vicuna-clip / app.py
1inkusFace's picture
Update app.py
2e72baf verified
import spaces
import torch
import gradio as gr
from transformers import pipeline, AutoModel, LlamaTokenizer, LlamaForCausalLM, InstructBlipForConditionalGeneration, InstructBlipProcessor
import numpy as np
#import yaml
#import os
import requests
import nltk
import scipy.io.wavfile
import os
import subprocess
from huggingface_hub import hf_hub_download
subprocess.run(['bash','llama.sh'])
from llama_cpp import Llama
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
from espnet2.bin.tts_inference import Text2Speech
repo_id = "Sosaka/Vicuna-7B-4bit-ggml"
filename = "vicuna-7B-1.1-ggml_q4_0-ggjt_v3.bin"
cache_dir="~/.cache/huggingface/hub"
#hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir)
'''
llm = Llama(
model_path="~/.cache/huggingface/hub/vicuna-7B-1.1-ggml_q4_0-ggjt_v3.bin",
n_gpu_layers=-1, # Uncomment to use GPU acceleration
# seed=1337, # Uncomment to set a specific seed
n_ctx=4096, # Uncomment to increase the context window
)
llm = Llama.from_pretrained(
repo_id="Sosaka/Vicuna-7B-4bit-ggml",
filename="vicuna-7B-1.1-ggml_q4_0-ggjt_v3.bin",
n_gpu_layers=-1, # Uncomment to use GPU acceleration
n_ctx = 4096,
verbose=False
)
'''
try:
nltk.data.find('taggers/averaged_perceptron_tagger_eng')
except LookupError:
nltk.download('averaged_perceptron_tagger_eng')
try:
nltk.data.find('corpora/cmudict') # Check for cmudict
except LookupError:
nltk.download('cmudict')
ASR_MODEL_NAME = "openai/whisper-medium.en"
asr_pipe = pipeline(
task="automatic-speech-recognition",
model=ASR_MODEL_NAME,
chunk_length_s=30,
device='cuda' if torch.cuda.is_available() else 'cpu', # Use GPU if available
)
all_special_ids = asr_pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def _preload_and_load_models():
global vicuna_tokenizer, vicuna_model
#VICUNA_MODEL_NAME = "EleutherAI/gpt-neo-2.7B" # Or another model
VICUNA_MODEL_NAME = "lmsys/vicuna-13b-v1.5" # Or another model
#VICUNA_MODEL_NAME = "lmsys/vicuna-7b-v1.5" # Or another model
vicuna_tokenizer = LlamaTokenizer.from_pretrained(VICUNA_MODEL_NAME)
vicuna_model = LlamaForCausalLM.from_pretrained(
VICUNA_MODEL_NAME,
#torch_dtype=torch.float16,
# device_map="auto", # or.to('cuda')
).to('cuda',torch.float16) # Explicitly move to CUDA after loading
_preload_and_load_models()
tts = Text2Speech.from_pretrained("espnet/kan-bayashi_ljspeech_vits",device='cuda')
model5 = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b").to('cuda',torch.bfloat16)
processor5 = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
cap_prompt = (
"Describe this image with a caption to be used for question answering."
)
@spaces.GPU(required=True)
def process_audio(img, microphone, audio_upload, state, answer_mode): # Added audio_upload
audio_source = None
if microphone:
audio_source = microphone
asr_pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id ]]
text = asr_pipe(audio_source)["text"]
elif audio_upload:
audio_source = audio_upload
rate, data = scipy.io.wavfile.read(audio_source)
asr_pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id ]]
text = asr_pipe(data)["text"]
else:
return state, state, None # No audio input
system_prompt = """You are a friendly and enthusiastic tutor for young children (ages 6-9).
You answer questions clearly and simply, using age-appropriate language.
