radames's picture
first
a0bcaae
raw
history blame
8.18 kB
# Copyright (c) SenseTime Research. All rights reserved.
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
import pickle
import dnnlib
import re
from typing import List, Optional
import torch
import copy
import numpy as np
from torch_utils import misc
#----------------------------------------------------------------------------
## loading torch pkl
def load_network_pkl(f, force_fp16=False, G_only=False):
data = _LegacyUnpickler(f).load()
if G_only:
f = open('ori_model_Gonly.txt','a+')
else: f = open('ori_model.txt','a+')
for key in data.keys():
f.write(str(data[key]))
f.close()
## We comment out this part, if you want to convert TF pickle, you can use the original script from StyleGAN2-ada-pytorch
# # Legacy TensorFlow pickle => convert.
# if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
# tf_G, tf_D, tf_Gs = data
# G = convert_tf_generator(tf_G)
# D = convert_tf_discriminator(tf_D)
# G_ema = convert_tf_generator(tf_Gs)
# data = dict(G=G, D=D, G_ema=G_ema)
# Add missing fields.
if 'training_set_kwargs' not in data:
data['training_set_kwargs'] = None
if 'augment_pipe' not in data:
data['augment_pipe'] = None
# Validate contents.
assert isinstance(data['G_ema'], torch.nn.Module)
if not G_only:
assert isinstance(data['D'], torch.nn.Module)
assert isinstance(data['G'], torch.nn.Module)
assert isinstance(data['training_set_kwargs'], (dict, type(None)))
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
# Force FP16.
if force_fp16:
if G_only:
convert_list = ['G_ema'] #'G'
else: convert_list = ['G', 'D', 'G_ema']
for key in convert_list:
old = data[key]
kwargs = copy.deepcopy(old.init_kwargs)
if key.startswith('G'):
kwargs.synthesis_kwargs = dnnlib.EasyDict(kwargs.get('synthesis_kwargs', {}))
kwargs.synthesis_kwargs.num_fp16_res = 4
kwargs.synthesis_kwargs.conv_clamp = 256
if key.startswith('D'):
kwargs.num_fp16_res = 4
kwargs.conv_clamp = 256
if kwargs != old.init_kwargs:
new = type(old)(**kwargs).eval().requires_grad_(False)
misc.copy_params_and_buffers(old, new, require_all=True)
data[key] = new
return data
class _TFNetworkStub(dnnlib.EasyDict):
pass
class _LegacyUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == 'dnnlib.tflib.network' and name == 'Network':
return _TFNetworkStub
return super().find_class(module, name)
#----------------------------------------------------------------------------
def num_range(s: str) -> List[int]:
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.'''
range_re = re.compile(r'^(\d+)-(\d+)$')
m = range_re.match(s)
if m:
return list(range(int(m.group(1)), int(m.group(2))+1))
vals = s.split(',')
return [int(x) for x in vals]
#----------------------------------------------------------------------------
#### loading tf pkl
def load_pkl(file_or_url):
with open(file_or_url, 'rb') as file:
return pickle.load(file, encoding='latin1')
#----------------------------------------------------------------------------
### For editing
def visual(output, out_path):
import torch
import cv2
import numpy as np
output = (output + 1)/2
output = torch.clamp(output, 0, 1)
if output.shape[1] == 1:
output = torch.cat([output, output, output], 1)
output = output[0].detach().cpu().permute(1,2,0).numpy()
output = (output*255).astype(np.uint8)
output = output[:,:,::-1]
cv2.imwrite(out_path, output)
def save_obj(obj, path):
with open(path, 'wb+') as f:
pickle.dump(obj, f, protocol=4)
