|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Generate images using pretrained network pickle.""" |
|
|
|
import os |
|
import re |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import click |
|
import dnnlib |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
|
|
import legacy |
|
|
|
|
|
|
|
def parse_range(s: Union[str, List]) -> List[int]: |
|
'''Parse a comma separated list of numbers or ranges and return a list of ints. |
|
|
|
Example: '1,2,5-10' returns [1, 2, 5, 6, 7] |
|
''' |
|
if isinstance(s, list): return s |
|
ranges = [] |
|
range_re = re.compile(r'^(\d+)-(\d+)$') |
|
for p in s.split(','): |
|
m = range_re.match(p) |
|
if m: |
|
ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) |
|
else: |
|
ranges.append(int(p)) |
|
return ranges |
|
|
|
|
|
|
|
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]: |
|
'''Parse a floating point 2-vector of syntax 'a,b'. |
|
|
|
Example: |
|
'0,1' returns (0,1) |
|
''' |
|
if isinstance(s, tuple): return s |
|
parts = s.split(',') |
|
if len(parts) == 2: |
|
return (float(parts[0]), float(parts[1])) |
|
raise ValueError(f'cannot parse 2-vector {s}') |
|
|
|
|
|
|
|
def make_transform(translate: Tuple[float,float], angle: float): |
|
m = np.eye(3) |
|
s = np.sin(angle/360.0*np.pi*2) |
|
c = np.cos(angle/360.0*np.pi*2) |
|
m[0][0] = c |
|
m[0][1] = s |
|
m[0][2] = translate[0] |
|
m[1][0] = -s |
|
m[1][1] = c |
|
m[1][2] = translate[1] |
|
return m |
|
|
|
|
|
|
|
@click.command() |
|
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True) |
|
@click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True) |
|
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True) |
|
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)') |
|
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True) |
|
@click.option('--translate', help='Translate XY-coordinate (e.g. \'0.3,1\')', type=parse_vec2, default='0,0', show_default=True, metavar='VEC2') |
|
@click.option('--rotate', help='Rotation angle in degrees', type=float, default=0, show_default=True, metavar='ANGLE') |
|
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR') |
|
def generate_images( |
|
network_pkl: str, |
|
seeds: List[int], |
|
truncation_psi: float, |
|
noise_mode: str, |
|
outdir: str, |
|
translate: Tuple[float,float], |
|
rotate: float, |
|
class_idx: Optional[int] |
|
): |
|
"""Generate images using pretrained network pickle. |
|
|
|
Examples: |
|
|
|
\b |
|
# Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left). |
|
python gen_images.py --outdir=out --trunc=1 --seeds=2 \\ |
|
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl |
|
|
|
\b |
|
# Generate uncurated images with truncation using the MetFaces-U dataset |
|
python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\ |
|
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl |
|
""" |
|
|
|
print('Loading networks from "%s"...' % network_pkl) |
|
device = torch.device('cuda') |
|
with dnnlib.util.open_url(network_pkl) as f: |
|
G = legacy.load_network_pkl(f)['G_ema'].to(device) |
|
|
|
|
|
|
|
|
|
|
|
os.makedirs(outdir, exist_ok=True) |
|
|
|
|
|
label = torch.zeros([1, G.c_dim], device=device) |
|
if G.c_dim != 0: |
|
if class_idx is None: |
|
raise click.ClickException('Must specify class label with --class when using a conditional network') |
|
label[:, class_idx] = 1 |
|
else: |
|
if class_idx is not None: |
|
print ('warn: --class=lbl ignored when running on an unconditional network') |
|
|
|
|
|
for seed_idx, seed in enumerate(seeds): |
|
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) |
|
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) |
|
|
|
|
|
|
|
|
|
if hasattr(G.synthesis, 'input'): |
|
m = make_transform(translate, rotate) |
|
m = np.linalg.inv(m) |
|
G.synthesis.input.transform.copy_(torch.from_numpy(m)) |
|
|
|
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) |
|
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png') |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
generate_images() |
|
|
|
|
|
|