Spaces:
Runtime error
Runtime error
import gradio as gr | |
import re | |
import torch | |
from PIL import Image | |
from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor | |
model_id = "adept/fuyu-8b" | |
dtype = torch.bfloat16 | |
device = "cuda" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype) | |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer) | |
CAPTION_PROMPT = "Generate a coco-style caption.\n" | |
DETAILED_CAPTION_PROMPT = "What is happening in this image?" | |
def resize_to_max(image, max_width=1920, max_height=1080): | |
width, height = image.size | |
if width <= max_width and height <= max_height: | |
return image | |
scale = min(max_width/width, max_height/height) | |
width = int(width*scale) | |
height = int(height*scale) | |
return image.resize((width, height), Image.LANCZOS) | |
def pad_to_size(image, canvas_width=1920, canvas_height=1080): | |
width, height = image.size | |
if width >= canvas_width and height >= canvas_height: | |
return image | |
# Paste at (0, 0) | |
canvas = Image.new("RGB", (canvas_width, canvas_height)) | |
canvas.paste(image) | |
return canvas | |
def predict(image, prompt): | |
# image = image.convert('RGB') | |
model_inputs = processor(text=prompt, images=[image]) | |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()} | |
generation_output = model.generate(**model_inputs, max_new_tokens=50) | |
prompt_len = model_inputs["input_ids"].shape[-1] | |
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True) | |
def caption(image, detailed_captioning): | |
if detailed_captioning: | |
caption_prompt = DETAILED_CAPTION_PROMPT | |
else: | |
caption_prompt = CAPTION_PROMPT | |
return predict(image, caption_prompt).lstrip() | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def scale_factor_to_fit(original_size, target_size=(1920, 1080)): | |
width, height = original_size | |
max_width, max_height = target_size | |
if width <= max_width and height <= max_height: | |
return 1.0 | |
return min(max_width/width, max_height/height) | |
def tokens_to_box(tokens, original_size): | |
bbox_start = tokenizer.convert_tokens_to_ids("<0x00>") | |
bbox_end = tokenizer.convert_tokens_to_ids("<0x01>") | |
try: | |
# Assumes a single box | |
bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item() | |
bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item() | |
if bbox_end_pos != bbox_start_pos + 5: | |
return tokens | |
# Retrieve transformed coordinates from tokens | |
coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos]) | |
# Scale back to original image size and multiply by 2 | |
scale = scale_factor_to_fit(original_size) | |
top, left, bottom, right = [2 * int(float(c)/scale) for c in coords] | |
# Replace the IDs so they get detokenized right | |
replacement = f" <box>{top}, {left}, {bottom}, {right}</box>" | |
replacement = tokenizer.tokenize(replacement)[1:] | |
replacement = tokenizer.convert_tokens_to_ids(replacement) | |
replacement = torch.tensor(replacement).to(tokens) | |
tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0) | |
return tokens | |
except: | |
gr.Error("Can't convert tokens.") | |
return tokens | |
def coords_from_response(response): | |
# y1, x1, y2, x2 | |
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>" | |
match = re.search(pattern, response) | |
if match: | |
# Unpack and change order | |
y1, x1, y2, x2 = [int(coord) for coord in match.groups()] | |
return (x1, y1, x2, y2) | |
else: | |
gr.Error("The string is malformed or does not match the expected pattern.") | |
def localize(image, query): | |
prompt = f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}" | |
# Downscale and/or pad to 1920x1080 | |
padded = resize_to_max(image) | |
padded = pad_to_size(padded) | |
model_inputs = processor(text=prompt, images=[padded]) | |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()} | |
generation_output = model.generate(**model_inputs, max_new_tokens=40) | |
prompt_len = model_inputs["input_ids"].shape[-1] | |
tokens = generation_output[0][prompt_len:] | |
tokens = tokens_to_box(tokens, image.size) | |
decoded = tokenizer.decode(tokens, skip_special_tokens=True) | |
coords = coords_from_response(decoded) | |
return image, [(coords, f"Location of \"{query}\"")] | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<h1 id="title">Fuyu Multimodal Demo</h1> | |
<h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3> | |
For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :) | |
Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>. | |
<br> | |
<br> | |
<strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong> | |
<h3>Play with Fuyu-8B in this demo! π¬</h3> | |
""" | |
) | |
with gr.Tab("Visual Question Answering"): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Upload your Image", type="pil") | |
text_input = gr.Textbox(label="Ask a Question") | |
vqa_output = gr.Textbox(label="Output") | |
vqa_btn = gr.Button("Answer Visual Question") | |
gr.Examples( | |
[["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"], | |
["assets/docvqa_example.png", "How many items are sold?"], ["assets/screen2words_ui_example.png", "What is this app about?"]], | |
inputs = [image_input, text_input], | |
outputs = [vqa_output], | |
fn=predict, | |
cache_examples=True, | |
label='Click on any Examples below to get VQA results quickly π' | |
) | |
with gr.Tab("Image Captioning"): | |
with gr.Row(): | |
with gr.Column(): | |
captioning_input = gr.Image(label="Upload your Image", type="pil") | |
detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning") | |
captioning_output = gr.Textbox(label="Output") | |
captioning_btn = gr.Button("Generate Caption") | |
gr.Examples( | |
[["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]], | |
inputs = [captioning_input, detailed_captioning_checkbox], | |
outputs = [captioning_output], | |
fn=caption, | |
cache_examples=True, | |
label='Click on any Examples below to get captioning results quickly π' | |
) | |
captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output) | |
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output) | |
with gr.Tab("Find Text in Screenshots"): | |
with gr.Row(): | |
with gr.Column(): | |
localization_input = gr.Image(label="Upload your Image", type="pil") | |
query_input = gr.Textbox(label="Text to find") | |
localization_btn = gr.Button("Locate Text") | |
with gr.Column(): | |
with gr.Row(height=800): | |
localization_output = gr.AnnotatedImage(label="Text Position") | |
gr.Examples( | |
[["assets/localization_example_1.jpeg", "Share your repair"], | |
["assets/screen2words_ui_example.png", "statistics"]], | |
inputs = [localization_input, query_input], | |
outputs = [localization_output], | |
fn=localize, | |
cache_examples=True, | |
label='Click on any Examples below to get localization results quickly π' | |
) | |
localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output) | |
demo.launch(share = True) |