File size: 5,999 Bytes
74a242e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# type: ignore
# Inspired from https://github.com/ixarchakos/try-off-anyone/blob/aa3045453013065573a647e4536922bac696b968/src/model/pipeline.py
# Inspired from https://github.com/ixarchakos/try-off-anyone/blob/aa3045453013065573a647e4536922bac696b968/src/model/attention.py

import torch
from accelerate import load_checkpoint_in_model
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor
from diffusers.utils.torch_utils import randn_tensor
from huggingface_hub import hf_hub_download
from PIL import Image


class Skip(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def __call__(
        self,
        attn: torch.Tensor,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        attention_mask: torch.Tensor = None,
        temb: torch.Tensor = None,
    ) -> torch.Tensor:
        return hidden_states


def fine_tuned_modules(unet: UNet2DConditionModel) -> torch.nn.ModuleList:
    trainable_modules = torch.nn.ModuleList()

    for blocks in [unet.down_blocks, unet.mid_block, unet.up_blocks]:
        if hasattr(blocks, "attentions"):
            trainable_modules.append(blocks.attentions)
        else:
            for block in blocks:
                if hasattr(block, "attentions"):
                    trainable_modules.append(block.attentions)

    return trainable_modules


def skip_cross_attentions(unet: UNet2DConditionModel) -> dict[str, AttnProcessor | Skip]:
    attn_processors = {
        name: unet.attn_processors[name] if name.endswith("attn1.processor") else Skip()
        for name in unet.attn_processors.keys()
    }
    return attn_processors


def encode(image: torch.Tensor, vae: AutoencoderKL) -> torch.Tensor:
    image = image.to(memory_format=torch.contiguous_format).float().to(vae.device, dtype=vae.dtype)
    with torch.no_grad():
        return vae.encode(image).latent_dist.sample() * vae.config.scaling_factor


class TryOffAnyone:
    def __init__(
        self,
        device: torch.device,
        dtype: torch.dtype,
        concat_dim: int = -2,
    ) -> None:
        self.concat_dim = concat_dim
        self.device = device
        self.dtype = dtype

        self.noise_scheduler = DDIMScheduler.from_pretrained(
            pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-inpainting",
            subfolder="scheduler",
        )
        self.vae = AutoencoderKL.from_pretrained(
            pretrained_model_name_or_path="stabilityai/sd-vae-ft-mse",
        ).to(device, dtype=dtype)
        self.unet = UNet2DConditionModel.from_pretrained(
            pretrained_model_name_or_path="stable-diffusion-v1-5/stable-diffusion-inpainting",
            subfolder="unet",
            variant="fp16",
        ).to(device, dtype=dtype)

        self.unet.set_attn_processor(skip_cross_attentions(self.unet))
        load_checkpoint_in_model(
            model=fine_tuned_modules(unet=self.unet),
            checkpoint=hf_hub_download(
                repo_id="ixarchakos/tryOffAnyone",
                filename="model.safetensors",
            ),
        )

    @torch.no_grad()
    def __call__(
        self,
        image: torch.Tensor,
        mask: torch.Tensor,
        inference_steps: int,
        scale: float,
        generator: torch.Generator,
    ) -> list[Image.Image]:
        image = image.unsqueeze(0).to(self.device, dtype=self.dtype)
        mask = (mask.unsqueeze(0) > 0.5).to(self.device, dtype=self.dtype)
        masked_image = image * (mask < 0.5)

        masked_latent = encode(masked_image, self.vae)
        image_latent = encode(image, self.vae)
        mask = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest")

        masked_latent_concat = torch.cat([masked_latent, image_latent], dim=self.concat_dim)
        mask_concat = torch.cat([mask, torch.zeros_like(mask)], dim=self.concat_dim)

        latents = randn_tensor(
            shape=masked_latent_concat.shape,
            generator=generator,
            device=self.device,
            dtype=self.dtype,
        )

        self.noise_scheduler.set_timesteps(inference_steps, device=self.device)
        timesteps = self.noise_scheduler.timesteps

        if do_classifier_free_guidance := (scale > 1.0):
            masked_latent_concat = torch.cat(
                [
                    torch.cat([masked_latent, torch.zeros_like(image_latent)], dim=self.concat_dim),
                    masked_latent_concat,
                ]
            )

            mask_concat = torch.cat([mask_concat] * 2)

        extra_step = {"generator": generator, "eta": 1.0}
        for t in timesteps:
            input_latents = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            input_latents = self.noise_scheduler.scale_model_input(input_latents, t)

            input_latents = torch.cat([input_latents, mask_concat, masked_latent_concat], dim=1)

            noise_pred = self.unet(
                input_latents,
                t.to(self.device),
                encoder_hidden_states=None,
                return_dict=False,
            )[0]

            if do_classifier_free_guidance:
                noise_pred_unc, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_unc + scale * (noise_pred_text - noise_pred_unc)

            latents = self.noise_scheduler.step(noise_pred, t, latents, **extra_step).prev_sample

        latents = latents.split(latents.shape[self.concat_dim] // 2, dim=self.concat_dim)[0]
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents.to(self.device, dtype=self.dtype)).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()

        image = (image * 255).round().astype("uint8")
        image = [Image.fromarray(im) for im in image]

        return image