import gradio as gr from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH) prefix = "items: " generation_kwargs = { "max_length": 512, "min_length": 64, "no_repeat_ngram_size": 3, "do_sample": True, "top_k": 60, "top_p": 0.95, } special_tokens = tokenizer.all_special_tokens tokens_map = { "": "--", "
": "\n", } def skip_special_tokens(text, special_tokens): for token in special_tokens: text = text.replace(token, "") return text def target_postprocessing(texts, special_tokens): if not isinstance(texts, list): texts = [texts] new_texts = [] for text in texts: text = skip_special_tokens(text, special_tokens) for k, v in tokens_map.items(): text = text.replace(k, v) new_texts.append(text) return new_texts def generation_function(texts): _inputs = texts if isinstance(texts, list) else [texts] inputs = [prefix + inp for inp in _inputs] inputs = tokenizer( inputs, max_length=256, padding="max_length", truncation=True, return_tensors="jax", ) input_ids = inputs.input_ids attention_mask = inputs.attention_mask output_ids = model.generate( input_ids=input_ids, attention_mask=attention_mask, **generation_kwargs, ) generated = output_ids.sequences generated_recipe = target_postprocessing( tokenizer.batch_decode(generated, skip_special_tokens=False), special_tokens, ) return generated_recipe[0] # Return the first generated recipe as a string iface = gr.Interface( fn=generation_function, inputs="text", outputs="text", title="Recipe Generation", description="Generate a recipe based on an input text.", ) if __name__ == "__main__": iface.launch()