import torch from diffusers import DiffusionPipeline import gradio as gr # Load the diffusion pipeline using the CogVideoX model pipe = DiffusionPipeline.from_pretrained("THUDM/CogVideoX-5b-I2V", torch_dtype=torch.float16) def generate_image(prompt): # Generate an image based on the prompt using the CogVideoX model image = pipe(prompt).images[0] return image # Set up the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Image Generation using CogVideoX Diffusers") # Input for user's text prompt prompt_input = gr.Textbox(label="Enter Prompt", value="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k") # Output for displaying the generated image output_image = gr.Image(label="Generated Image") # Button to trigger image generation generate_button = gr.Button("Generate Image") # Link button click with image generation function generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image) # Launch the Gradio app demo.launch()