Spaces:
Running
Running
from typing import Any, List, Literal, Optional | |
from argparse import ArgumentParser | |
import threading | |
import numpy | |
import onnx | |
import onnxruntime | |
from onnx import numpy_helper | |
import DeepFakeAI.globals | |
import DeepFakeAI.processors.frame.core as frame_processors | |
from DeepFakeAI import logger, wording | |
from DeepFakeAI.face_analyser import get_one_face, get_average_face, get_many_faces, find_similar_faces, clear_face_analyser | |
from DeepFakeAI.face_helper import warp_face, paste_back | |
from DeepFakeAI.face_store import get_reference_faces | |
from DeepFakeAI.content_analyser import clear_content_analyser | |
from DeepFakeAI.typing import Face, FaceSet, Frame, Update_Process, ProcessMode, ModelSet, OptionsWithModel, Embedding | |
from DeepFakeAI.filesystem import is_file, is_image, are_images, is_video, resolve_relative_path | |
from DeepFakeAI.download import conditional_download, is_download_done | |
from DeepFakeAI.vision import read_image, read_static_image, read_static_images, write_image | |
from DeepFakeAI.processors.frame import globals as frame_processors_globals | |
from DeepFakeAI.processors.frame import choices as frame_processors_choices | |
from DeepFakeAI.face_masker import create_static_box_mask, create_occlusion_mask, create_region_mask, clear_face_occluder, clear_face_parser | |
FRAME_PROCESSOR = None | |
MODEL_MATRIX = None | |
THREAD_LOCK : threading.Lock = threading.Lock() | |
NAME = __name__.upper() | |
MODELS : ModelSet =\ | |
{ | |
'blendswap_256': | |
{ | |
'type': 'blendswap', | |
'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/blendswap_256.onnx', | |
'path': resolve_relative_path('../.assets/models/blendswap_256.onnx'), | |
'template': 'ffhq_512', | |
'size': (512, 256), | |
'mean': [ 0.0, 0.0, 0.0 ], | |
'standard_deviation': [ 1.0, 1.0, 1.0 ] | |
}, | |
'inswapper_128': | |
{ | |
'type': 'inswapper', | |
'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128.onnx', | |
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx'), | |
'template': 'arcface_128_v2', | |
'size': (128, 128), | |
'mean': [ 0.0, 0.0, 0.0 ], | |
'standard_deviation': [ 1.0, 1.0, 1.0 ] | |
}, | |
'inswapper_128_fp16': | |
{ | |
'type': 'inswapper', | |
'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128_fp16.onnx', | |
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx'), | |
'template': 'arcface_128_v2', | |
'size': (128, 128), | |
'mean': [ 0.0, 0.0, 0.0 ], | |
'standard_deviation': [ 1.0, 1.0, 1.0 ] | |
}, | |
'simswap_256': | |
{ | |
'type': 'simswap', | |
'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/simswap_256.onnx', | |
'path': resolve_relative_path('../.assets/models/simswap_256.onnx'), | |
'template': 'arcface_112_v1', | |
'size': (112, 256), | |
'mean': [ 0.485, 0.456, 0.406 ], | |
'standard_deviation': [ 0.229, 0.224, 0.225 ] | |
}, | |
'simswap_512_unofficial': | |
{ | |
'type': 'simswap', | |
'url': 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/simswap_512_unofficial.onnx', | |
'path': resolve_relative_path('../.assets/models/simswap_512_unofficial.onnx'), | |
'template': 'arcface_112_v1', | |
'size': (112, 512), | |
'mean': [ 0.0, 0.0, 0.0 ], | |
'standard_deviation': [ 1.0, 1.0, 1.0 ] | |
} | |
} | |
OPTIONS : Optional[OptionsWithModel] = None | |
def get_frame_processor() -> Any: | |
global FRAME_PROCESSOR | |
with THREAD_LOCK: | |
if FRAME_PROCESSOR is None: | |
model_path = get_options('model').get('path') | |
FRAME_PROCESSOR = onnxruntime.InferenceSession(model_path, providers = DeepFakeAI.globals.execution_providers) | |
return FRAME_PROCESSOR | |
def clear_frame_processor() -> None: | |
global FRAME_PROCESSOR | |
FRAME_PROCESSOR = None | |
def get_model_matrix() -> Any: | |
global MODEL_MATRIX | |
with THREAD_LOCK: | |
if MODEL_MATRIX is None: | |
model_path = get_options('model').get('path') | |
model = onnx.load(model_path) | |
MODEL_MATRIX = numpy_helper.to_array(model.graph.initializer[-1]) | |
return MODEL_MATRIX | |
def clear_model_matrix() -> None: | |
global MODEL_MATRIX | |
MODEL_MATRIX = None | |