You are also a little bit silly and like to make jokes."""
prompt = f"{system_prompt}\nUser: {text}"
if img is not None:
sd_image_a = Image.open(img.name).convert('RGB')
inputsa = processor5(images=sd_image_a, text=cap_prompt, return_tensors="pt").to('cuda')
sd_image_a.resize((512,512), Image.LANCZOS)
with torch.no_grad():
generated_ids = model5.generate(
**inputsa,
do_sample=True,
num_beams=1,
max_length=96,
min_length=64,
top_p=0.9,
repetition_penalty=1.0,
length_penalty=2.0,
temperature=0.5,
)
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
print(generated_text)
prompt = f"{system_prompt}\nImage: {generated_text}\nUser: {text}"
with torch.no_grad():
vicuna_input = vicuna_tokenizer(prompt, return_tensors="pt").to('cuda')
if answer_mode == 'slow':
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
torch.set_float32_matmul_precision("highest")
vicuna_output = vicuna_model.generate(
**vicuna_input,
max_new_tokens = 512,
min_new_tokens = 256,
do_sample = True,
low_memory = False
)
'''
vicuna_output = llm(
**vicuna_input,
max_tokens=96, # Generate up to 32 tokens, set to None to generate up to the end of the context window
stop=["Q:", "\n"], # Stop generating just before the model would generate a new question
echo=True # Echo the prompt back in the output
)
'''
if answer_mode == 'medium':
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision("high")
vicuna_output = vicuna_model.generate(
**vicuna_input,
max_length = 192,
min_new_tokens = 64,
do_sample = True,
low_memory = False
)
if answer_mode == 'fast':
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
vicuna_output = vicuna_model.generate(
**vicuna_input,
#max_new_tokens = 64,
min_new_tokens = 16,
do_sample = True,
low_memory = True
)
vicuna_response = vicuna_tokenizer.decode(vicuna_output[0], skip_special_tokens=True)
vicuna_response = vicuna_response.replace(prompt, "").strip()
updated_state = state + "\nUser: " + text + "\n" + "Tutor: " + vicuna_response
try:
with torch.no_grad():
output = tts(vicuna_response)
wav = output["wav"]
sr = tts.fs
audio_arr = wav.cpu().numpy()
SAMPLE_RATE = sr
audio_arr = audio_arr / np.abs(audio_arr).max()
audio_output = (SAMPLE_RATE, audio_arr)
#sf.write('generated_audio.wav', audio_arr, SAMPLE_RATE) # Removed writing to file
except requests.exceptions.RequestException as e:
print(f"Error in Hugging Face API request: {e}")
audio_output = None
except Exception as e:
print(f"Error in speech synthesis: {e}")
audio_output = None
return updated_state, updated_state, audio_output
with gr.Blocks(title="Whisper, Vicuna, & TTS Demo") as demo: # Updated title
gr.Markdown("# Speech-to-Text-to-Speech Demo with Vicuna and Hugging Face TTS")
gr.Markdown("Speak into your microphone, get a transcription, Vicuna will process it, and then you'll hear the result!")
with gr.Tab("Transcribe & Synthesize"):
with gr.Row(): # Added a row for better layout
image = gr.File(label="Image Prompt (Optional)")
mic_input = gr.Audio(sources="microphone", type="filepath", label="Speak Here", elem_id="mic_audio")
audio_upload = gr.Audio(sources="upload", type="filepath", label="Or Upload Audio File") # Added upload component
transcription_output = gr.Textbox(lines=5, label="Transcription and Vicuna Response")
audio_output = gr.Audio(label="Synthesized Speech", type="numpy", autoplay=True)
answer_mode = gr.Radio(["fast", "medium", "slow"], value='medium')
transcription_state = gr.State(value="")
mic_input.change(
fn=process_audio,
inputs=[image, mic_input, audio_upload, transcription_state, answer_mode], # Include audio_upload
outputs=[transcription_output, transcription_state, audio_output]
)
audio_upload.change( # Added change event for upload
fn=process_audio,
inputs=[image, mic_input, audio_upload, transcription_state, answer_mode], # Include audio_upload
outputs=[transcription_output, transcription_state, audio_output],
api_name='/api/predict'
)
if __name__ == '__main__':
demo.launch(share=False)