|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import paddle |
|
import PIL |
|
|
|
from ...models import UNet2DModel |
|
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from ...schedulers import RePaintScheduler |
|
from ...utils import PIL_INTERPOLATION, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def _preprocess_image(image: Union[List, PIL.Image.Image, paddle.Tensor]): |
|
if isinstance(image, paddle.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
w, h = image[0].size |
|
w, h = map(lambda x: x - x % 32, (w, h)) |
|
|
|
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = paddle.to_tensor(image) |
|
elif isinstance(image[0], paddle.Tensor): |
|
image = paddle.concat(image, axis=0) |
|
return image |
|
|
|
|
|
def _preprocess_mask(mask: Union[List, PIL.Image.Image, paddle.Tensor]): |
|
if isinstance(mask, paddle.Tensor): |
|
return mask |
|
elif isinstance(mask, PIL.Image.Image): |
|
mask = [mask] |
|
|
|
if isinstance(mask[0], PIL.Image.Image): |
|
w, h = mask[0].size |
|
w, h = map(lambda x: x - x % 32, (w, h)) |
|
mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask] |
|
mask = np.concatenate(mask, axis=0) |
|
mask = mask.astype(np.float32) / 255.0 |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = paddle.to_tensor(mask) |
|
elif isinstance(mask[0], paddle.Tensor): |
|
mask = paddle.concat(mask, axis=0) |
|
return mask |
|
|
|
|
|
class RePaintPipeline(DiffusionPipeline): |
|
unet: UNet2DModel |
|
scheduler: RePaintScheduler |
|
|
|
def __init__(self, unet, scheduler): |
|
super().__init__() |
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
@paddle.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[paddle.Tensor, PIL.Image.Image], |
|
mask_image: Union[paddle.Tensor, PIL.Image.Image], |
|
num_inference_steps: int = 250, |
|
eta: float = 0.0, |
|
jump_length: int = 10, |
|
jump_n_sample: int = 10, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
r""" |
|
Args: |
|
image (`paddle.Tensor` or `PIL.Image.Image`): |
|
The original image to inpaint on. |
|
mask_image (`paddle.Tensor` or `PIL.Image.Image`): |
|
The mask_image where 0.0 values define which part of the original image to inpaint (change). |
|
num_inference_steps (`int`, *optional*, defaults to 1000): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
eta (`float`): |
|
The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM |
|
and 1.0 is DDPM scheduler respectively. |
|
jump_length (`int`, *optional*, defaults to 10): |
|
The number of steps taken forward in time before going backward in time for a single jump ("j" in |
|
RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. |
|
jump_n_sample (`int`, *optional*, defaults to 10): |
|
The number of times we will make forward time jump for a given chosen time sample. Take a look at |
|
Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. |
|
generator (`paddle.Generator`, *optional*): |
|
One or a list of paddle generator(s) to make generation deterministic. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if |
|
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the |
|
generated images. |
|
""" |
|
original_image = _preprocess_image(image) |
|
original_image = original_image.cast(self.unet.dtype) |
|
mask_image = _preprocess_mask(mask_image) |
|
mask_image = mask_image.cast(self.unet.dtype) |
|
|
|
batch_size = original_image.shape[0] |
|
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
image_shape = original_image.shape |
|
if isinstance(generator, list): |
|
shape = (1,) + image_shape[1:] |
|
image = [paddle.randn(shape, generator=generator[i], dtype=self.unet.dtype) for i in range(batch_size)] |
|
image = paddle.concat(image, axis=0) |
|
else: |
|
image = paddle.randn(image_shape, generator=generator, dtype=self.unet.dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample) |
|
self.scheduler.eta = eta |
|
|
|
t_last = self.scheduler.timesteps[0] + 1 |
|
generator = generator[0] if isinstance(generator, list) else generator |
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): |
|
if t < t_last: |
|
|
|
model_output = self.unet(image, t).sample |
|
|
|
image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample |
|
|
|
else: |
|
|
|
image = self.scheduler.undo_step(image, t_last, generator) |
|
t_last = t |
|
|
|
image = (image / 2 + 0.5).clip(0, 1) |
|
image = image.transpose([0, 2, 3, 1]).numpy() |
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|