def get_options(key : Literal['model']) -> Any: | |
global OPTIONS | |
if OPTIONS is None: | |
OPTIONS =\ | |
{ | |
'model': MODELS[frame_processors_globals.face_swapper_model] | |
} | |
return OPTIONS.get(key) | |
def set_options(key : Literal['model'], value : Any) -> None: | |
global OPTIONS | |
OPTIONS[key] = value | |
def register_args(program : ArgumentParser) -> None: | |
program.add_argument('--face-swapper-model', help = wording.get('frame_processor_model_help'), default = 'inswapper_128', choices = frame_processors_choices.face_swapper_models) | |
def apply_args(program : ArgumentParser) -> None: | |
args = program.parse_args() | |
frame_processors_globals.face_swapper_model = args.face_swapper_model | |
if args.face_swapper_model == 'blendswap_256': | |
DeepFakeAI.globals.face_recognizer_model = 'arcface_blendswap' | |
if args.face_swapper_model == 'inswapper_128' or args.face_swapper_model == 'inswapper_128_fp16': | |
DeepFakeAI.globals.face_recognizer_model = 'arcface_inswapper' | |
if args.face_swapper_model == 'simswap_256' or args.face_swapper_model == 'simswap_512_unofficial': | |
DeepFakeAI.globals.face_recognizer_model = 'arcface_simswap' | |
def pre_check() -> bool: | |
if not DeepFakeAI.globals.skip_download: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_url = get_options('model').get('url') | |
conditional_download(download_directory_path, [ model_url ]) | |
return True | |
def pre_process(mode : ProcessMode) -> bool: | |
model_url = get_options('model').get('url') | |
model_path = get_options('model').get('path') | |
if not DeepFakeAI.globals.skip_download and not is_download_done(model_url, model_path): | |
logger.error(wording.get('model_download_not_done') + wording.get('exclamation_mark'), NAME) | |
return False | |
elif not is_file(model_path): | |
logger.error(wording.get('model_file_not_present') + wording.get('exclamation_mark'), NAME) | |
return False | |
if not are_images(DeepFakeAI.globals.source_paths): | |
logger.error(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME) | |
return False | |
for source_frame in read_static_images(DeepFakeAI.globals.source_paths): | |
if not get_one_face(source_frame): | |
logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME) | |
return False | |
if mode in [ 'output', 'preview' ] and not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path): | |
logger.error(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) | |
return False | |
if mode == 'output' and not DeepFakeAI.globals.output_path: | |
logger.error(wording.get('select_file_or_directory_output') + wording.get('exclamation_mark'), NAME) | |
return False | |
return True | |
def post_process() -> None: | |
clear_frame_processor() | |
clear_model_matrix() | |
clear_face_analyser() | |
clear_content_analyser() | |
clear_face_occluder() | |
clear_face_parser() | |
read_static_image.cache_clear() | |
def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame: | |
frame_processor = get_frame_processor() | |
model_template = get_options('model').get('template') | |
model_size = get_options('model').get('size') | |
model_type = get_options('model').get('type') | |
crop_frame, affine_matrix = warp_face(temp_frame, target_face.kps, model_template, model_size) | |
crop_mask_list = [] | |
if 'box' in DeepFakeAI.globals.face_mask_types: | |
crop_mask_list.append(create_static_box_mask(crop_frame.shape[:2][::-1], DeepFakeAI.globals.face_mask_blur, DeepFakeAI.globals.face_mask_padding)) | |
if 'occlusion' in DeepFakeAI.globals.face_mask_types: | |
crop_mask_list.append(create_occlusion_mask(crop_frame)) | |
crop_frame = prepare_crop_frame(crop_frame) | |
frame_processor_inputs = {} | |
for frame_processor_input in frame_processor.get_inputs(): | |
if frame_processor_input.name == 'source': | |
if model_type == 'blendswap': | |
frame_processor_inputs[frame_processor_input.name] = prepare_source_frame(source_face) | |
else: | |
frame_processor_inputs[frame_processor_input.name] = prepare_source_embedding(source_face) | |
if frame_processor_input.name == 'target': | |
frame_processor_inputs[frame_processor_input.name] = crop_frame | |
