import gradio as gr from diffusers import DiffusionPipeline # Load the CogVideoX diffusion pipeline (image-to-video model) pipe = DiffusionPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V") def generate_image(prompt): # Generate the first frame of the video from the prompt result = pipe(prompt) image = result.images[0] # Extract the first frame from the generated video return image # Create a Gradio interface iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter your prompt", placeholder="e.g. Astronaut in a jungle"), outputs=gr.Image(label="Generated Image (First Frame)"), title="CogVideoX Image-to-Video Generator", description="Generate the first frame of a video using CogVideoX based on your text prompts." ) if __name__ == "__main__": iface.launch()