HongFangzhou
commited on
Commit
•
b13bb81
1
Parent(s):
27ef5eb
test 3dtopia
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- 3DTopia/.gitignore +4 -0
- 3DTopia/LICENSE +201 -0
- 3DTopia/README.md +65 -0
- 3DTopia/configs/default.yaml +72 -0
- 3DTopia/environment.yml +150 -0
- 3DTopia/gradio_demo.py +334 -0
- 3DTopia/ldm/data/__init__.py +0 -0
- 3DTopia/ldm/data/base.py +23 -0
- 3DTopia/ldm/data/imagenet.py +394 -0
- 3DTopia/ldm/data/lsun.py +92 -0
- 3DTopia/ldm/lr_scheduler.py +98 -0
- 3DTopia/ldm/models/autoencoder.py +443 -0
- 3DTopia/ldm/models/diffusion/__init__.py +0 -0
- 3DTopia/ldm/models/diffusion/classifier.py +267 -0
- 3DTopia/ldm/models/diffusion/ddim.py +241 -0
- 3DTopia/ldm/models/diffusion/ddpm.py +1746 -0
- 3DTopia/ldm/models/diffusion/ddpm_preprocess.py +1716 -0
- 3DTopia/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
- 3DTopia/ldm/models/diffusion/dpm_solver/dpm_solver.py +1184 -0
- 3DTopia/ldm/models/diffusion/dpm_solver/sampler.py +82 -0
- 3DTopia/ldm/models/diffusion/plms.py +236 -0
- 3DTopia/ldm/modules/attention.py +261 -0
- 3DTopia/ldm/modules/diffusionmodules/__init__.py +0 -0
- 3DTopia/ldm/modules/diffusionmodules/model.py +835 -0
- 3DTopia/ldm/modules/diffusionmodules/openaimodel.py +965 -0
- 3DTopia/ldm/modules/diffusionmodules/triplane_3daware_unet.py +991 -0
- 3DTopia/ldm/modules/diffusionmodules/triplane_context_crossattention_unet.py +1126 -0
- 3DTopia/ldm/modules/diffusionmodules/triplane_crossattention_unet.py +1058 -0
- 3DTopia/ldm/modules/diffusionmodules/util.py +305 -0
- 3DTopia/ldm/modules/distributions/__init__.py +0 -0
- 3DTopia/ldm/modules/distributions/distributions.py +92 -0
- 3DTopia/ldm/modules/ema.py +76 -0
- 3DTopia/ldm/modules/encoders/__init__.py +0 -0
- 3DTopia/ldm/modules/encoders/modules.py +386 -0
- 3DTopia/ldm/modules/image_degradation/__init__.py +2 -0
- 3DTopia/ldm/modules/image_degradation/bsrgan.py +730 -0
- 3DTopia/ldm/modules/image_degradation/bsrgan_light.py +650 -0
- 3DTopia/ldm/modules/image_degradation/utils/test.png +0 -0
- 3DTopia/ldm/modules/image_degradation/utils_image.py +916 -0
- 3DTopia/ldm/modules/losses/__init__.py +1 -0
- 3DTopia/ldm/modules/losses/contperceptual.py +111 -0
- 3DTopia/ldm/modules/losses/vqperceptual.py +167 -0
- 3DTopia/ldm/modules/x_transformer.py +641 -0
- 3DTopia/ldm/util.py +203 -0
- 3DTopia/model/auto_regressive.py +412 -0
- 3DTopia/model/sv_vae_triplane.py +111 -0
- 3DTopia/model/triplane_vae.py +0 -0
- 3DTopia/model/triplane_vqvae.py +418 -0
- 3DTopia/module/model_2d.py +2206 -0
.gitattributes
CHANGED
@@ -25,6 +25,7 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
3DTopia/.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
checkpoints
|
3 |
+
results
|
4 |
+
tmp
|
3DTopia/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
3DTopia/README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<picture>
|
3 |
+
<img alt="logo" src="assets/3dtopia.jpeg" width="20%">
|
4 |
+
</picture>
|
5 |
+
</p>
|
6 |
+
<div align="center">
|
7 |
+
<h1>3DTopia</h1>
|
8 |
+
A two-stage text-to-3D generation model. The first stage uses diffusion model to quickly generate candidates. The second stage refines the assets chosen from the first stage.
