0906harika commited on
Commit
0a0eb55
1 Parent(s): 100da00

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -0
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pandas as pd
3
+ from transformers import BartTokenizer, BartForConditionalGeneration
4
+ import gradio as gr
5
+
6
+ # Initialize models and tokenizers for Healthcare and AI perspectives
7
+ healthcare_model_name = 'facebook/bart-large-cnn' # Healthcare-focused model
8
+ ai_model_name = 'facebook/bart-large-xsum' # AI-focused model
9
+
10
+ healthcare_tokenizer = BartTokenizer.from_pretrained(healthcare_model_name)
11
+ ai_tokenizer = BartTokenizer.from_pretrained(ai_model_name)
12
+
13
+ healthcare_model = BartForConditionalGeneration.from_pretrained(healthcare_model_name)
14
+ ai_model = BartForConditionalGeneration.from_pretrained(ai_model_name)
15
+
16
+ # Summarization function for both Healthcare and AI agents
17
+ def generate_summary(text, tokenizer, model):
18
+ inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True, padding="max_length")
19
+ with torch.no_grad():
20
+ outputs = model.generate(inputs["input_ids"], max_length=150, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
21
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+
23
+ def healthcare_agent(abstract):
24
+ return generate_summary(abstract, healthcare_tokenizer, healthcare_model)
25
+
26
+ def ai_agent(abstract):
27
+ return generate_summary(abstract, ai_tokenizer, ai_model)
28
+
29
+ # Interaction function to generate implications based on both agents' insights
30
+ def generate_implications(healthcare_summary, ai_summary):
31
+ healthcare_implication = f"Healthcare Implications: {healthcare_summary} The healthcare sector can leverage these findings to improve patient care and treatment outcomes."
32
+ ai_implication = f"AI Implications: {ai_summary} These insights can further enhance AI models, making them more applicable in real-world healthcare scenarios."
33
+
34
+ # Combine both implications to provide a holistic view
35
+ combined_implications = f"{healthcare_implication}\n\n{ai_implication}"
36
+ return combined_implications
37
+
38
+ # Function to process the CSV and generate results
39
+ def process_and_generate_implications(csv_file):
40
+ # Read the input CSV file containing titles and abstracts
41
+ papers_df = pd.read_csv(csv_file.name, encoding='latin-1')
42
+
43
+ # Check if 'title' and 'abstract' columns exist
44
+ required_columns = ['title', 'abstract']
45
+ if not all(col.lower() in papers_df.columns.str.lower() for col in required_columns):
46
+ return "The CSV must contain 'title' and 'abstract' columns."
47
+
48
+ # Drop rows where title or abstract is missing
49
+ papers_df = papers_df.dropna(subset=['title', 'abstract'])
50
+
51
+ results = []
52
+
53
+ # Process each paper (row) in the CSV
54
+ for _, row in papers_df.iterrows():
55
+ title = row['title']
56
+ abstract = str(row['abstract'])
57
+
58
+ # Generate summaries using both agents
59
+ healthcare_summary = healthcare_agent(abstract)
60
+ ai_summary = ai_agent(abstract)
61
+
62
+ # Generate the implications based on both summaries
63
+ implications = generate_implications(healthcare_summary, ai_summary)
64
+
65
+ # Store the results
66
+ results.append({
67
+ "Title": title,
68
+ "Abstract": abstract,
69
+ "Healthcare Summary": healthcare_summary,
70
+ "AI Summary": ai_summary,
71
+ "Implications": implications
72
+ })
73
+
74
+ # Convert results into a DataFrame
75
+ results_df = pd.DataFrame(results)
76
+
77
+ # Return the results as a CSV string for download
78
+ return results_df.to_csv(index=False)
79
+
80
+ # Define Gradio interface
81
+ def create_interface():
82
+ with gr.Blocks() as demo:
83
+ gr.Markdown("## Research Paper Summarization and Implications")
84
+ gr.Markdown("Upload a CSV file with 'title' and 'abstract' columns to generate healthcare and AI implications.")
85
+
86
+ # Upload CSV file
87
+ csv_input = gr.File(label="Upload CSV File", type="file")
88
+
89
+ # Button to process the CSV and generate results
90
+ output_csv = gr.File(label="Download Results CSV")
91
+
92
+ # Process CSV and generate implications on button click
93
+ csv_input.change(process_and_generate_implications, inputs=csv_input, outputs=output_csv)
94
+
95
+ return demo
96
+
97
+ # Launch the interface
98
+ if __name__ == "__main__":
99
+ demo = create_interface()
100
+ demo.launch(debug=True) # Set debug=True to see detailed logs