crop_frame = frame_processor.run(None, frame_processor_inputs)[0][0] | |
crop_frame = normalize_crop_frame(crop_frame) | |
if 'region' in DeepFakeAI.globals.face_mask_types: | |
crop_mask_list.append(create_region_mask(crop_frame, DeepFakeAI.globals.face_mask_regions)) | |
crop_mask = numpy.minimum.reduce(crop_mask_list).clip(0, 1) | |
temp_frame = paste_back(temp_frame, crop_frame, crop_mask, affine_matrix) | |
return temp_frame | |
def prepare_source_frame(source_face : Face) -> Frame: | |
source_frame = read_static_image(DeepFakeAI.globals.source_paths[0]) | |
source_frame, _ = warp_face(source_frame, source_face.kps, 'arcface_112_v2', (112, 112)) | |
source_frame = source_frame[:, :, ::-1] / 255.0 | |
source_frame = source_frame.transpose(2, 0, 1) | |
source_frame = numpy.expand_dims(source_frame, axis = 0).astype(numpy.float32) | |
return source_frame | |
def prepare_source_embedding(source_face : Face) -> Embedding: | |
model_type = get_options('model').get('type') | |
if model_type == 'inswapper': | |
model_matrix = get_model_matrix() | |
source_embedding = source_face.embedding.reshape((1, -1)) | |
source_embedding = numpy.dot(source_embedding, model_matrix) / numpy.linalg.norm(source_embedding) | |
else: | |
source_embedding = source_face.normed_embedding.reshape(1, -1) | |
return source_embedding | |
def prepare_crop_frame(crop_frame : Frame) -> Frame: | |
model_mean = get_options('model').get('mean') | |
model_standard_deviation = get_options('model').get('standard_deviation') | |
crop_frame = crop_frame[:, :, ::-1] / 255.0 | |
crop_frame = (crop_frame - model_mean) / model_standard_deviation | |
crop_frame = crop_frame.transpose(2, 0, 1) | |
crop_frame = numpy.expand_dims(crop_frame, axis = 0).astype(numpy.float32) | |
return crop_frame | |
def normalize_crop_frame(crop_frame : Frame) -> Frame: | |
crop_frame = crop_frame.transpose(1, 2, 0) | |
crop_frame = (crop_frame * 255.0).round() | |
crop_frame = crop_frame[:, :, ::-1].astype(numpy.uint8) | |
return crop_frame | |
def get_reference_frame(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame: | |
return swap_face(source_face, target_face, temp_frame) | |
def process_frame(source_face : Face, reference_faces : FaceSet, temp_frame : Frame) -> Frame: | |
if 'reference' in DeepFakeAI.globals.face_selector_mode: | |
similar_faces = find_similar_faces(temp_frame, reference_faces, DeepFakeAI.globals.reference_face_distance) | |
if similar_faces: | |
for similar_face in similar_faces: | |
temp_frame = swap_face(source_face, similar_face, temp_frame) | |
if 'one' in DeepFakeAI.globals.face_selector_mode: | |
target_face = get_one_face(temp_frame) | |
if target_face: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
if 'many' in DeepFakeAI.globals.face_selector_mode: | |
many_faces = get_many_faces(temp_frame) | |
if many_faces: | |
for target_face in many_faces: | |
temp_frame = swap_face(source_face, target_face, temp_frame) | |
return temp_frame | |
def process_frames(source_paths : List[str], temp_frame_paths : List[str], update_progress : Update_Process) -> None: | |
source_frames = read_static_images(source_paths) | |
source_face = get_average_face(source_frames) | |
reference_faces = get_reference_faces() if 'reference' in DeepFakeAI.globals.face_selector_mode else None | |
for temp_frame_path in temp_frame_paths: | |
temp_frame = read_image(temp_frame_path) | |
result_frame = process_frame(source_face, reference_faces, temp_frame) | |
write_image(temp_frame_path, result_frame) | |
update_progress() | |
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None: | |
source_frames = read_static_images(source_paths) | |
source_face = get_average_face(source_frames) | |
reference_faces = get_reference_faces() if 'reference' in DeepFakeAI.globals.face_selector_mode else None | |
target_frame = read_static_image(target_path) | |
result_frame = process_frame(source_face, reference_faces, target_frame) | |
write_image(output_path, result_frame) | |
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: | |
frame_processors.multi_process_frames(source_paths, temp_frame_paths, process_frames) | |