lora_test / ppdiffusers /schedulers /scheduling_dpmsolver_singlestep.py
1toTree's picture
Upload with huggingface_hub
21231ee
# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import paddle
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
from .scheduling_utils import SchedulerMixin, SchedulerOutput
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return paddle.to_tensor(betas, dtype=paddle.float32)
class DPMSolverSinglestepScheduler(SchedulerMixin, ConfigMixin):
"""
DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with
the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality
samples, and it can generate quite good samples even in only 10 steps.
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095
Currently, we support the singlestep DPM-Solver for both noise prediction models and data prediction models. We
recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling.
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic
thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as
stable-diffusion).
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
solver_order (`int`, default `2`):
the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, default `epsilon`):
indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`,
or `v-prediction`.
thresholding (`bool`, default `False`):
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487).
For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to
use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion
models (such as stable-diffusion).
dynamic_thresholding_ratio (`float`, default `0.995`):
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen
(https://arxiv.org/abs/2205.11487).
sample_max_value (`float`, default `1.0`):
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++`.
algorithm_type (`str`, default `dpmsolver++`):
the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the
algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in
https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided
sampling (e.g. stable-diffusion).
solver_type (`str`, default `midpoint`):
the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects
the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are
slightly better, so we recommend to use the `midpoint` type.
lower_order_final (`bool`, default `True`):
whether to use lower-order solvers in the final steps. For singlestep schedulers, we recommend to enable
this to use up all the function evaluations.
"""
_compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[np.ndarray] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
lower_order_final: bool = True,
):
if trained_betas is not None:
self.betas = paddle.to_tensor(trained_betas, dtype=paddle.float32)
elif beta_schedule == "linear":
self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype=paddle.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=paddle.float32) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = paddle.cumprod(self.alphas, 0)
# Currently we only support VP-type noise schedule
self.alpha_t = paddle.sqrt(self.alphas_cumprod)
self.sigma_t = paddle.sqrt(1 - self.alphas_cumprod)
self.lambda_t = paddle.log(self.alpha_t) - paddle.log(self.sigma_t)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++"]:
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
if solver_type not in ["midpoint", "heun"]:
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}")
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = paddle.to_tensor(timesteps)
self.model_outputs = [None] * solver_order
self.sample = None
self.order_list = self.get_order_list(num_train_timesteps)
def get_order_list(self, num_inference_steps: int) -> List[int]:
"""
Computes the solver order at each time step.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
steps = num_inference_steps
order = self.solver_order
if self.lower_order_final:
if order == 3:
if steps % 3 == 0:
orders = [1, 2, 3] * (steps // 3 - 1) + [1, 2] + [1]
elif steps % 3 == 1:
orders = [1, 2, 3] * (steps // 3) + [1]
else:
orders = [1, 2, 3] * (steps // 3) + [1, 2]
elif order == 2:
if steps % 2 == 0:
orders = [1, 2] * (steps // 2)
else:
orders = [1, 2] * (steps // 2) + [1]
elif order == 1:
orders = [1] * steps
else:
if order == 3:
orders = [1, 2, 3] * (steps // 3)
elif order == 2:
orders = [1, 2] * (steps // 2)
elif order == 1:
orders = [1] * steps
return orders
def set_timesteps(self, num_inference_steps: int):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
self.num_inference_steps = num_inference_steps
timesteps = (
np.linspace(0, self.num_train_timesteps - 1, num_inference_steps + 1)
.round()[::-1][:-1]
.copy()
.astype(np.int64)
)
self.timesteps = paddle.to_tensor(timesteps)
self.model_outputs = [None] * self.config.solver_order
self.sample = None
self.orders = self.get_order_list(num_inference_steps)
def convert_model_output(self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor) -> paddle.Tensor:
"""
Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs.
DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to
discretize an integral of the data prediction model. So we need to first convert the model output to the
corresponding type to match the algorithm.
Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or
DPM-Solver++ for both noise prediction model and data prediction model.
Args:
model_output (`paddle.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`paddle.Tensor`):
current instance of sample being created by diffusion process.
Returns:
`paddle.Tensor`: the converted model output.
