# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import paddle from ..configuration_utils import ConfigMixin, register_to_config from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, BaseOutput, logging from .scheduling_utils import SchedulerMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete class EulerAncestralDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: paddle.Tensor pred_original_sample: Optional[paddle.Tensor] = None class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Ancestral sampling with Euler method steps. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) """ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", ): if trained_betas is not None: self.betas = paddle.to_tensor(trained_betas, dtype="float32") elif beta_schedule == "linear": self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32") elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2 else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = paddle.cumprod(self.alphas, 0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) self.sigmas = paddle.to_tensor(sigmas) # standard deviation of the initial noise distribution self.init_noise_sigma = self.sigmas.max() # setable values self.num_inference_steps = None timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() self.timesteps = paddle.to_tensor(timesteps, dtype="float32") self.is_scale_input_called = False def scale_model_input(self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor]) -> paddle.Tensor: """ Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. Args: sample (`paddle.Tensor`): input sample timestep (`float` or `paddle.Tensor`): the current timestep in the diffusion chain Returns: `paddle.Tensor`: scaled input sample """ step_index = (self.timesteps == timestep).nonzero().item() sigma = self.sigmas[step_index] sample = sample / ((sigma**2 + 1) ** 0.5) self.is_scale_input_called = True return sample def set_timesteps(self, num_inference_steps: int): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ self.num_inference_steps = num_inference_steps timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) self.sigmas = paddle.to_tensor(sigmas) self.timesteps = paddle.to_tensor(timesteps, dtype="float32") def step( self, model_output: paddle.Tensor, timestep: Union[float, paddle.Tensor], sample: paddle.Tensor, generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, return_dict: bool = True, ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`paddle.Tensor`): direct output from learned diffusion model. timestep (`float`): current timestep in the diffusion chain. sample (`paddle.Tensor`): current instance of sample being created by diffusion process. generator (`paddle.Generator`, optional): Random number generator. return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class Returns: [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) step_index = (self.timesteps == timestep).nonzero().item() sigma = self.sigmas[step_index] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma * model_output elif self.config.prediction_type == "v_prediction": # * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) sigma_from = self.sigmas[step_index] sigma_to = self.sigmas[step_index + 1] sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5 # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma dt = sigma_down - sigma prev_sample = sample + derivative * dt noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator) prev_sample = prev_sample + noise * sigma_up if not return_dict: return (prev_sample,) return EulerAncestralDiscreteSchedulerOutput( prev_sample=prev_sample, pred_original_sample=pred_original_sample ) def add_noise( self, original_samples: paddle.Tensor, noise: paddle.Tensor, timesteps: paddle.Tensor, ) -> paddle.Tensor: # Make sure sigmas and timesteps have the same dtype as original_samples self.sigmas = self.sigmas.cast(original_samples.dtype) schedule_timesteps = self.timesteps step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] sigma = self.sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps