|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
from functools import partial |
|
from typing import Callable, Optional, Union |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
from huggingface_hub import ( |
|
create_repo, |
|
get_hf_file_metadata, |
|
hf_hub_download, |
|
hf_hub_url, |
|
repo_type_and_id_from_hf_id, |
|
upload_folder, |
|
) |
|
from huggingface_hub.utils import EntryNotFoundError |
|
from requests import HTTPError |
|
|
|
from .download_utils import ppdiffusers_bos_download |
|
from .utils import ( |
|
CONFIG_NAME, |
|
DOWNLOAD_SERVER, |
|
HF_CACHE, |
|
PPDIFFUSERS_CACHE, |
|
WEIGHTS_NAME, |
|
logging, |
|
) |
|
from .version import VERSION as __version__ |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def unfreeze_params(params): |
|
for param in params: |
|
param.stop_gradient = False |
|
|
|
|
|
def freeze_params(params): |
|
for param in params: |
|
param.stop_gradient = True |
|
|
|
|
|
|
|
def get_parameter_device(parameter: nn.Layer): |
|
try: |
|
return next(parameter.named_parameters())[1].place |
|
except StopIteration: |
|
return paddle.get_device() |
|
|
|
|
|
def get_parameter_dtype(parameter: nn.Layer): |
|
try: |
|
return next(parameter.named_parameters())[1].dtype |
|
except StopIteration: |
|
return paddle.get_default_dtype() |
|
|
|
|
|
def load_dict(checkpoint_file: Union[str, os.PathLike], map_location: str = "cpu"): |
|
""" |
|
Reads a Paddle checkpoint file, returning properly formatted errors if they arise. |
|
""" |
|
try: |
|
if map_location == "cpu": |
|
with paddle.device_scope("cpu"): |
|
state_dict = paddle.load(checkpoint_file) |
|
else: |
|
state_dict = paddle.load(checkpoint_file) |
|
return state_dict |
|
except Exception as e: |
|
try: |
|
with open(checkpoint_file) as f: |
|
if f.read().startswith("version"): |
|
raise OSError( |
|
"You seem to have cloned a repository without having git-lfs installed. Please install " |
|
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder " |
|
"you cloned." |
|
) |
|
else: |
|
raise ValueError( |
|
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained " |
|
"model. Make sure you have saved the model properly." |
|
) from e |
|
except (UnicodeDecodeError, ValueError): |
|
raise OSError( |
|
f"Unable to load weights from Paddle checkpoint file for '{checkpoint_file}' " |
|
f"at '{checkpoint_file}'. " |
|
"If you tried to load a Paddle model from a TF 2.0 checkpoint, please set from_tf=True." |
|
) |
|
|
|
|
|
class ModelMixin(nn.Layer): |
|
r""" |
|
Base class for all models. |
|
|
|
[`ModelMixin`] takes care of storing the configuration of the models and handles methods for loading, downloading |
|
and saving models. |
|
|
|
- **config_name** ([`str`]) -- A filename under which the model should be stored when calling |
|
[`~modeling_utils.ModelMixin.save_pretrained`]. |
|
""" |
|
config_name = CONFIG_NAME |
|
_automatically_saved_args = ["_ppdiffusers_version", "_class_name", "_name_or_path"] |
|
_supports_gradient_checkpointing = False |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
@property |
|
def is_gradient_checkpointing(self) -> bool: |
|
""" |
|
Whether gradient checkpointing is activated for this model or not. |
|
|
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
""" |
|
return any( |
|
hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing |
|
for m in self.sublayers(include_self=True) |
|
) |
|
|
|
def enable_gradient_checkpointing(self): |
|
""" |
|
Activates gradient checkpointing for the current model. |
|
|
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
""" |
|
if not self._supports_gradient_checkpointing: |
|
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") |
|
self.apply(partial(self._set_gradient_checkpointing, value=True)) |
|
|
|
def disable_gradient_checkpointing(self): |
|
""" |
|
Deactivates gradient checkpointing for the current model. |
|
|
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint |
|
activations". |
|
""" |
|
if self._supports_gradient_checkpointing: |
|
self.apply(partial(self._set_gradient_checkpointing, value=False)) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
save_function: Callable = paddle.save, |
|
): |
|
""" |
|
Save a model and its configuration file to a directory, so that it can be re-loaded using the |
|
`[`~modeling_utils.ModelMixin.from_pretrained`]` class method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful when in distributed training like |
