1halfplusminus commited on
Commit
5569175
β€’
1 Parent(s): 91087cc

feat: first commit

Browse files
Files changed (5) hide show
  1. Dockerfile +26 -0
  2. README copy.md +13 -0
  3. export.pkl +3 -0
  4. main.py +26 -0
  5. requirements.txt +6 -0
Dockerfile ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
+ # you will also find guides on how best to write your Dockerfile
3
+
4
+ FROM python:3.9
5
+
6
+ WORKDIR /code
7
+
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
11
+
12
+ # Set up a new user named "user" with user ID 1000
13
+ RUN useradd -m -u 1000 user
14
+ # Switch to the "user" user
15
+ USER user
16
+ # Set home to the user's home directory
17
+ ENV HOME=/home/user \
18
+ PATH=/home/user/.local/bin:$PATH
19
+
20
+ # Set the working directory to the user's home directory
21
+ WORKDIR $HOME/app
22
+ COPY main.py main.py
23
+ # Copy the current directory contents into the container at $HOME/app setting the owner to the user
24
+ COPY --chown=user . $HOME/app
25
+
26
+ CMD ["python", "main.py"]
README copy.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: LlamaAlpacaTron5000
3
+ emoji: πŸ“ˆ
4
+ colorFrom: blue
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: 3.23.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
export.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce5af6d51a72693a681f2fea5764adf7e2524a8843cd2e83d784b7eb33d2d487
3
+ size 46962511
main.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from fastcore.all import *
3
+ from fastai.vision.all import *
4
+
5
+ # Load the FastAI model
6
+ learn = load_learner('export.pkl')
7
+ labels = learn.dls.vocab
8
+ # Define a function to classify an image
9
+ def classify_image(file):
10
+
11
+ # Run the model to get a prediction
12
+ pred_class, pred_idx, outputs = learn.predict(file)
13
+ # Return the predicted class
14
+ return {labels[i]: float(outputs[i]) for i in range(len(labels))}
15
+
16
+ # Create a Gradio interface
17
+ iface = gr.Interface(
18
+ fn=classify_image,
19
+ inputs=gr.components.Image(label="Image"),
20
+ outputs=gr.components.Label(num_top_classes=3),
21
+ title="Llamalpaca-tron 5000",
22
+ description="The llama-alpaca image classifier is a machine learning model designed to accurately identify whether an image contains a llama or an alpaca. Trained on a large dataset of llama and alpaca images, the model uses deep learning algorithms to analyze various features of the animals, such as their fur, body shape, and facial characteristics, and then makes a prediction based on those features. With high accuracy, this model can help identify llamas and alpacas in images, which can be useful for various applications, such as wildlife conservation, agriculture, and animal research.",
23
+ )
24
+
25
+ # Run the interface
26
+ iface.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ fastai
2
+ duckduckgo_search
3
+ gradio
4
+ torch
5
+ torchvision
6
+ requests