import os
import os.path as osp
from argparse import ArgumentParser
from functools import partial
from huggingface_hub import snapshot_download
from pathlib import Path
import gradio as gr
import numpy as np
import torch
from PIL import Image
import dnnlib
from gradio_utils import (ImageMask, draw_mask_on_image, draw_points_on_image,
get_latest_points_pair, get_valid_mask,
on_change_single_global_state)
from viz.renderer import Renderer, add_watermark_np
# download models from hub
model_dir = Path('./checkpoints')
snapshot_download('radames/DragGan', repo_type='model', local_dir=model_dir)
parser = ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument('--cache-dir', type=str, default='./checkpoints')
args = parser.parse_args()
cache_dir = args.cache_dir
device = 'cuda'
def reverse_point_pairs(points):
new_points = []
for p in points:
new_points.append([p[1], p[0]])
return new_points
def clear_state(global_state, target=None):
"""Clear target history state from global_state
If target is not defined, points and mask will be both removed.
1. set global_state['points'] as empty dict
2. set global_state['mask'] as full-one mask.
"""
if target is None:
target = ['point', 'mask']
if not isinstance(target, list):
target = [target]
if 'point' in target:
global_state['points'] = dict()
print('Clear Points State!')
if 'mask' in target:
image_raw = global_state["images"]["image_raw"]
global_state['mask'] = np.ones((image_raw.size[1], image_raw.size[0]),
dtype=np.uint8)
print('Clear mask State!')
return global_state
def init_images(global_state):
"""This function is called only ones with Gradio App is started.
0. pre-process global_state, unpack value from global_state of need
1. Re-init renderer
2. run `renderer._render_drag_impl` with `is_drag=False` to generate
new image
3. Assign images to global state and re-generate mask
"""
if isinstance(global_state, gr.State):
state = global_state.value
else:
state = global_state
state['renderer'].init_network(
state['generator_params'], # res
valid_checkpoints_dict[state['pretrained_weight']], # pkl
state['params']['seed'], # w0_seed,
None, # w_load
state['params']['latent_space'] == 'w+', # w_plus
'const',
state['params']['trunc_psi'], # trunc_psi,
state['params']['trunc_cutoff'], # trunc_cutoff,
None, # input_transform
state['params']['lr'] # lr,
)
state['renderer']._render_drag_impl(state['generator_params'],
is_drag=False,
to_pil=True)
init_image = state['generator_params'].image
state['images']['image_orig'] = init_image
state['images']['image_raw'] = init_image
state['images']['image_show'] = Image.fromarray(
add_watermark_np(np.array(init_image)))
state['mask'] = np.ones((init_image.size[1], init_image.size[0]),
dtype=np.uint8)
return global_state
def update_image_draw(image, points, mask, show_mask, global_state=None):
image_draw = draw_points_on_image(image, points)
if show_mask and mask is not None and not (mask == 0).all() and not (
mask == 1).all():
image_draw = draw_mask_on_image(image_draw, mask)
image_draw = Image.fromarray(add_watermark_np(np.array(image_draw)))
if global_state is not None:
global_state['images']['image_show'] = image_draw
return image_draw
def preprocess_mask_info(global_state, image):
"""Function to handle mask information.
1. last_mask is None: Do not need to change mask, return mask
2. last_mask is not None:
2.1 global_state is remove_mask:
2.2 global_state is add_mask:
"""
if isinstance(image, dict):
last_mask = get_valid_mask(image['mask'])
else:
last_mask = None
mask = global_state['mask']
# mask in global state is a placeholder with all 1.
if (mask == 1).all():
mask = last_mask
# last_mask = global_state['last_mask']
editing_mode = global_state['editing_state']
if last_mask is None:
return global_state
if editing_mode == 'remove_mask':
updated_mask = np.clip(mask - last_mask, 0, 1)
print(f'Last editing_state is {editing_mode}, do remove.')
elif editing_mode == 'add_mask':
updated_mask = np.clip(mask + last_mask, 0, 1)
print(f'Last editing_state is {editing_mode}, do add.')
