Spaces:
Runtime error
Runtime error
123LETSPLAY
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the pre-trained model and processor
|
6 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
+
processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
+
|
10 |
+
# Streamlit app title
|
11 |
+
st.title("Image to Text App")
|
12 |
+
|
13 |
+
# File uploader
|
14 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
15 |
+
|
16 |
+
if uploaded_file is not None:
|
17 |
+
# Load and display the image
|
18 |
+
image = Image.open(uploaded_file)
|
19 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
20 |
+
|
21 |
+
# Process the image
|
22 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
23 |
+
|
24 |
+
# Generate text
|
25 |
+
output_ids = model.generate(pixel_values)
|
26 |
+
text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
# Display the generated text
|
29 |
+
st.write("Generated Text:")
|
30 |
+
st.write(text)
|