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on |
|
the main process to avoid race conditions. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one |
|
need to replace `paddle.save` by another method. |
|
""" |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
model_to_save = self |
|
|
|
|
|
|
|
if is_main_process: |
|
model_to_save.save_config(save_directory) |
|
|
|
|
|
state_dict = model_to_save.state_dict() |
|
|
|
|
|
for filename in os.listdir(save_directory): |
|
full_filename = os.path.join(save_directory, filename) |
|
|
|
|
|
if filename.startswith(WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename) and is_main_process: |
|
os.remove(full_filename) |
|
|
|
|
|
save_function(state_dict, os.path.join(save_directory, WEIGHTS_NAME)) |
|
|
|
logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}") |
|
|
|
def save_to_hf_hub( |
|
self, |
|
repo_id: str, |
|
private: Optional[bool] = None, |
|
subfolder: Optional[str] = None, |
|
commit_message: Optional[str] = None, |
|
revision: Optional[str] = None, |
|
create_pr: bool = False, |
|
): |
|
""" |
|
Uploads all elements of this model to a new HuggingFace Hub repository. |
|
Args: |
|
repo_id (str): Repository name for your model/tokenizer in the Hub. |
|
private (bool, optional): Whether the model/tokenizer is set to private |
|
subfolder (str, optional): Push to a subfolder of the repo instead of the root |
|
commit_message (str, optional) — The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub" |
|
revision (str, optional) — The git revision to commit from. Defaults to the head of the "main" branch. |
|
create_pr (boolean, optional) — Whether or not to create a Pull Request with that commit. Defaults to False. |
|
If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch. |
|
If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server. |
|
|
|
Returns: The url of the commit of your model in the given repository. |
|
""" |
|
repo_url = create_repo(repo_id, private=private, exist_ok=True) |
|
|
|
|
|
|
|
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url) |
|
|
|
repo_id = f"{repo_owner}/{repo_name}" |
|
|
|
|
|
try: |
|
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision)) |
|
has_readme = True |
|
except EntryNotFoundError: |
|
has_readme = False |
|
|
|
with tempfile.TemporaryDirectory() as root_dir: |
|
if subfolder is not None: |
|
save_dir = os.path.join(root_dir, subfolder) |
|
else: |
|
save_dir = root_dir |
|
|
|
self.save_pretrained(save_dir) |
|
|
|
logger.info("README.md not found, adding the default README.md") |
|
if not has_readme: |
|
with open(os.path.join(root_dir, "README.md"), "w") as f: |
|
f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}") |
|
|
|
|
|
logger.info(f"Pushing to the {repo_id}. This might take a while") |
|
return upload_folder( |
|
repo_id=repo_id, |
|
repo_type="model", |
|
folder_path=root_dir, |
|
commit_message=commit_message, |
|
revision=revision, |
|
create_pr=create_pr, |
|
) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
r""" |
|
Instantiate a pretrained paddle model from a pre-trained model configuration. |
|
|
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train |
|
the model, you should first set it back in training mode with `model.train()`. |
|
|
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
|
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., |
|
`./my_model_directory/`. |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
paddle_dtype (`str` or `paddle.dtype`, *optional*): |
|
Override the default `paddle.dtype` and load the model under this dtype. If `"auto"` is passed the dtype |
|
will be automatically derived from the model's weights. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
from_hf_hub (bool, *optional*): |
|
Whether to load from Hugging Face Hub. Defaults to False |
|
""" |
|
from_hf_hub = kwargs.pop("from_hf_hub", False) |
|
if from_hf_hub: |
|
cache_dir = kwargs.pop("cache_dir", HF_CACHE) |
|
else: |
|
cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE) |
|
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) |
|
output_loading_info = kwargs.pop("output_loading_info", False) |
|
paddle_dtype = kwargs.pop("paddle_dtype", None) |
|
subfolder = kwargs.pop("subfolder", None) |
|
ignore_keys = kwargs.pop("ignore_keys", []) |