else:
updated_mask = mask
print(f'Last editing_state is {editing_mode}, '
'do nothing to mask.')
global_state['mask'] = updated_mask
# global_state['last_mask'] = None # clear buffer
return global_state
valid_checkpoints_dict = {
f.split('/')[-1].split('.')[0]: osp.join(cache_dir, f)
for f in os.listdir(cache_dir)
if (f.endswith('pkl') and osp.exists(osp.join(cache_dir, f)))
}
print(f'File under cache_dir ({cache_dir}):')
print(os.listdir(cache_dir))
print('Valid checkpoint file:')
print(valid_checkpoints_dict)
init_pkl = 'stylegan_human_v2_512'
with gr.Blocks() as app:
# renderer = Renderer()
global_state = gr.State({
"images": {
# image_orig: the original image, change with seed/model is changed
# image_raw: image with mask and points, change durning optimization
# image_show: image showed on screen
},
"temporal_params": {
# stop
},
'mask':
None, # mask for visualization, 1 for editing and 0 for unchange
'last_mask': None, # last edited mask
'show_mask': True, # add button
"generator_params": dnnlib.EasyDict(),
"params": {
"seed": 0,
"motion_lambda": 20,
"r1_in_pixels": 3,
"r2_in_pixels": 12,
"magnitude_direction_in_pixels": 1.0,
"latent_space": "w+",
"trunc_psi": 0.7,
"trunc_cutoff": None,
"lr": 0.001,
},
"device": device,
"draw_interval": 1,
"renderer": Renderer(disable_timing=True),
"points": {},
"curr_point": None,
"curr_type_point": "start",
'editing_state': 'add_points',
'pretrained_weight': init_pkl
})
# init image
global_state = init_images(global_state)
with gr.Row():
with gr.Row():
# Left --> tools
with gr.Column(scale=3):
# Pickle
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Pickle', show_label=False)
with gr.Column(scale=4, min_width=10):
form_pretrained_dropdown = gr.Dropdown(
choices=list(valid_checkpoints_dict.keys()),
label="Pretrained Model",
value=init_pkl,
)
# Latent
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Latent', show_label=False)
with gr.Column(scale=4, min_width=10):
form_seed_number = gr.Number(
value=global_state.value['params']['seed'],
interactive=True,
label="Seed",
)
form_lr_number = gr.Number(
value=global_state.value["params"]["lr"],
interactive=True,
label="Step Size")
with gr.Row():
with gr.Column(scale=2, min_width=10):
form_reset_image = gr.Button("Reset Image")
with gr.Column(scale=3, min_width=10):
form_latent_space = gr.Radio(
['w', 'w+'],
value=global_state.value['params']
['latent_space'],
interactive=True,
label='Latent space to optimize',
show_label=False,
)
# Drag
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Drag', show_label=False)
with gr.Column(scale=4, min_width=10):
with gr.Row():
with gr.Column(scale=1, min_width=10):
enable_add_points = gr.Button('Add Points')
with gr.Column(scale=1, min_width=10):
undo_points = gr.Button('Reset Points')
with gr.Row():
with gr.Column(scale=1, min_width=10):
form_start_btn = gr.Button("Start")
with gr.Column(scale=1, min_width=10):
form_stop_btn = gr.Button("Stop")
form_steps_number = gr.Number(value=0,
label="Steps",
interactive=False)
# Mask
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Mask', show_label=False)
with gr.Column(scale=4, min_width=10):
enable_add_mask = gr.Button('Edit Flexible Area')
with gr.Row():
with gr.Column(scale=1, min_width=10):
form_reset_mask_btn = gr.Button("Reset mask")
with gr.Column(scale=1, min_width=10):
show_mask = gr.Checkbox(
label='Show Mask',
value=global_state.value['show_mask'],
show_label=False)
with gr.Row():
form_lambda_number = gr.Number(
value=global_state.value["params"]
["motion_lambda"],
interactive=True,
label="Lambda",
)
form_draw_interval_number = gr.Number(
value=global_state.value["draw_interval"],
label="Draw Interval (steps)",
interactive=True,
visible=False)
# Right --> Image
with gr.Column(scale=8):
form_image = ImageMask(
value=global_state.value['images']['image_show'],
brush_radius=20).style(
width=768,
height=768) # NOTE: hard image size code here.
gr.Markdown("""
## Quick Start
1. Select desired `Pretrained Model` and adjust `Seed` to generate an
initial image.