"""
# DPM-Solver++ needs to solve an integral of the data prediction model.
if self.config.algorithm_type == "dpmsolver++":
if self.config.prediction_type == "epsilon":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = alpha_t * sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverSinglestepScheduler."
)
if self.config.thresholding:
# Dynamic thresholding in https://arxiv.org/abs/2205.11487
dtype = x0_pred.dtype
dynamic_max_val = paddle.quantile(
paddle.abs(x0_pred).reshape((x0_pred.shape[0], -1)).cast("float32"),
self.config.dynamic_thresholding_ratio,
axis=1,
)
dynamic_max_val = paddle.maximum(
dynamic_max_val,
self.config.sample_max_value * paddle.ones_like(dynamic_max_val),
)[(...,) + (None,) * (x0_pred.ndim - 1)]
x0_pred = paddle.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val
x0_pred = x0_pred.cast(dtype)
return x0_pred
# DPM-Solver needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type == "dpmsolver":
if self.config.prediction_type == "epsilon":
return model_output
elif self.config.prediction_type == "sample":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = (sample - alpha_t * model_output) / sigma_t
return epsilon
elif self.config.prediction_type == "v_prediction":
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
epsilon = alpha_t * model_output + sigma_t * sample
return epsilon
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverSinglestepScheduler."
)
def dpm_solver_first_order_update(
self,
model_output: paddle.Tensor,
timestep: int,
prev_timestep: int,
sample: paddle.Tensor,
) -> paddle.Tensor:
"""
One step for the first-order DPM-Solver (equivalent to DDIM).
See https://arxiv.org/abs/2206.00927 for the detailed derivation.
Args:
model_output (`paddle.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`paddle.Tensor`):
current instance of sample being created by diffusion process.
Returns:
`paddle.Tensor`: the sample tensor at the previous timestep.
"""
lambda_t, lambda_s = self.lambda_t[prev_timestep], self.lambda_t[timestep]
alpha_t, alpha_s = self.alpha_t[prev_timestep], self.alpha_t[timestep]
sigma_t, sigma_s = self.sigma_t[prev_timestep], self.sigma_t[timestep]
h = lambda_t - lambda_s
if self.config.algorithm_type == "dpmsolver++":
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (paddle.exp(-h) - 1.0)) * model_output
elif self.config.algorithm_type == "dpmsolver":
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (paddle.exp(h) - 1.0)) * model_output
return x_t
def singlestep_dpm_solver_second_order_update(
self,
model_output_list: List[paddle.Tensor],
timestep_list: List[int],
prev_timestep: int,
sample: paddle.Tensor,
) -> paddle.Tensor:
"""
One step for the second-order singlestep DPM-Solver.
It computes the solution at time `prev_timestep` from the time `timestep_list[-2]`.
Args:
model_output_list (`List[paddle.Tensor]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`paddle.Tensor`):
current instance of sample being created by diffusion process.
Returns:
`paddle.Tensor`: the sample tensor at the previous timestep.
"""
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
m0, m1 = model_output_list[-1], model_output_list[-2]
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
alpha_t, alpha_s1 = self.alpha_t[t], self.alpha_t[s1]
sigma_t, sigma_s1 = self.sigma_t[t], self.sigma_t[s1]
h, h_0 = lambda_t - lambda_s1, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m1, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s1) * sample
- (alpha_t * (paddle.exp(-h) - 1.0)) * D0
- 0.5 * (alpha_t * (paddle.exp(-h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s1) * sample
- (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s1) * sample
- (sigma_t * (paddle.exp(h) - 1.0)) * D0
- 0.5 * (sigma_t * (paddle.exp(h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s1) * sample
- (sigma_t * (paddle.exp(h) - 1.0)) * D0
- (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1
)
return x_t
def singlestep_dpm_solver_third_order_update(
self,
model_output_list: List[paddle.Tensor],
timestep_list: List[int],
prev_timestep: int,
sample: paddle.Tensor,
) -> paddle.Tensor:
"""
One step for the third-order singlestep DPM-Solver.
It computes the solution at time `prev_timestep` from the time `timestep_list[-3]`.
