import os import cv2 import numpy as np import torch import threading from chain_img_processor import ChainImgProcessor, ChainImgPlugin from torchvision import transforms from clip.clipseg import CLIPDensePredT from numpy import asarray THREAD_LOCK_CLIP = threading.Lock() modname = os.path.basename(__file__)[:-3] # calculating modname model_clip = None # start function def start(core:ChainImgProcessor): manifest = { # plugin settings "name": "Text2Clip", # name "version": "1.0", # version "default_options": { }, "img_processor": { "txt2clip": Text2Clip } } return manifest def start_with_options(core:ChainImgProcessor, manifest:dict): pass class Text2Clip(ChainImgPlugin): def load_clip_model(self): global model_clip if model_clip is None: device = torch.device(super().device) model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True) model_clip.eval(); model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False) model_clip.to(device) def init_plugin(self): self.load_clip_model() def process(self, frame, params:dict): if "face_detected" in params: if not params["face_detected"]: return frame return self.mask_original(params["original_frame"], frame, params["clip_prompt"]) def mask_original(self, img1, img2, keywords): global model_clip source_image_small = cv2.resize(img1, (256,256)) img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32) mask_border = 1 l = 0 t = 0 r = 1 b = 1 mask_blur = 5 clip_blur = 5 img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)), (256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1) img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0) img_mask /= 255 input_image = source_image_small transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize((256, 256)), ]) img = transform(input_image).unsqueeze(0) thresh = 0.5 prompts = keywords.split(',') with THREAD_LOCK_CLIP: with torch.no_grad(): preds = model_clip(img.repeat(len(prompts),1,1,1), prompts)[0] clip_mask = torch.sigmoid(preds[0][0]) for i in range(len(prompts)-1): clip_mask += torch.sigmoid(preds[i+1][0]) clip_mask = clip_mask.data.cpu().numpy() np.clip(clip_mask, 0, 1) clip_mask[clip_mask>thresh] = 1.0 clip_mask[clip_mask<=thresh] = 0.0 kernel = np.ones((5, 5), np.float32) clip_mask = cv2.dilate(clip_mask, kernel, iterations=1) clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0) img_mask *= clip_mask img_mask[img_mask<0.0] = 0.0 img_mask = cv2.resize(img_mask, (img2.shape[1], img2.shape[0])) img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) target = img2.astype(np.float32) result = (1-img_mask) * target result += img_mask * img1.astype(np.float32) return np.uint8(result)