|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import paddle |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS |
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return paddle.to_tensor(betas, dtype="float32") |
|
|
|
|
|
class PNDMScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques, |
|
namely Runge-Kutta method and a linear multi-step method. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2202.09778 |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
skip_prk_steps (`bool`): |
|
allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required |
|
before plms steps; defaults to `False`. |
|
set_alpha_to_one (`bool`, default `False`): |
|
each diffusion step uses the value of alphas product at that step and at the previous one. For the final |
|
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, |
|
otherwise it uses the value of alpha at step 0. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
steps_offset (`int`, default `0`): |
|
an offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in |
|
stable diffusion. |
|
|
|
""" |
|
|
|
_compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
skip_prk_steps: bool = False, |
|
set_alpha_to_one: bool = False, |
|
prediction_type: str = "epsilon", |
|
steps_offset: int = 0, |
|
): |
|
if trained_betas is not None: |
|
self.betas = paddle.to_tensor(trained_betas, dtype="float32") |
|
elif beta_schedule == "linear": |
|
self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32") |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = paddle.cumprod(self.alphas, 0) |
|
|
|
self.final_alpha_cumprod = paddle.to_tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] |
|
|
|
|
|
self.init_noise_sigma = 1.0 |
|
|
|
|
|
|
|
|
|
self.pndm_order = 4 |
|
|
|
|
|
self.cur_model_output = 0 |
|
self.counter = 0 |
|
self.cur_sample = None |
|
self.ets = [] |
|
|
|
|
|
self.num_inference_steps = None |
|
self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy() |
|
self.prk_timesteps = None |
|
self.plms_timesteps = None |
|
self.timesteps = None |
|
|
|
def set_timesteps(self, num_inference_steps: int): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
|
|
self.num_inference_steps = num_inference_steps |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round() |
|
self._timesteps += self.config.steps_offset |
|
|
|
if self.config.skip_prk_steps: |
|
|
|
|
|
|
|
self.prk_timesteps = np.array([]) |
|
self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[ |
|
::-1 |
|
].copy() |
|
else: |
|
prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile( |
|
np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order |
|
) |
|
self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy() |
|
self.plms_timesteps = self._timesteps[:-3][ |
|
::-1 |
|
].copy() |
|
|
|
timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64) |
|
self.timesteps = paddle.to_tensor(timesteps) |
|
|
|
self.ets = [] |
|
self.counter = 0 |
|
|
|
def step( |
|
self, |
|
model_output: paddle.Tensor, |
|
timestep: int, |
|
sample: paddle.Tensor, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`. |
|
|
|
Args: |
|
model_output (`paddle.Tensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`paddle.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps: |
|
return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) |
|
else: |
|
return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) |
|
|
|
def step_prk( |
|
self, |
|
model_output: paddle.Tensor, |
|
timestep: int, |
|
sample: paddle.Tensor, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the |
|
solution to the differential equation. |
|
|
|
Args: |
|
model_output (`paddle.Tensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`paddle.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2 |
|
prev_timestep = timestep - diff_to_prev |
|
timestep = self.prk_timesteps[self.counter // 4 * 4] |
|
|
|
if self.counter % 4 == 0: |
|
self.cur_model_output += 1 / 6 * model_output |
|
self.ets.append(model_output) |
|
self.cur_sample = sample |
|
elif (self.counter - 1) % 4 == 0: |
|
self.cur_model_output += 1 / 3 * model_output |
|
elif (self.counter - 2) % 4 == 0: |
|
self.cur_model_output += 1 / 3 * model_output |
|
elif (self.counter - 3) % 4 == 0: |
|
model_output = self.cur_model_output + 1 / 6 * model_output |
|
self.cur_model_output = 0 |
|
|
|
|
|
cur_sample = self.cur_sample if self.cur_sample is not None else sample |
|
|
|
prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) |
|
self.counter += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def step_plms( |
|
self, |
|
model_output: paddle.Tensor, |
|
timestep: int, |
|
sample: paddle.Tensor, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple |
|
times to approximate the solution. |
|
|
|
Args: |
|
model_output (`paddle.Tensor`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`paddle.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if not self.config.skip_prk_steps and len(self.ets) < 3: |
|
raise ValueError( |
|
f"{self.__class__} can only be run AFTER scheduler has been run " |
|
"in 'prk' mode for at least 12 iterations " |
|
"See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " |
|
"for more information." |
|
) |
|
|
|
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
if self.counter != 1: |
|
self.ets = self.ets[-3:] |
|
self.ets.append(model_output) |
|
else: |
|
prev_timestep = timestep |
|
timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
if len(self.ets) == 1 and self.counter == 0: |
|
model_output = model_output |
|
self.cur_sample = sample |
|
elif len(self.ets) == 1 and self.counter == 1: |
|
model_output = (model_output + self.ets[-1]) / 2 |
|
sample = self.cur_sample |
|
self.cur_sample = None |
|
elif len(self.ets) == 2: |
|
model_output = (3 * self.ets[-1] - self.ets[-2]) / 2 |
|
elif len(self.ets) == 3: |
|
model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 |
|
else: |
|
model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) |
|
|
|
prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) |
|
self.counter += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. |
|
|
|
Args: |
|
sample (`paddle.Tensor`): input sample |
|
|
|
Returns: |
|
`paddle.Tensor`: scaled input sample |
|
""" |
|
return sample |
|
|
|
def _get_prev_sample(self, sample, timestep, prev_timestep, model_output): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
if self.config.prediction_type == "v_prediction": |
|
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
elif self.config.prediction_type != "epsilon": |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) |
|
|
|
|
|
model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( |
|
alpha_prod_t * beta_prod_t * alpha_prod_t_prev |
|
) ** (0.5) |
|
|
|
|
|
prev_sample = ( |
|
sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff |
|
) |
|
|
|
return prev_sample |
|
|
|
def add_noise( |
|
self, |
|
original_samples: paddle.Tensor, |
|
noise: paddle.Tensor, |
|
timesteps: paddle.Tensor, |
|
) -> paddle.Tensor: |
|
|
|
self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype) |
|
|
|
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = sqrt_alpha_prod.flatten() |
|
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|