2. Click on image to add control points.
3. Click `Start` and enjoy it!
## Advance Usage
1. Change `Step Size` to adjust learning rate in drag optimization.
2. Select `w` or `w+` to change latent space to optimize:
* Optimize on `w` space may cause greater influence to the image.
* Optimize on `w+` space may work slower than `w`, but usually achieve
better results.
* Note that changing the latent space will reset the image, points and
mask (this has the same effect as `Reset Image` button).
3. Click `Edit Flexible Area` to create a mask and constrain the
unmasked region to remain unchanged.
""")
gr.HTML("""
""")
# Network & latents tab listeners
def on_change_pretrained_dropdown(pretrained_value, global_state):
"""Function to handle model change.
1. Set pretrained value to global_state
2. Re-init images and clear all states
"""
global_state['pretrained_weight'] = pretrained_value
init_images(global_state)
clear_state(global_state)
return global_state, global_state["images"]['image_show']
form_pretrained_dropdown.change(
on_change_pretrained_dropdown,
inputs=[form_pretrained_dropdown, global_state],
outputs=[global_state, form_image],
)
def on_click_reset_image(global_state):
"""Reset image to the original one and clear all states
1. Re-init images
2. Clear all states
"""
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_reset_image.click(
on_click_reset_image,
inputs=[global_state],
outputs=[global_state, form_image],
)
# Update parameters
def on_change_update_image_seed(seed, global_state):
"""Function to handle generation seed change.
1. Set seed to global_state
2. Re-init images and clear all states
"""
global_state["params"]["seed"] = int(seed)
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_seed_number.change(
on_change_update_image_seed,
inputs=[form_seed_number, global_state],
outputs=[global_state, form_image],
)
def on_click_latent_space(latent_space, global_state):
"""Function to reset latent space to optimize.
NOTE: this function we reset the image and all controls
1. Set latent-space to global_state
2. Re-init images and clear all state
"""
global_state['params']['latent_space'] = latent_space
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_latent_space.change(on_click_latent_space,
inputs=[form_latent_space, global_state],
outputs=[global_state, form_image])
# ==== Params
form_lambda_number.change(
partial(on_change_single_global_state, ["params", "motion_lambda"]),
inputs=[form_lambda_number, global_state],
outputs=[global_state],
)
def on_change_lr(lr, global_state):
if lr == 0:
print('lr is 0, do nothing.')
return global_state
else:
global_state["params"]["lr"] = lr
renderer = global_state['renderer']
renderer.update_lr(lr)
print('New optimizer: ')
print(renderer.w_optim)
return global_state
form_lr_number.change(
on_change_lr,
inputs=[form_lr_number, global_state],
outputs=[global_state],
)
def on_click_start(global_state, image):
p_in_pixels = []
t_in_pixels = []
valid_points = []
# handle of start drag in mask editing mode
global_state = preprocess_mask_info(global_state, image)
# Prepare the points for the inference
if len(global_state["points"]) == 0:
# yield on_click_start_wo_points(global_state, image)
image_raw = global_state['images']['image_raw']
update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
yield (
global_state,
0,
global_state['images']['image_show'],
# gr.File.update(visible=False),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
# latent space
gr.Radio.update(interactive=True),
gr.Button.update(interactive=True),
# NOTE: disable stop button
gr.Button.update(interactive=False),
# update other comps
gr.Dropdown.update(interactive=True),
gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Checkbox.update(interactive=True),
# gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
)
else:
# Transform the points into torch tensors
for key_point, point in global_state["points"].items():
try:
p_start = point.get("start_temp", point["start"])
p_end = point["target"]
if p_start is None or p_end is None:
continue
except KeyError:
continue
p_in_pixels.append(p_start)
t_in_pixels.append(p_end)
valid_points.append(key_point)
mask = torch.tensor(global_state['mask']).float()
drag_mask = 1 - mask
renderer: Renderer = global_state["renderer"]
global_state['temporal_params']['stop'] = False
global_state['editing_state'] = 'running'
# reverse points order
p_to_opt = reverse_point_pairs(p_in_pixels)
t_to_opt = reverse_point_pairs(t_in_pixels)
print('Running with:')
print(f' Source: {p_in_pixels}')
print(f' Target: {t_in_pixels}')
step_idx = 0
while True:
if global_state["temporal_params"]["stop"]:
