from typing import Any, List, Callable import cv2 import insightface import threading import roop.globals import roop.processors.frame.core from roop.core import update_status from roop.face_analyser import get_first_face, get_all_faces from roop.typing import Face, Frame from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video, compute_cosine_distance, get_destfilename_from_path FACE_SWAPPER = None THREAD_LOCK = threading.Lock() NAME = 'ROOP.FACE-SWAPPER' DIST_THRESHOLD = 0.65 def get_face_swapper() -> Any: global FACE_SWAPPER with THREAD_LOCK: if FACE_SWAPPER is None: model_path = resolve_relative_path('../models/inswapper_128.onnx') FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=roop.globals.execution_providers) return FACE_SWAPPER def pre_check() -> bool: download_directory_path = resolve_relative_path('../models') conditional_download(download_directory_path, ['https://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx']) return True def pre_start() -> bool: if not is_image(roop.globals.source_path): update_status('Select an image for source path.', NAME) return False elif not get_first_face(cv2.imread(roop.globals.source_path)): update_status('No face in source path detected.', NAME) return False if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path): update_status('Select an image or video for target path.', NAME) return False return True def post_process() -> None: global FACE_SWAPPER FACE_SWAPPER = None def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True) def process_frame(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame: global DIST_THRESHOLD if roop.globals.many_faces: many_faces = get_all_faces(temp_frame) if many_faces: for target_face in many_faces: if target_face['det_score'] > 0.65: temp_frame = swap_face(source_face, target_face, temp_frame) else: if target_face: target_embedding = target_face.embedding many_faces = get_all_faces(temp_frame) target_face = None for dest_face in many_faces: dest_embedding = dest_face.embedding if compute_cosine_distance(target_embedding, dest_embedding) <= DIST_THRESHOLD: target_face = dest_face break if target_face: temp_frame = swap_face(source_face, target_face, temp_frame) return temp_frame target_face = get_first_face(temp_frame) if target_face: temp_frame = swap_face(source_face, target_face, temp_frame) return temp_frame def process_frames(is_batch: bool, source_face: Face, target_face: Face, temp_frame_paths: List[str], update: Callable[[], None]) -> None: for temp_frame_path in temp_frame_paths: temp_frame = cv2.imread(temp_frame_path) if temp_frame is not None: result = process_frame(source_face, target_face, temp_frame) if result is not None: if is_batch: tf = get_destfilename_from_path(temp_frame_path, roop.globals.output_path, '_fake.png') cv2.imwrite(tf, result) else: cv2.imwrite(temp_frame_path, result) if update: update() def process_image(source_face: Any, target_face: Any, target_path: str, output_path: str) -> None: global DIST_THRESHOLD target_frame = cv2.imread(target_path) if target_frame is not None: result = process_frame(source_face, target_face, target_frame) if result is not None: cv2.imwrite(output_path, result) def process_video(source_face: Any, target_face: Any, temp_frame_paths: List[str]) -> None: global DIST_THRESHOLD roop.processors.frame.core.process_video(source_face, target_face, temp_frame_paths, process_frames) def process_batch_images(source_face: Any, target_face: Any, temp_frame_paths: List[str]) -> None: global DIST_THRESHOLD roop.processors.frame.core.process_batch(source_face, target_face, temp_frame_paths, process_frames)