|
|
|
|
|
config_path = pretrained_model_name_or_path |
|
|
|
model_file = None |
|
if model_file is None: |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path, |
|
weights_name=WEIGHTS_NAME, |
|
cache_dir=cache_dir, |
|
subfolder=subfolder, |
|
from_hf_hub=from_hf_hub, |
|
) |
|
|
|
config, unused_kwargs = cls.load_config( |
|
config_path, |
|
cache_dir=cache_dir, |
|
return_unused_kwargs=True, |
|
subfolder=subfolder, |
|
from_hf_hub=from_hf_hub, |
|
**kwargs, |
|
) |
|
model = cls.from_config(config, **unused_kwargs) |
|
|
|
state_dict = load_dict(model_file, map_location="cpu") |
|
|
|
keys = list(state_dict.keys()) |
|
for k in keys: |
|
for ik in ignore_keys: |
|
if k.startswith(ik): |
|
logger.warning("Deleting key {} from state_dict.".format(k)) |
|
del state_dict[k] |
|
|
|
dtype = set(v.dtype for v in state_dict.values()) |
|
|
|
if len(dtype) > 1 and paddle.float32 not in dtype: |
|
raise ValueError( |
|
f"The weights of the model file {model_file} have a mixture of incompatible dtypes {dtype}. Please" |
|
f" make sure that {model_file} weights have only one dtype." |
|
) |
|
elif len(dtype) > 1 and paddle.float32 in dtype: |
|
dtype = paddle.float32 |
|
else: |
|
dtype = dtype.pop() |
|
|
|
|
|
model = model.to(dtype=dtype) |
|
|
|
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( |
|
model, |
|
state_dict, |
|
model_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=ignore_mismatched_sizes, |
|
) |
|
|
|
loading_info = { |
|
"missing_keys": missing_keys, |
|
"unexpected_keys": unexpected_keys, |
|
"mismatched_keys": mismatched_keys, |
|
"error_msgs": error_msgs, |
|
} |
|
|
|
if paddle_dtype is not None and not isinstance(paddle_dtype, paddle.dtype): |
|
raise ValueError( |
|
f"{paddle_dtype} needs to be of type `paddle.dtype`, e.g. `paddle.float16`, but is {type(paddle_dtype)}." |
|
) |
|
elif paddle_dtype is not None: |
|
model = model.to(dtype=paddle_dtype) |
|
|
|
model.register_to_config(_name_or_path=pretrained_model_name_or_path) |
|
|
|
|
|
model.eval() |
|
if output_loading_info: |
|
return model, loading_info |
|
|
|
return model |
|
|
|
@classmethod |
|
def _load_pretrained_model( |
|
cls, |
|
model, |
|
state_dict, |
|
resolved_archive_file, |
|
pretrained_model_name_or_path, |
|
ignore_mismatched_sizes=False, |
|
): |
|
|
|
model_state_dict = model.state_dict() |
|
loaded_keys = [k for k in state_dict.keys()] |
|
|
|
expected_keys = list(model_state_dict.keys()) |
|
|
|
original_loaded_keys = loaded_keys |
|
|
|
missing_keys = list(set(expected_keys) - set(loaded_keys)) |
|
unexpected_keys = list(set(loaded_keys) - set(expected_keys)) |
|
|
|
|
|
model_to_load = model |
|
|
|
def _find_mismatched_keys( |
|
state_dict, |
|
model_state_dict, |
|
loaded_keys, |
|
ignore_mismatched_sizes, |
|
): |
|
mismatched_keys = [] |
|
if ignore_mismatched_sizes: |
|
for checkpoint_key in loaded_keys: |
|
model_key = checkpoint_key |
|
|
|
if model_key in model_state_dict and list(state_dict[checkpoint_key].shape) != list( |
|
model_state_dict[model_key].shape |
|
): |
|
mismatched_keys.append( |
|
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) |
|
) |
|
del state_dict[checkpoint_key] |
|
return mismatched_keys |
|
|
|
if state_dict is not None: |
|
|
|
mismatched_keys = _find_mismatched_keys( |
|
state_dict, |
|
model_state_dict, |
|
original_loaded_keys, |
|
ignore_mismatched_sizes, |
|
) |
|
error_msgs = "" |
|
model_to_load.load_dict(state_dict) |
|
|
|
if len(error_msgs) > 0: |
|
error_msg = "\n\t".join(error_msgs) |
|
if "size mismatch" in error_msg: |
|
error_msg += ( |
|
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." |
|
) |
|
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") |
|
|
|
if len(unexpected_keys) > 0: |
|
logger.warning( |
|
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" |
|
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" |
|
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task" |
|
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a" |
|
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" |
|
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly" |
|
" identical (initializing a BertForSequenceClassification model from a" |
|
" BertForSequenceClassification model)." |
|
) |
|
else: |
|
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") |
|
if len(missing_keys) > 0: |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" |