Args:
model_output_list (`List[paddle.Tensor]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`paddle.Tensor`):
current instance of sample being created by diffusion process.
Returns:
`paddle.Tensor`: the sample tensor at the previous timestep.
"""
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3]
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3]
lambda_t, lambda_s0, lambda_s1, lambda_s2 = (
self.lambda_t[t],
self.lambda_t[s0],
self.lambda_t[s1],
self.lambda_t[s2],
)
alpha_t, alpha_s2 = self.alpha_t[t], self.alpha_t[s2]
sigma_t, sigma_s2 = self.sigma_t[t], self.sigma_t[s2]
h, h_0, h_1 = lambda_t - lambda_s2, lambda_s0 - lambda_s2, lambda_s1 - lambda_s2
r0, r1 = h_0 / h, h_1 / h
D0 = m2
D1_0, D1_1 = (1.0 / r1) * (m1 - m2), (1.0 / r0) * (m0 - m2)
D1 = (r0 * D1_0 - r1 * D1_1) / (r0 - r1)
D2 = 2.0 * (D1_1 - D1_0) / (r0 - r1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s2) * sample
- (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1_1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s2) * sample
- (alpha_t * (paddle.exp(-h) - 1.0)) * D0
+ (alpha_t * ((paddle.exp(-h) - 1.0) / h + 1.0)) * D1
- (alpha_t * ((paddle.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s2) * sample
- (sigma_t * (paddle.exp(h) - 1.0)) * D0
- (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1_1
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s2) * sample
- (sigma_t * (paddle.exp(h) - 1.0)) * D0
- (sigma_t * ((paddle.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((paddle.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
return x_t
def singlestep_dpm_solver_update(
self,
model_output_list: List[paddle.Tensor],
timestep_list: List[int],
prev_timestep: int,
sample: paddle.Tensor,
order: int,
) -> paddle.Tensor:
"""
One step for the singlestep DPM-Solver.
Args:
model_output_list (`List[paddle.Tensor]`):
direct outputs from learned diffusion model at current and latter timesteps.
timestep (`int`): current and latter discrete timestep in the diffusion chain.
prev_timestep (`int`): previous discrete timestep in the diffusion chain.
sample (`paddle.Tensor`):
current instance of sample being created by diffusion process.
order (`int`):
the solver order at this step.
Returns:
`paddle.Tensor`: the sample tensor at the previous timestep.
"""
if order == 1:
return self.dpm_solver_first_order_update(model_output_list[-1], timestep_list[-1], prev_timestep, sample)
elif order == 2:
return self.singlestep_dpm_solver_second_order_update(
model_output_list, timestep_list, prev_timestep, sample
)
elif order == 3:
return self.singlestep_dpm_solver_third_order_update(
model_output_list, timestep_list, prev_timestep, sample
)
else:
raise ValueError(f"Order must be 1, 2, 3, got {order}")
def step(
self,
model_output: paddle.Tensor,
timestep: int,
sample: paddle.Tensor,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Step function propagating the sample with the singlestep DPM-Solver.
Args:
model_output (`paddle.Tensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`paddle.Tensor`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
Returns:
[`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
step_index = (self.timesteps == timestep).nonzero()
if len(step_index) == 0:
step_index = len(self.timesteps) - 1
else:
step_index = step_index.item()
prev_timestep = 0 if step_index == len(self.timesteps) - 1 else self.timesteps[step_index + 1]
model_output = self.convert_model_output(model_output, timestep, sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
order = self.order_list[step_index]
# For single-step solvers, we use the initial value at each time with order = 1.
if order == 1:
self.sample = sample
timestep_list = [self.timesteps[step_index - i] for i in range(order - 1, 0, -1)] + [timestep]
prev_sample = self.singlestep_dpm_solver_update(
self.model_outputs, timestep_list, prev_timestep, self.sample, order
)
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`paddle.Tensor`): input sample
Returns:
`paddle.Tensor`: scaled input sample
"""
return sample
def add_noise(
self,
original_samples: paddle.Tensor,
noise: paddle.Tensor,
timesteps: paddle.Tensor,
) -> paddle.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype)
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps