# Copyright 2022 Kakao Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import paddle from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UnCLIPSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`paddle.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: paddle.Tensor pred_original_sample: Optional[paddle.Tensor] = None def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return paddle.to_tensor(betas, dtype=paddle.float32) class UnCLIPScheduler(SchedulerMixin, ConfigMixin): """ This is a modified DDPM Scheduler specifically for the karlo unCLIP model. This scheduler has some minor variations in how it calculates the learned range variance and dynamically re-calculates betas based off the timesteps it is skipping. The scheduler also uses a slightly different step ratio when computing timesteps to use for inference. See [`~DDPMScheduler`] for more information on DDPM scheduling Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. variance_type (`str`): options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small_log` or `learned_range`. clip_sample (`bool`, default `True`): option to clip predicted sample between `-clip_sample_range` and `clip_sample_range` for numerical stability. clip_sample_range (`float`, default `1.0`): The range to clip the sample between. See `clip_sample`. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process) or `sample` (directly predicting the noisy sample`) """ @register_to_config def __init__( self, num_train_timesteps: int = 1000, variance_type: str = "fixed_small_log", clip_sample: bool = True, clip_sample_range: Optional[float] = 1.0, prediction_type: str = "epsilon", ): # beta scheduler is "squaredcos_cap_v2" self.betas = betas_for_alpha_bar(num_train_timesteps) self.alphas = 1.0 - self.betas self.alphas_cumprod = paddle.cumprod(self.alphas, 0) self.one = paddle.to_tensor(1.0) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = paddle.to_tensor(np.arange(0, num_train_timesteps)[::-1].copy()) self.variance_type = variance_type def scale_model_input(self, sample: paddle.Tensor, timestep: Optional[int] = None) -> paddle.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`paddle.Tensor`): input sample timestep (`int`, optional): current timestep Returns: `paddle.Tensor`: scaled input sample """ return sample def set_timesteps(self, num_inference_steps: int): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Note that this scheduler uses a slightly different step ratio than the other diffusers schedulers. The different step ratio is to mimic the original karlo implementation and does not affect the quality or accuracy of the results. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ self.num_inference_steps = num_inference_steps step_ratio = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) self.timesteps = paddle.to_tensor(timesteps) def _get_variance(self, t, prev_timestep=None, predicted_variance=None, variance_type=None): if prev_timestep is None: prev_timestep = t - 1 alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev if prev_timestep == t - 1: beta = self.betas[t] else: beta = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample variance = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: variance_type = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": variance = paddle.log(paddle.clip(variance, min=1e-20)) variance = paddle.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler min_log = variance.log() max_log = beta.log() frac = (predicted_variance + 1) / 2 variance = frac * max_log + (1 - frac) * min_log return variance def step( self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor, prev_timestep: Optional[int] = None, generator=None, return_dict: bool = True, ) -> Union[UnCLIPSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`paddle.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor`): current instance of sample being created by diffusion process. prev_timestep (`int`, *optional*): The previous timestep to predict the previous sample at. Used to dynamically compute beta. If not given, `t-1` is used and the pre-computed beta is used. generator: random number generator. return_dict (`bool`): option for returning tuple rather than UnCLIPSchedulerOutput class Returns: [`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.UnCLIPSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ t = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": model_output, predicted_variance = model_output.split( [sample.shape[1], model_output.shape[1] - sample.shape[1]], axis=1 ) else: predicted_variance = None # 1. compute alphas, betas if prev_timestep is None: prev_timestep = t - 1 alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev if prev_timestep == t - 1: beta = self.betas[t] alpha = self.alphas[t] else: beta = 1 - alpha_prod_t / alpha_prod_t_prev alpha = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) elif self.config.prediction_type == "sample": pred_original_sample = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: pred_original_sample = paddle.clip( pred_original_sample, -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * beta) / beta_prod_t current_sample_coeff = alpha ** (0.5) * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise variance = 0 if t > 0: variance_noise = paddle.randn(model_output.shape, generator=generator, dtype=model_output.dtype) variance = self._get_variance( t, predicted_variance=predicted_variance, prev_timestep=prev_timestep, ) if self.variance_type == "fixed_small_log": variance = variance elif self.variance_type == "learned_range": variance = (0.5 * variance).exp() else: raise ValueError( f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" " for the UnCLIPScheduler." ) variance = variance * variance_noise pred_prev_sample = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)