|
9 |
+
|
10 |
+
https://github.com/3DTopia/3DTopia/assets/23376858/c9716cf0-6e61-4983-82b2-2e8f579bd46c
|
11 |
+
|
12 |
+
</div>
|
13 |
+
|
14 |
+
## News
|
15 |
+
|
16 |
+
[2024/01/18] We release a text-to-3D model 3DTopia!
|
17 |
+
|
18 |
+
## 1. Quick Start
|
19 |
+
|
20 |
+
### 1.1 Install Environment for this Repository
|
21 |
+
We recommend using Anaconda to manage the environment.
|
22 |
+
```bash
|
23 |
+
conda env create -f environment.yml
|
24 |
+
```
|
25 |
+
|
26 |
+
### 1.2 Install Second Stage Refiner
|
27 |
+
Please refer to [threefiner](https://github.com/3DTopia/threefiner) to install our second stage mesh refiner. We have tested installing both environments together with Pytorch 1.12.0 and CUDA 11.3.
|
28 |
+
|
29 |
+
### 1.3 Download Checkpoints \[Optional\]
|
30 |
+
We have implemented automatic checkpoint download for both `gradio_demo.py` and `sample_stage1.py`. If you prefer to download manually, you may download checkpoint `3dtopia_diffusion_state_dict.ckpt` or `model.safetensors` from [huggingface](https://huggingface.co/hongfz16/3DTopia).
|
31 |
+
|
32 |
+
### Q&A
|
33 |
+
- If you encounter this error in the second stage `ImportError: /lib64/libc.so.6: version 'GLIBC_2.25' not found`, try to install a lower version of pymeshlab by `pip install pymeshlab==0.2`.
|
34 |
+
|
35 |
+
## 2. Inference
|
36 |
+
|
37 |
+
### 2.1 First Stage
|
38 |
+
Run the following command to sample `a robot` as the first stage. Results will be located under the folder `results`.
|
39 |
+
```bash
|
40 |
+
python -u sample_stage1.py --text "a robot" --samples 1 --sampler ddim --steps 200 --cfg_scale 7.5 --seed 0
|
41 |
+
```
|
42 |
+
|
43 |
+
Arguments:
|
44 |
+
- `--ckpt` specifies checkpoint file path;
|
45 |
+
- `--test_folder` controls which subfolder to put all the results;
|
46 |
+
- `--seed` will fix random seeds; `--sampler` can be set to `ddim` for DDIM sampling (By default, we use 1000 steps DDPM sampling);
|
47 |
+
- `--steps` controls sampling steps only for DDIM;
|
48 |
+
- `--samples` controls number of samples;
|
49 |
+
- `--text` is the input text;
|
50 |
+
- `--no_video` and `--no_mcubes` suppress rendering multi-view videos and marching cubes, which are by-default enabled;
|
51 |
+
- `--mcubes_res` controls the resolution of the 3D volumn sampled for marching cubes; One can lower this resolution to save graphics memory;
|
52 |
+
- `--render_res` controls the resolution of the rendered video;
|
53 |
+
|
54 |
+
### 2.2 Second Stage
|
55 |
+
There are two steps as the second stage refinement. Here is a simple example. Please refer to [threefiner](https://github.com/3DTopia/threefiner) for more detailed usage.
|
56 |
+
```bash
|
57 |
+
# step 1
|
58 |
+
threefiner sd --mesh results/default/stage1/a_robot_0_0.ply --prompt "a robot" --text_dir --front_dir='-y' --outdir results/default/stage2/ --save a_robot_0_0_sd.glb
|
59 |
+
# step 2
|
60 |
+
threefiner if2 --mesh results/default/stage2/a_robot_0_0_sd.glb --prompt "a robot" --outdir results/default/stage2/ --save a_robot_0_0_if2.glb
|
61 |
+
```
|
62 |
+
The resulting mesh can be found at `results/default/stage2/a_robot_0_0_if2.glb`
|
63 |
+
|
64 |
+
## 3. Acknowledgement
|
65 |
+
We thank the community for building and open-sourcing the foundation of this work. Specifically, we want to thank [EG3D](https://github.com/NVlabs/eg3d), [Stable Diffusion](https://github.com/CompVis/stable-diffusion) for their codes. We also want to thank [Objaverse](https://objaverse.allenai.org) for the wonderful dataset.
|
3DTopia/configs/default.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
3 |
+
params:
|
4 |
+
linear_start: 0.00085
|
5 |
+
linear_end: 0.0120
|
6 |
+
shift_scale: 2
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "triplane"
|
11 |
+
cond_stage_key: "caption"
|
12 |
+
image_size: 32
|
13 |
+
channels: 8
|
14 |
+
cond_stage_trainable: false
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.5147210212065061
|
18 |
+
use_ema: False
|
19 |
+
learning_rate: 5e-5
|
20 |
+
|
21 |
+
unet_config:
|
22 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
23 |
+
params:
|
24 |
+
image_size: 32
|
25 |
+
in_channels: 8
|
26 |
+
out_channels: 8
|
27 |
+
model_channels: 320
|
28 |
+
attention_resolutions: [4, 2, 1]
|
29 |
+
num_res_blocks: 2
|
30 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
31 |
+
num_heads: 8
|
32 |
+
use_spatial_transformer: True
|
33 |
+
context_dim: 768
|
34 |
+
transformer_depth: 1
|
35 |
+
use_checkpoint: True
|
36 |
+
legacy: False
|
37 |
+
|
38 |
+
first_stage_config:
|
39 |
+
target: model.triplane_vae.AutoencoderKLRollOut
|
40 |
+
params:
|
41 |
+
embed_dim: 8
|
42 |
+
learning_rate: 1e-5
|
43 |
+
norm: False
|
44 |
+
renderer_type: eg3d
|
45 |
+
ddconfig:
|
46 |
+
double_z: true
|
47 |
+
z_channels: 8
|
48 |
+
resolution: 256
|
49 |
+
in_channels: 32
|
50 |
+
out_ch: 32
|
51 |
+
ch: 128
|
52 |
+
ch_mult:
|
53 |
+
- 2
|
54 |
+
- 4
|
55 |
+
- 4
|
56 |
+
- 8
|
57 |
+
num_res_blocks: 2
|
58 |
+
attn_resolutions: [32]
|
59 |
+
dropout: 0.0
|
60 |
+
lossconfig:
|
61 |
+
kl_weight: 1e-5
|
62 |
+
rec_weight: 1
|
63 |
+
latent_tv_weight: 2e-3
|
64 |
+
renderer_config:
|
65 |
+
rgbnet_dim: -1
|
66 |
+
rgbnet_width: 128
|
67 |
+