|
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." |
|
) |
|
elif len(mismatched_keys) == 0: |
|
logger.info( |
|
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the" |
|
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions" |
|
" without further training." |
|
) |
|
if len(mismatched_keys) > 0: |
|
mismatched_warning = "\n".join( |
|
[ |
|
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" |
|
for key, shape1, shape2 in mismatched_keys |
|
] |
|
) |
|
logger.warning( |
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" |
|
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" |
|
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be" |
|
" able to use it for predictions and inference." |
|
) |
|
|
|
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs |
|
|
|
@property |
|
def device(self): |
|
""" |
|
`paddle.place`: The device on which the module is (assuming that all the module parameters are on the same |
|
device). |
|
""" |
|
return get_parameter_device(self) |
|
|
|
@property |
|
def dtype(self) -> paddle.dtype: |
|
""" |
|
`paddle.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: |
|
""" |
|
Get number of (optionally, trainable or non-embeddings) parameters in the module. |
|
|
|
Args: |
|
only_trainable (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return only the number of trainable parameters |
|
|
|
exclude_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return only the number of non-embeddings parameters |
|
|
|
Returns: |
|
`int`: The number of parameters. |
|
""" |
|
|
|
if exclude_embeddings: |
|
embedding_param_names = [ |
|
f"{name}.weight" |
|
for name, module_type in self.named_sublayers(include_self=True) |
|
if isinstance(module_type, nn.Embedding) |
|
] |
|
non_embedding_parameters = [ |
|
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names |
|
] |
|
return sum(p.numel() for p in non_embedding_parameters if not p.stop_gradient or not only_trainable) |
|
else: |
|
return sum(p.numel() for p in self.parameters() if not p.stop_gradient or not only_trainable) |
|
|
|
|
|
def unwrap_model(model: nn.Layer) -> nn.Layer: |
|
""" |
|
Recursively unwraps a model from potential containers (as used in distributed training). |
|
|
|
Args: |
|
model (`nn.Layer`): The model to unwrap. |
|
""" |
|
|
|
if hasattr(model, "_layers"): |
|
return unwrap_model(model._layers) |
|
else: |
|
return model |
|
|
|
|
|
def _get_model_file( |
|
pretrained_model_name_or_path, |
|
*, |
|
weights_name, |
|
subfolder, |
|
cache_dir, |
|
from_hf_hub, |
|
): |
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)): |
|
|
|
model_file = os.path.join(pretrained_model_name_or_path, weights_name) |
|
elif subfolder is not None and os.path.isfile( |
|
os.path.join(pretrained_model_name_or_path, subfolder, weights_name) |
|
): |
|
model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name) |
|
else: |
|
raise EnvironmentError( |
|
f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}." |
|
) |
|
return model_file |
|
elif from_hf_hub: |
|
model_file = hf_hub_download( |
|
repo_id=pretrained_model_name_or_path, |
|
filename=weights_name, |
|
cache_dir=cache_dir, |
|
subfolder=subfolder, |
|
library_name="PPDiffusers", |
|
library_version=__version__, |
|
) |
|
return model_file |
|
else: |
|
try: |
|
|
|
model_file = ppdiffusers_bos_download( |
|
pretrained_model_name_or_path, |
|
filename=weights_name, |
|
subfolder=subfolder, |
|
cache_dir=cache_dir, |
|
) |
|
except HTTPError as err: |
|
raise EnvironmentError( |
|
"There was a specific connection error when trying to load" f" {pretrained_model_name_or_path}:\n{err}" |
|
) |
|
except ValueError: |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{DOWNLOAD_SERVER}' to load this model, couldn't find it" |
|
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a" |
|
f" directory containing a file named {weights_name} or" |
|
" \nCheckout your internet connection or see how to run the library in" |
|
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." |
|
) |
|
except EnvironmentError: |
|
raise EnvironmentError( |
|
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from " |
|
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. " |
|
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory " |
|
f"containing a file named {weights_name}" |
|
) |
|
return model_file |
|
|