File size: 6,331 Bytes
a0bcaae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Copyright (c) SenseTime Research. All rights reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import codecs
import os
import time
import yaml
import numpy as np
import cv2
import paddle
import paddleseg.transforms as T
from paddle.inference import create_predictor, PrecisionType
from paddle.inference import Config as PredictConfig
from paddleseg.core.infer import reverse_transform
from paddleseg.cvlibs import manager
from paddleseg.utils import TimeAverager
from ..scripts.optic_flow_process import optic_flow_process
class DeployConfig:
def __init__(self, path):
with codecs.open(path, 'r', 'utf-8') as file:
self.dic = yaml.load(file, Loader=yaml.FullLoader)
self._transforms = self._load_transforms(self.dic['Deploy'][
'transforms'])
self._dir = os.path.dirname(path)
@property
def transforms(self):
return self._transforms
@property
def model(self):
return os.path.join(self._dir, self.dic['Deploy']['model'])
@property
def params(self):
return os.path.join(self._dir, self.dic['Deploy']['params'])
def _load_transforms(self, t_list):
com = manager.TRANSFORMS
transforms = []
for t in t_list:
ctype = t.pop('type')
transforms.append(com[ctype](**t))
return transforms
class Predictor:
def __init__(self, args):
self.cfg = DeployConfig(args.cfg)
self.args = args
self.compose = T.Compose(self.cfg.transforms)
resize_h, resize_w = args.input_shape
self.disflow = cv2.DISOpticalFlow_create(
cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
self.prev_gray = np.zeros((resize_h, resize_w), np.uint8)
self.prev_cfd = np.zeros((resize_h, resize_w), np.float32)
self.is_init = True
pred_cfg = PredictConfig(self.cfg.model, self.cfg.params)
pred_cfg.disable_glog_info()
if self.args.use_gpu:
pred_cfg.enable_use_gpu(100, 0)
self.predictor = create_predictor(pred_cfg)
if self.args.test_speed:
self.cost_averager = TimeAverager()
def preprocess(self, img):
ori_shapes = []
processed_imgs = []
processed_img = self.compose(img)[0]
processed_imgs.append(processed_img)
ori_shapes.append(img.shape)
return processed_imgs, ori_shapes
def run(self, img, bg):
input_names = self.predictor.get_input_names()
input_handle = self.predictor.get_input_handle(input_names[0])
processed_imgs, ori_shapes = self.preprocess(img)
data = np.array(processed_imgs)
input_handle.reshape(data.shape)
input_handle.copy_from_cpu(data)
if self.args.test_speed:
start = time.time()
self.predictor.run()
if self.args.test_speed:
self.cost_averager.record(time.time() - start)
output_names = self.predictor.get_output_names()
output_handle = self.predictor.get_output_handle(output_names[0])
output = output_handle.copy_to_cpu()
return self.postprocess(output, img, ori_shapes[0], bg)
def postprocess(self, pred, img, ori_shape, bg):
if not os.path.exists(self.args.save_dir):
os.makedirs(self.args.save_dir)
resize_w = pred.shape[-1]
resize_h = pred.shape[-2]
if self.args.soft_predict:
if self.args.use_optic_flow:
score_map = pred[:, 1, :, :].squeeze(0)
score_map = 255 * score_map
cur_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
optflow_map = optic_flow_process(cur_gray, score_map, self.prev_gray, self.prev_cfd, \
self.disflow, self.is_init)
self.prev_gray = cur_gray.copy()
self.prev_cfd = optflow_map.copy()
self.is_init = False
score_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
score_map = np.transpose(score_map, [2, 0, 1])[np.newaxis, ...]
score_map = reverse_transform(
paddle.to_tensor(score_map),
ori_shape,
self.cfg.transforms,
mode='bilinear')
alpha = np.transpose(score_map.numpy().squeeze(0),
[1, 2, 0]) / 255
else:
score_map = pred[:, 1, :, :]
score_map = score_map[np.newaxis, ...]
score_map = reverse_transform(
paddle.to_tensor(score_map),
ori_shape,
self.cfg.transforms,
mode='bilinear')
alpha = np.transpose(score_map.numpy().squeeze(0), [1, 2, 0])
else:
if pred.ndim == 3:
pred = pred[:, np.newaxis, ...]
result = reverse_transform(
paddle.to_tensor(
pred, dtype='float32'),
ori_shape,
self.cfg.transforms,
mode='bilinear')
result = np.array(result)
if self.args.add_argmax:
result = np.argmax(result, axis=1)
else:
result = result.squeeze(1)
alpha = np.transpose(result, [1, 2, 0])
# background replace
h, w, _ = img.shape
if bg is None:
bg = np.ones_like(img)*255
else:
bg = cv2.resize(bg, (w, h))
if bg.ndim == 2:
bg = bg[..., np.newaxis]
comb = (alpha * img + (1 - alpha) * bg).astype(np.uint8)
return comb, alpha, bg, img
|