# -*- coding: UTF-8 -*- import sys from pathlib import Path import torch from .. import DEVICE, logger from ..utils.base_model import BaseModel pram_path = Path(__file__).parent / "../../third_party/pram" sys.path.append(str(pram_path)) from nets.gml import GML class IMP(BaseModel): default_conf = { "match_threshold": 0.2, "features": "sfd2", "model_name": "imp_gml.920.pth", "sinkhorn_iterations": 20, } required_inputs = [ "image0", "keypoints0", "scores0", "descriptors0", "image1", "keypoints1", "scores1", "descriptors1", ] def _init(self, conf): self.conf = {**self.default_conf, **conf} weight_path = pram_path / "weights" / self.conf["model_name"] self.net = GML(self.conf).eval().to(DEVICE) self.net.load_state_dict( torch.load(weight_path, map_location="cpu")["model"], strict=True ) logger.info("Load IMP model done.") def _forward(self, data): data["descriptors0"] = data["descriptors0"].transpose(2, 1).float() data["descriptors1"] = data["descriptors1"].transpose(2, 1).float() return self.net.produce_matches(data, p=0.2)