from transformers import pipeline import gradio as gr # Load the text generation pipeline pipe = pipeline("text-generation", model="google/gemma-2-2b-jpn-it") def generate_text(messages): # Extracting the content from the messages user_message = messages["content"] # Using the pipeline to generate a response result = pipe(user_message, max_length=50, num_return_sequences=1) # Return the generated text return result[0]["generated_text"] # Set up Gradio interface with gr.Blocks() as demo: gr.Markdown("# Text Generation with Hugging Face's gemma-2-2b-jpn-it") # Input for user's message user_input = gr.Textbox(label="Your Message", placeholder="Type a message", value="Who are you?") # Output for generated response output_text = gr.Textbox(label="Generated Response") # Button to trigger text generation generate_button = gr.Button("Generate Response") # Link button click with text generation function generate_button.click(fn=generate_text, inputs={"content": user_input}, outputs=output_text) # Launch the Gradio app demo.launch()