sigma_dim: 12
|
68 |
+
c_dim: 20
|
69 |
+
|
70 |
+
cond_stage_config:
|
71 |
+
target: ldm.modules.encoders.modules.FrozenCLIPTextEmbedder
|
72 |
+
|
3DTopia/environment.yml
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: 3dtopia
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- anaconda
|
5 |
+
- conda-forge
|
6 |
+
- defaults
|
7 |
+
dependencies:
|
8 |
+
- _libgcc_mutex=0.1=main
|
9 |
+
- _openmp_mutex=5.1=1_gnu
|
10 |
+
- blas=1.0=mkl
|
11 |
+
- brotli=1.0.9=h166bdaf_7
|
12 |
+
- brotli-bin=1.0.9=h166bdaf_7
|
13 |
+
- bzip2=1.0.8=h7f98852_4
|
14 |
+
- ca-certificates=2023.5.7=hbcca054_0
|
15 |
+
- certifi=2023.5.7=pyhd8ed1ab_0
|
16 |
+
- charset-normalizer=3.1.0=pyhd8ed1ab_0
|
17 |
+
- colorama=0.4.6=pyhd8ed1ab_0
|
18 |
+
- cudatoolkit=11.3.1=h9edb442_10
|
19 |
+
- ffmpeg=4.3.2=hca11adc_0
|
20 |
+
- freetype=2.10.4=h0708190_1
|
21 |
+
- fsspec=2023.5.0=pyh1a96a4e_0
|
22 |
+
- gmp=6.2.1=h58526e2_0
|
23 |
+
- gnutls=3.6.13=h85f3911_1
|
24 |
+
- idna=3.4=pyhd8ed1ab_0
|
25 |
+
- intel-openmp=2021.4.0=h06a4308_3561
|
26 |
+
- jpeg=9e=h166bdaf_1
|
27 |
+
- lame=3.100=h7f98852_1001
|
28 |
+
- lcms2=2.12=hddcbb42_0
|
29 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
30 |
+
- libbrotlicommon=1.0.9=h166bdaf_7
|
31 |
+
- libbrotlidec=1.0.9=h166bdaf_7
|
32 |
+
- libbrotlienc=1.0.9=h166bdaf_7
|
33 |
+
- libffi=3.4.4=h6a678d5_0
|
34 |
+
- libgcc-ng=11.2.0=h1234567_1
|
35 |
+
- libgomp=11.2.0=h1234567_1
|
36 |
+
- libpng=1.6.37=h21135ba_2
|
37 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
38 |
+
- libtiff=4.2.0=hecacb30_2
|
39 |
+
- libwebp-base=1.2.2=h7f98852_1
|
40 |
+
- lightning-utilities=0.8.0=pyhd8ed1ab_0
|
41 |
+
- lz4-c=1.9.3=h9c3ff4c_1
|
42 |
+
- mkl=2021.4.0=h06a4308_640
|
43 |
+
- mkl-service=2.4.0=py38h95df7f1_0
|
44 |
+
- mkl_fft=1.3.1=py38h8666266_1
|
45 |
+
- mkl_random=1.2.2=py38h1abd341_0
|
46 |
+
- ncurses=6.4=h6a678d5_0
|
47 |
+
- nettle=3.6=he412f7d_0
|
48 |
+
- numpy=1.24.3=py38h14f4228_0
|
49 |
+
- numpy-base=1.24.3=py38h31eccc5_0
|
50 |
+
- olefile=0.46=pyh9f0ad1d_1
|
51 |
+
- openh264=2.1.1=h780b84a_0
|
52 |
+
- openjpeg=2.4.0=hb52868f_1
|
53 |
+
- openssl=1.1.1u=h7f8727e_0
|
54 |
+
- packaging=23.1=pyhd8ed1ab_0
|
55 |
+
- pip=23.0.1=py38h06a4308_0
|
56 |
+
- pixman-cos6-x86_64=0.32.8=4
|
57 |
+
- pysocks=1.7.1=pyha2e5f31_6
|
58 |
+
- python=3.8.16=h7a1cb2a_3
|
59 |
+
- python_abi=3.8=2_cp38
|
60 |
+
- pytorch=1.12.0=py3.8_cuda11.3_cudnn8.3.2_0
|
61 |
+
- pytorch-lightning=2.0.2=pyhd8ed1ab_0
|
62 |
+
- pytorch-mutex=1.0=cuda
|
63 |
+
- pyyaml=6.0=py38h0a891b7_4
|
64 |
