1aurent's picture
add app
432150c unverified
raw
history blame
2.72 kB
# type: ignore
from typing import Any
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, LlamaTokenizer
DEFAULT_PARAMS = {
"do_sample": False,
"max_new_tokens": 256,
}
DEFAULT_QUERY = (
"Provide a factual description of this image in up to two paragraphs. "
"Include details on objects, background, scenery, interactions, gestures, poses, and any visible text content. "
"Specify the number of repeated objects. "
"Describe the dominant colors, color contrasts, textures, and materials. "
"Mention the composition, including the arrangement of elements and focus points. "
"Note the camera angle or perspective, and provide any identifiable contextual information. "
"Include details on the style, lighting, and shadows. "
"Avoid subjective interpretations or speculation."
)
DTYPE = torch.bfloat16
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = LlamaTokenizer.from_pretrained(
pretrained_model_name_or_path="lmsys/vicuna-7b-v1.5",
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path="THUDM/cogvlm-chat-hf",
torch_dtype=DTYPE,
trust_remote_code=True,
low_cpu_mem_usage=True,
)
model = model.to(device=DEVICE)
@spaces.GPU
@torch.no_grad()
def generate_caption(
image: Image.Image,
query: str = DEFAULT_QUERY,
params: dict[str, Any] = DEFAULT_PARAMS,
) -> str:
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=query,
history=[],
images=[image],
)
inputs = {
"input_ids": inputs["input_ids"].unsqueeze(0).to(device=DEVICE),
"token_type_ids": inputs["token_type_ids"].unsqueeze(0).to(device=DEVICE),
"attention_mask": inputs["attention_mask"].unsqueeze(0).to(device=DEVICE),
"images": [[inputs["images"][0].to(device=DEVICE, dtype=DTYPE)]],
}
outputs = model.generate(**inputs, **params)
outputs = outputs[:, inputs["input_ids"].shape[1] :]
result = tokenizer.decode(outputs[0])
result = result.replace("This image showcases", "").lstrip()
return result
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil")
input_query = gr.Textbox(lines=5, label="Prompt", value=DEFAULT_QUERY)
run_button = gr.Button(value="Generate Caption")
with gr.Column():
output_caption = gr.Textbox(label="Generated Caption", show_copy_button=True)
run_button.click(
fn=generate_caption,
inputs=[input_image, input_query],
outputs=output_caption,
)
demo.launch(share=False)