#----------------------------------------------------------------------------
## Converting pkl to pth, change dict info inside pickle
def convert_to_rgb(state_ros, state_nv, ros_name, nv_name):
state_ros[f"{ros_name}.conv.weight"] = state_nv[f"{nv_name}.torgb.weight"].unsqueeze(0)
state_ros[f"{ros_name}.bias"] = state_nv[f"{nv_name}.torgb.bias"].unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
state_ros[f"{ros_name}.conv.modulation.weight"] = state_nv[f"{nv_name}.torgb.affine.weight"]
state_ros[f"{ros_name}.conv.modulation.bias"] = state_nv[f"{nv_name}.torgb.affine.bias"]
def convert_conv(state_ros, state_nv, ros_name, nv_name):
state_ros[f"{ros_name}.conv.weight"] = state_nv[f"{nv_name}.weight"].unsqueeze(0)
state_ros[f"{ros_name}.activate.bias"] = state_nv[f"{nv_name}.bias"]
state_ros[f"{ros_name}.conv.modulation.weight"] = state_nv[f"{nv_name}.affine.weight"]
state_ros[f"{ros_name}.conv.modulation.bias"] = state_nv[f"{nv_name}.affine.bias"]
state_ros[f"{ros_name}.noise.weight"] = state_nv[f"{nv_name}.noise_strength"].unsqueeze(0)
def convert_blur_kernel(state_ros, state_nv, level):
"""Not quite sure why there is a factor of 4 here"""
# They are all the same
state_ros[f"convs.{2*level}.conv.blur.kernel"] = 4*state_nv["synthesis.b4.resample_filter"]
state_ros[f"to_rgbs.{level}.upsample.kernel"] = 4*state_nv["synthesis.b4.resample_filter"]
def determine_config(state_nv):
mapping_names = [name for name in state_nv.keys() if "mapping.fc" in name]
sythesis_names = [name for name in state_nv.keys() if "synthesis.b" in name]
n_mapping = max([int(re.findall("(\d+)", n)[0]) for n in mapping_names]) + 1
resolution = max([int(re.findall("(\d+)", n)[0]) for n in sythesis_names])
n_layers = np.log(resolution/2)/np.log(2)
return n_mapping, n_layers
def convert(network_pkl, output_file, G_only=False):
with dnnlib.util.open_url(network_pkl) as f:
G_nvidia = load_network_pkl(f,G_only=G_only)['G_ema']
state_nv = G_nvidia.state_dict()
n_mapping, n_layers = determine_config(state_nv)
state_ros = {}
for i in range(n_mapping):
state_ros[f"style.{i+1}.weight"] = state_nv[f"mapping.fc{i}.weight"]
state_ros[f"style.{i+1}.bias"] = state_nv[f"mapping.fc{i}.bias"]
for i in range(int(n_layers)):
if i > 0:
for conv_level in range(2):
convert_conv(state_ros, state_nv, f"convs.{2*i-2+conv_level}", f"synthesis.b{4*(2**i)}.conv{conv_level}")
state_ros[f"noises.noise_{2*i-1+conv_level}"] = state_nv[f"synthesis.b{4*(2**i)}.conv{conv_level}.noise_const"].unsqueeze(0).unsqueeze(0)
convert_to_rgb(state_ros, state_nv, f"to_rgbs.{i-1}", f"synthesis.b{4*(2**i)}")
convert_blur_kernel(state_ros, state_nv, i-1)
else:
state_ros[f"input.input"] = state_nv[f"synthesis.b{4*(2**i)}.const"].unsqueeze(0)
convert_conv(state_ros, state_nv, "conv1", f"synthesis.b{4*(2**i)}.conv1")
state_ros[f"noises.noise_{2*i}"] = state_nv[f"synthesis.b{4*(2**i)}.conv1.noise_const"].unsqueeze(0).unsqueeze(0)
convert_to_rgb(state_ros, state_nv, "to_rgb1", f"synthesis.b{4*(2**i)}")
# https://github.com/yuval-alaluf/restyle-encoder/issues/1#issuecomment-828354736
latent_avg = state_nv['mapping.w_avg']
state_dict = {"g_ema": state_ros, "latent_avg": latent_avg}
# if G_only:
# f = open('converted_model_Gonly.txt','a+')
# else:
# f = open('converted_model.txt','a+')
# for key in state_dict['g_ema'].keys():
# f.write(str(key)+': '+str(state_dict['g_ema'][key].shape)+'\n')
# f.close()
torch.save(state_dict, output_file)