|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import paddle |
|
from scipy import integrate |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
@dataclass |
|
|
|
class LMSDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample (x_{0}) based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: paddle.Tensor |
|
pred_original_sample: Optional[paddle.Tensor] = None |
|
|
|
|
|
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by |
|
Katherine Crowson: |
|
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and |
|
[`~SchedulerMixin.from_pretrained`] functions. |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, optional): |
|
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. |
|
prediction_type (`str`, default `epsilon`, optional): |
|
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion |
|
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 |
|
https://imagen.research.google/video/paper.pdf) |
|
""" |
|
|
|
_compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
): |
|
if trained_betas is not None: |
|
self.betas = paddle.to_tensor(trained_betas, dtype="float32") |
|
elif beta_schedule == "linear": |
|
self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32") |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2 |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = paddle.cumprod(self.alphas, 0) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) |
|
self.sigmas = paddle.to_tensor(sigmas) |
|
|
|
|
|
self.init_noise_sigma = self.sigmas.max() |
|
|
|
|
|
self.num_inference_steps = None |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() |
|
self.timesteps = paddle.to_tensor(timesteps, dtype="float32") |
|
self.derivatives = [] |
|
self.is_scale_input_called = False |
|
|
|
def scale_model_input(self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor]) -> paddle.Tensor: |
|
""" |
|
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm. |
|
|
|
Args: |
|
sample (`paddle.Tensor`): input sample |
|
timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain |
|
|
|
Returns: |
|
`paddle.Tensor`: scaled input sample |
|
""" |
|
step_index = (self.timesteps == timestep).nonzero().item() |
|
sigma = self.sigmas[step_index] |
|
sample = sample / ((sigma**2 + 1) ** 0.5) |
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def get_lms_coefficient(self, order, t, current_order): |
|
""" |
|
Compute a linear multistep coefficient. |
|
|
|
Args: |
|
order (TODO): |
|
t (TODO): |
|
current_order (TODO): |
|
""" |
|
|
|
def lms_derivative(tau): |
|
prod = 1.0 |
|
for k in range(order): |
|
if current_order == k: |
|
continue |
|
prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k]) |
|
return prod |
|
|
|
integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0] |
|
|
|
return integrated_coeff |
|
|
|
def set_timesteps(self, num_inference_steps: int): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() |
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
|
self.sigmas = paddle.to_tensor(sigmas) |
|
self.timesteps = paddle.to_tensor(timesteps, dtype="float32") |
|
|
|
self.derivatives = [] |
|
|
|
def step( |
|
self, |
|
model_output: paddle.Tensor, |
|
timestep: Union[float, paddle.Tensor], |
|
sample: paddle.Tensor, |
|
order: int = 4, |
|
return_dict: bool = True, |
|
) -> Union[LMSDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`paddle.Tensor`): direct output from learned diffusion model. |
|
timestep (`float`): current timestep in the diffusion chain. |
|
sample (`paddle.Tensor`): |
|
current instance of sample being created by diffusion process. |
|
order: coefficient for multi-step inference. |
|
return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. |
|
When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
if not self.is_scale_input_called: |
|
warnings.warn( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
step_index = (self.timesteps == timestep).nonzero().item() |
|
sigma = self.sigmas[step_index] |
|
|
|
|
|
if self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma |
|
self.derivatives.append(derivative) |
|
if len(self.derivatives) > order: |
|
self.derivatives.pop(0) |
|
|
|
|
|
order = min(step_index + 1, order) |
|
lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)] |
|
|
|
|
|
prev_sample = sample + sum( |
|
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives)) |
|
) |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: paddle.Tensor, |
|
noise: paddle.Tensor, |
|
timesteps: paddle.Tensor, |
|
) -> paddle.Tensor: |
|
|
|
sigmas = self.sigmas.cast(original_samples.dtype) |
|
schedule_timesteps = self.timesteps |
|
|
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|