lora_test / ppdiffusers /experimental /rl /value_guided_sampling.py
1toTree's picture
Upload with huggingface_hub
21231ee
raw
history blame
6.11 kB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from ...models.unet_1d import UNet1DModel
from ...pipeline_utils import DiffusionPipeline
from ...utils.dummy_paddle_objects import DDPMScheduler
class ValueGuidedRLPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Pipeline for sampling actions from a diffusion model trained to predict sequences of states.
Original implementation inspired by this repository: https://github.com/jannerm/diffuser.
Parameters:
value_function ([`UNet1DModel`]): A specialized UNet for fine-tuning trajectories base on reward.
unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded trajectories.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
application is [`DDPMScheduler`].
env: An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
"""
def __init__(
self,
value_function: UNet1DModel,
unet: UNet1DModel,
scheduler: DDPMScheduler,
env,
):
super().__init__()
self.value_function = value_function
self.unet = unet
self.scheduler = scheduler
self.env = env
self.data = env.get_dataset()
self.means = dict()
for key in self.data.keys():
try:
self.means[key] = self.data[key].mean()
except Exception:
pass
self.stds = dict()
for key in self.data.keys():
try:
self.stds[key] = self.data[key].std()
except Exception:
pass
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.shape[0]
def normalize(self, x_in, key):
return (x_in - self.means[key]) / self.stds[key]
def de_normalize(self, x_in, key):
return x_in * self.stds[key] + self.means[key]
def to_paddle(self, x_in):
if type(x_in) is dict:
return {k: self.to_paddle(v) for k, v in x_in.items()}
elif paddle.is_tensor(x_in):
return x_in
return paddle.to_tensor(x_in)
def reset_x0(self, x_in, cond, act_dim):
for key, val in cond.items():
x_in[:, key, act_dim:] = val.clone()
return x_in
def run_diffusion(self, x, conditions, n_guide_steps, scale):
batch_size = x.shape[0]
y = None
for i in self.progress_bar(self.scheduler.timesteps):
# create batch of timesteps to pass into model
timesteps = paddle.full((batch_size,), i, dtype="int64")
for _ in range(n_guide_steps):
with paddle.set_grad_enabled(True):
x.stop_gradient = False
# permute to match dimension for pre-trained models
y = self.value_function(x.transpose([0, 2, 1]), timesteps).sample
grad = paddle.autograd.grad([y.sum()], [x])[0]
posterior_variance = self.scheduler._get_variance(i)
model_std = paddle.exp(0.5 * posterior_variance)
grad = model_std * grad
grad[timesteps < 2] = 0
x = x.detach()
x = x + scale * grad
x = self.reset_x0(x, conditions, self.action_dim)
prev_x = self.unet(x.transpose([0, 2, 1]), timesteps).sample.transpose([0, 2, 1])
# TODO: verify deprecation of this kwarg
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
# apply conditions to the trajectory (set the initial state)
x = self.reset_x0(x, conditions, self.action_dim)
x = self.to_paddle(x)
return x, y
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
# normalize the observations and create batch dimension
obs = self.normalize(obs, "observations")
obs = obs[None].repeat(batch_size, axis=0)
conditions = {0: self.to_paddle(obs)}
shape = [batch_size, planning_horizon, self.state_dim + self.action_dim]
# generate initial noise and apply our conditions (to make the trajectories start at current state)
x1 = paddle.randn(shape)
x = self.reset_x0(x1, conditions, self.action_dim)
x = self.to_paddle(x)
# run the diffusion process
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
# sort output trajectories by value
sorted_idx = paddle.argsort(y, 0, descending=True).squeeze()
sorted_values = x[sorted_idx]
actions = sorted_values[:, :, : self.action_dim]
actions = actions.detach().numpy()
denorm_actions = self.de_normalize(actions, key="actions")
# select the action with the highest value
if y is not None:
selected_index = 0
else:
# if we didn't run value guiding, select a random action
selected_index = np.random.randint(0, batch_size)
denorm_actions = denorm_actions[selected_index, 0]
return denorm_actions