strip()
|
48 |
+
|
49 |
+
# Remove any enclosing quotation marks
|
50 |
+
cleaned = re.sub(r'^["\']+|["\']+$', '', cleaned)
|
51 |
+
|
52 |
+
# Replace multiple newlines with a single newline
|
53 |
cleaned = re.sub(r'\n+', '\n', cleaned)
|
54 |
+
|
55 |
+
# Remove any remaining '\n' characters
|
56 |
cleaned = cleaned.replace('\\n', '')
|
57 |
+
|
58 |
return cleaned
|
59 |
|
60 |
app = FastAPI()
|
|
|
70 |
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
71 |
llm = ChatOpenAI(
|
72 |
api_key=openai_api_key,
|
73 |
+
model_name="gpt-4-turbo-preview", # or "gpt-3.5-turbo" for a more economical option
|
74 |
temperature=0.7
|
75 |
)
|
76 |
|
|
|
|
|
77 |
@app.get("/")
|
78 |
def read_root():
|
79 |
return {"Hello": "World"}
|
80 |
|
81 |
class Query(BaseModel):
|
|
|
82 |
query_text: str
|
83 |
|
84 |
+
prompt = ChatPromptTemplate.from_template(
|
85 |
+
"""
|
86 |
+
You are a helpful assistant designed specifically for the Thapar Institute of Engineering and Technology (TIET), a renowned technical college. Your task is to answer all queries related to TIET. Every response you provide should be relevant to the context of TIET. If a question falls outside of this context, please decline by stating, 'Sorry, I cannot help with that.' If you do not know the answer to a question, do not attempt to fabricate a response; instead, politely decline.
|
87 |
+
You may elaborate on your answers slightly to provide more information, but avoid sounding boastful or exaggerating. Stay focused on the context provided.
|
88 |
+
If the query is not related to TIET or falls outside the context of education, respond with:
|
89 |
+
"Sorry, I cannot help with that. I'm specifically designed to answer questions about the Thapar Institute of Engineering and Technology.
|
90 |
+
For more information, please contact at our toll-free number: 18002024100 or E-mail us at admissions@thapar.edu
|
91 |
+
<context>
|
92 |
+
{context}
|
93 |
+
</context>
|
94 |
+
Question: {input}
|
95 |
+
"""
|
96 |
)
|
97 |
|
98 |
def vector_embedding():
|
|
|
109 |
|
110 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
111 |
chunks = text_splitter.split_documents(documents)
|
112 |
+
|
113 |
print(f"Created {len(chunks)} chunks.")
|
114 |
|
115 |
model_name = "BAAI/bge-base-en"
|
116 |
encode_kwargs = {'normalize_embeddings': True}
|
117 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
118 |
+
|
119 |
db = FAISS.from_documents(chunks, model_norm)
|
120 |
db.save_local("./vectors_db")
|
121 |
+
|
122 |
print("Vector store created and saved successfully.")
|
123 |
return {"response": "Vector Store DB Is Ready"}
|
124 |
|
|
|
132 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
133 |
return model_norm
|
134 |
|
135 |
+
@app.post("/chat") # Changed from /anthropic to /chat
|
136 |
+
def read_item(query: Query):
|
137 |
try:
|
|
|
|
|
|
|
|
|
138 |
embeddings = get_embeddings()
|
139 |
vectors = FAISS.load_local("./vectors_db", embeddings, allow_dangerous_deserialization=True)
|
140 |
except Exception as e:
|
141 |
print(f"Error loading vector store: {str(e)}")
|
142 |
return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
|
143 |
+
|
144 |
prompt1 = query.query_text
|
145 |
if prompt1:
|
146 |
start = time.process_time()
|
147 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
148 |
retriever = vectors.as_retriever()
|
149 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
150 |
+
response = retrieval_chain.invoke({'input': prompt1})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
print("Response time:", time.process_time() - start)
|
152 |
+
|
153 |
+
# Apply the cleaning function to the response
|
154 |
+
cleaned_response = clean_response(response['answer'])
|
155 |
+
|
156 |
+
# For debugging, print the cleaned response
|
157 |
+
print("Cleaned response:", repr(cleaned_response))
|
158 |
+
|
159 |
+
return cleaned_response
|
160 |
else:
|
161 |
+
return "No Query Found"
|
162 |
|
163 |
@app.get("/setup")
|
164 |
def setup():
|
|
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
import uvicorn
|
169 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|