File size: 9,693 Bytes
21231ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Union

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ..configuration_utils import ConfigMixin, register_to_config
from ..modeling_utils import ModelMixin
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .embeddings import TimestepEmbedding, Timesteps

NEG_INF = -1e4


@dataclass
class PriorTransformerOutput(BaseOutput):
    """
    Args:
        predicted_image_embedding (`paddle.Tensor` of shape `(batch_size, embedding_dim)`):
            The predicted CLIP image embedding conditioned on the CLIP text embedding input.
    """

    predicted_image_embedding: paddle.Tensor


class PriorTransformer(ModelMixin, ConfigMixin):
    """
    The prior transformer from unCLIP is used to predict CLIP image embeddings from CLIP text embeddings. Note that the
    transformer predicts the image embeddings through a denoising diffusion process.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the models (such as downloading or saving, etc.)

    For more details, see the original paper: https://arxiv.org/abs/2204.06125

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
        embedding_dim (`int`, *optional*, defaults to 768): The dimension of the CLIP embeddings. Note that CLIP
            image embeddings and text embeddings are both the same dimension.
        num_embeddings (`int`, *optional*, defaults to 77): The max number of clip embeddings allowed. I.e. the
            length of the prompt after it has been tokenized.
        additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
            projected hidden_states. The actual length of the used hidden_states is `num_embeddings +
            additional_embeddings`.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.

    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 32,
        attention_head_dim: int = 64,
        num_layers: int = 20,
        embedding_dim: int = 768,
        num_embeddings=77,
        additional_embeddings=4,
        dropout: float = 0.0,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.additional_embeddings = additional_embeddings

        self.time_proj = Timesteps(inner_dim, True, 0)
        self.time_embedding = TimestepEmbedding(inner_dim, inner_dim)

        self.proj_in = nn.Linear(embedding_dim, inner_dim)

        self.embedding_proj = nn.Linear(embedding_dim, inner_dim)
        self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)

        self.positional_embedding = self.create_parameter(
            (1, num_embeddings + additional_embeddings, inner_dim),
            dtype=paddle.get_default_dtype(),
            default_initializer=nn.initializer.Constant(0.0),
        )

        self.prd_embedding = self.create_parameter(
            (1, 1, inner_dim), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
        )

        self.transformer_blocks = nn.LayerList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    activation_fn="gelu",
                    attention_bias=True,
                )
                for d in range(num_layers)
            ]
        )

        self.norm_out = nn.LayerNorm(inner_dim)
        self.proj_to_clip_embeddings = nn.Linear(inner_dim, embedding_dim)

        causal_attention_mask = paddle.triu(
            paddle.full([num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], NEG_INF), 1
        )
        causal_attention_mask = causal_attention_mask.unsqueeze(0)
        self.register_buffer("causal_attention_mask", causal_attention_mask, persistable=False)

        self.clip_mean = self.create_parameter(
            (1, embedding_dim), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
        )
        self.clip_std = self.create_parameter(
            (1, embedding_dim), dtype=paddle.get_default_dtype(), default_initializer=nn.initializer.Constant(0.0)
        )

    def forward(
        self,
        hidden_states,
        timestep: Union[paddle.Tensor, float, int],
        proj_embedding: paddle.Tensor,
        encoder_hidden_states: paddle.Tensor,
        attention_mask: Optional[paddle.Tensor] = None,
        return_dict: bool = True,
    ):
        """
        Args:
            hidden_states (`paddle.Tensor` of shape `(batch_size, embedding_dim)`):
                x_t, the currently predicted image embeddings.
            timestep (`paddle.Tensor`):
                Current denoising step.
            proj_embedding (`paddle.Tensor` of shape `(batch_size, embedding_dim)`):
                Projected embedding vector the denoising process is conditioned on.
            encoder_hidden_states (`paddle.Tensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
                Hidden states of the text embeddings the denoising process is conditioned on.
            attention_mask (`paddle.Tensor` of shape `(batch_size, num_embeddings)`):
                Text mask for the text embeddings.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.prior_transformer.PriorTransformerOutput`] instead of a plain
                tuple.

        Returns:
            [`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
            [`~models.prior_transformer.PriorTransformerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
        batch_size = hidden_states.shape[0]

        timesteps = timestep
        if not paddle.is_tensor(timesteps):
            timesteps = paddle.to_tensor([timesteps], dtype=paddle.int64)
        elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None]
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps * paddle.ones((batch_size,), dtype=timesteps.dtype)

        timesteps_projected = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might be fp16, so we need to cast here.
        timesteps_projected = timesteps_projected.cast(dtype=self.dtype)
        time_embeddings = self.time_embedding(timesteps_projected)

        proj_embeddings = self.embedding_proj(proj_embedding)
        encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
        hidden_states = self.proj_in(hidden_states)
        prd_embedding = self.prd_embedding.cast(hidden_states.dtype).expand([batch_size, -1, -1])
        positional_embeddings = self.positional_embedding.cast(hidden_states.dtype)

        hidden_states = paddle.concat(
            [
                encoder_hidden_states,
                proj_embeddings[:, None, :],
                time_embeddings[:, None, :],
                hidden_states[:, None, :],
                prd_embedding,
            ],
            axis=1,
        )

        hidden_states = hidden_states + positional_embeddings

        if attention_mask is not None:
            attention_mask = (1 - attention_mask.cast(hidden_states.dtype)) * -10000.0
            attention_mask = F.pad(
                attention_mask.unsqueeze(0), (0, self.additional_embeddings), value=0.0, data_format="NCL"
            ).squeeze(0)
            attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).cast(hidden_states.dtype)
            attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, axis=0)

        for block in self.transformer_blocks:
            hidden_states = block(hidden_states, attention_mask=attention_mask)

        hidden_states = self.norm_out(hidden_states)
        hidden_states = hidden_states[:, -1]
        predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)

        if not return_dict:
            return (predicted_image_embedding,)

        return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)

    def post_process_latents(self, prior_latents):
        prior_latents = (prior_latents * self.clip_std) + self.clip_mean
        return prior_latents