break
# do drage here!
renderer._render_drag_impl(
global_state['generator_params'],
p_to_opt, # point
t_to_opt, # target
drag_mask, # mask,
global_state['params']['motion_lambda'], # lambda_mask
reg=0,
feature_idx=5, # NOTE: do not support change for now
r1=global_state['params']['r1_in_pixels'], # r1
r2=global_state['params']['r2_in_pixels'], # r2
# random_seed = 0,
# noise_mode = 'const',
trunc_psi=global_state['params']['trunc_psi'],
# force_fp32 = False,
# layer_name = None,
# sel_channels = 3,
# base_channel = 0,
# img_scale_db = 0,
# img_normalize = False,
# untransform = False,
is_drag=True,
to_pil=True)
if step_idx % global_state['draw_interval'] == 0:
print('Current Source:')
for key_point, p_i, t_i in zip(valid_points, p_to_opt,
t_to_opt):
global_state["points"][key_point]["start_temp"] = [
p_i[1],
p_i[0],
]
global_state["points"][key_point]["target"] = [
t_i[1],
t_i[0],
]
start_temp = global_state["points"][key_point][
"start_temp"]
print(f' {start_temp}')
image_result = global_state['generator_params']['image']
image_draw = update_image_draw(
image_result,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
global_state['images']['image_raw'] = image_result
yield (
global_state,
step_idx,
global_state['images']['image_show'],
# gr.File.update(visible=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
# latent space
gr.Radio.update(interactive=False),
gr.Button.update(interactive=False),
# enable stop button in loop
gr.Button.update(interactive=True),
# update other comps
gr.Dropdown.update(interactive=False),
gr.Number.update(interactive=False),
gr.Number.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Checkbox.update(interactive=False),
# gr.Number.update(interactive=False),
gr.Number.update(interactive=False),
)
# increate step
step_idx += 1
image_result = global_state['generator_params']['image']
global_state['images']['image_raw'] = image_result
image_draw = update_image_draw(image_result,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state)
# fp = NamedTemporaryFile(suffix=".png", delete=False)
# image_result.save(fp, "PNG")
global_state['editing_state'] = 'add_points'
yield (
global_state,
0, # reset step to 0 after stop.
global_state['images']['image_show'],
# gr.File.update(visible=True, value=fp.name),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
# latent space
gr.Radio.update(interactive=True),
gr.Button.update(interactive=True),
# NOTE: disable stop button with loop finish
gr.Button.update(interactive=False),
# update other comps
gr.Dropdown.update(interactive=True),
gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
gr.Checkbox.update(interactive=True),
gr.Number.update(interactive=True),
)
form_start_btn.click(
on_click_start,
inputs=[global_state, form_image],
outputs=[
global_state,
form_steps_number,
form_image,
# form_download_result_file,
# >>> buttons
form_reset_image,
enable_add_points,
enable_add_mask,
undo_points,
form_reset_mask_btn,
form_latent_space,
form_start_btn,
form_stop_btn,
# <<< buttonm
# >>> inputs comps
form_pretrained_dropdown,
form_seed_number,
form_lr_number,
show_mask,
form_lambda_number,
],
)
def on_click_stop(global_state):
"""Function to handle stop button is clicked.
1. send a stop signal by set global_state["temporal_params"]["stop"] as True
2. Disable Stop button
"""
global_state["temporal_params"]["stop"] = True
return global_state, gr.Button.update(interactive=False)
form_stop_btn.click(on_click_stop,
inputs=[global_state],
outputs=[global_state, form_stop_btn])
form_draw_interval_number.change(
partial(
on_change_single_global_state,
"draw_interval",
map_transform=lambda x: int(x),
),
inputs=[form_draw_interval_number, global_state],
outputs=[global_state],
)
def on_click_remove_point(global_state):
choice = global_state["curr_point"]
del global_state["points"][choice]
choices = list(global_state["points"].keys())
if len(choices) > 0:
global_state["curr_point"] = choices[0]
return (
gr.Dropdown.update(choices=choices, value=choices[0]),
global_state,
)
# Mask
def on_click_reset_mask(global_state):
global_state['mask'] = np.ones(
(
global_state["images"]["image_raw"].size[1],
global_state["images"]["image_raw"].size[0],
),
dtype=np.uint8,
)
image_draw = update_image_draw(global_state['images']['image_raw'],
global_state['points'],
global_state['mask'],
global_state['show_mask'], global_state)
return global_state, image_draw
form_reset_mask_btn.click(
on_click_reset_mask,
inputs=[global_state],
outputs=[global_state, form_image],
)
# Image
def on_click_enable_draw(global_state, image):
"""Function to start add mask mode.
1. Preprocess mask info from last state
2. Change editing state to add_mask
3. Set curr image with points and mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['editing_state'] = 'add_mask'
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'],
global_state['mask'], True,
global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=True))
def on_click_remove_draw(global_state, image):
"""Function to start remove mask mode.
1. Preprocess mask info from last state
2. Change editing state to remove_mask
3. Set curr image with points and mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['edinting_state'] = 'remove_mask'
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'],
global_state['mask'], True,
global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=True))
enable_add_mask.click(on_click_enable_draw,
inputs=[global_state, form_image],
outputs=[
global_state,
form_image,
])
def on_click_add_point(global_state, image: dict):
"""Function switch from add mask mode to add points mode.
1. Updaste mask buffer if need
2. Change global_state['editing_state'] to 'add_points'
3. Set current image with mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['editing_state'] = 'add_points'
mask = global_state['mask']
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'], mask,
global_state['show_mask'], global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=False))
enable_add_points.click(on_click_add_point,
inputs=[global_state, form_image],
outputs=[global_state, form_image])
def on_click_image(global_state, evt: gr.SelectData):
"""This function only support click for point selection
"""
xy = evt.index
if global_state['editing_state'] != 'add_points':
print(f'In {global_state["editing_state"]} state. '
'Do not add points.')
return global_state, global_state['images']['image_show']
points = global_state["points"]
point_idx = get_latest_points_pair(points)
if point_idx is None:
points[0] = {'start': xy, 'target': None}
print(f'Click Image - Start - {xy}')
elif points[point_idx].get('target', None) is None:
points[point_idx]['target'] = xy
print(f'Click Image - Target - {xy}')
else:
points[point_idx + 1] = {'start': xy, 'target': None}
print(f'Click Image - Start - {xy}')
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
return global_state, image_draw
form_image.select(
on_click_image,
inputs=[global_state],
outputs=[global_state, form_image],
)
def on_click_clear_points(global_state):
"""Function to handle clear all control points
1. clear global_state['points'] (clear_state)
2. re-init network
2. re-draw image
"""
clear_state(global_state, target='point')
renderer: Renderer = global_state["renderer"]
renderer.feat_refs = None
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, {}, global_state['mask'],
global_state['show_mask'], global_state)
return global_state, image_draw
undo_points.click(on_click_clear_points,
inputs=[global_state],
outputs=[global_state, form_image])
def on_click_show_mask(global_state, show_mask):
"""Function to control whether show mask on image."""
global_state['show_mask'] = show_mask
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
return global_state, image_draw
show_mask.change(
on_click_show_mask,
inputs=[global_state, show_mask],
outputs=[global_state, form_image],
)
gr.close_all()
app.queue(concurrency_count=5, max_size=20)
app.launch(share=args.share)