+
- readline=8.2=h5eee18b_0
|
65 |
+
- requests=2.31.0=pyhd8ed1ab_0
|
66 |
+
- setuptools=67.8.0=py38h06a4308_0
|
67 |
+
- six=1.16.0=pyh6c4a22f_0
|
68 |
+
- sqlite=3.41.2=h5eee18b_0
|
69 |
+
- tk=8.6.12=h1ccaba5_0
|
70 |
+
- torchaudio=0.12.0=py38_cu113
|
71 |
+
- torchmetrics=0.11.4=pyhd8ed1ab_0
|
72 |
+
- torchvision=0.13.0=py38_cu113
|
73 |
+
- tqdm=4.65.0=pyhd8ed1ab_1
|
74 |
+
- typing_extensions=4.6.3=pyha770c72_0
|
75 |
+
- urllib3=2.0.2=pyhd8ed1ab_0
|
76 |
+
- wheel=0.38.4=py38h06a4308_0
|
77 |
+
- x264=1!161.3030=h7f98852_1
|
78 |
+
- xorg-x11-server-common-cos6-x86_64=1.17.4=4
|
79 |
+
- xorg-x11-server-xvfb-cos6-x86_64=1.17.4=4
|
80 |
+
- xz=5.4.2=h5eee18b_0
|
81 |
+
- yaml=0.2.5=h7f98852_2
|
82 |
+
- zlib=1.2.13=h5eee18b_0
|
83 |
+
- zstd=1.5.2=ha4553b6_0
|
84 |
+
- pip:
|
85 |
+
- antlr4-python3-runtime==4.9.3
|
86 |
+
- appdirs==1.4.4
|
87 |
+
- asttokens==2.4.0
|
88 |
+
- av==10.0.0
|
89 |
+
- backcall==0.2.0
|
90 |
+
- click==8.1.3
|
91 |
+
- git+https://github.com/openai/CLIP.git
|
92 |
+
- contourpy==1.1.1
|
93 |
+
- cycler==0.12.1
|
94 |
+
- decorator==5.1.1
|
95 |
+
- docker-pycreds==0.4.0
|
96 |
+
- einops==0.6.1
|
97 |
+
- executing==1.2.0
|
98 |
+
- filelock==3.12.2
|
99 |
+
- fonttools==4.43.1
|
100 |
+
- ftfy==6.1.1
|
101 |
+
- gitdb==4.0.10
|
102 |
+
- gitpython==3.1.31
|
103 |
+
- huggingface-hub==0.16.4
|
104 |
+
- imageio==2.31.0
|
105 |
+
- imageio-ffmpeg==0.4.8
|
106 |
+
- importlib-resources==6.1.0
|
107 |
+
- ipdb==0.13.13
|
108 |
+
- ipython==8.12.2
|
109 |
+
- jedi==0.19.0
|
110 |
+
- kiwisolver==1.4.5
|
111 |
+
- kornia==0.6.0
|
112 |
+
- lpips==0.1.4
|
113 |
+
- matplotlib==3.7.3
|
114 |
+
- matplotlib-inline==0.1.6
|
115 |
+
- omegaconf==2.3.0
|
116 |
+
- open-clip-torch==2.20.0
|
117 |
+
- opencv-python==4.7.0.72
|
118 |
+
- parso==0.8.3
|
119 |
+
- pathtools==0.1.2
|
120 |
+
- pexpect==4.8.0
|
121 |
+
- pickleshare==0.7.5
|
122 |
+
- pillow==9.5.0
|
123 |
+
- prompt-toolkit==3.0.39
|
124 |
+
- protobuf==3.20.3
|
125 |
+
- psutil==5.9.5
|
126 |
+
- ptyprocess==0.7.0
|
127 |
+
- pure-eval==0.2.2
|
128 |
+
- pygments==2.16.1
|
129 |
+
- pymcubes==0.1.4
|
130 |
+
- pyparsing==3.1.1
|
131 |
+
- pytorch-fid==0.3.0
|
132 |
+
- pytorch-msssim==1.0.0
|
133 |
+
- regex==2023.6.3
|
134 |
+
- safetensors==0.3.3
|
135 |
+
- scipy==1.10.1
|
136 |
+
- sentencepiece==0.1.99
|
137 |
+
- sentry-sdk==1.25.0
|
138 |
+
- setproctitle==1.3.2
|
139 |
+
- smmap==5.0.0
|
140 |
+
- stack-data==0.6.2
|
141 |
+
- timm==0.9.7
|
142 |
+
- tokenizers==0.12.1
|
143 |
+
- tomli==2.0.1
|
144 |
+
- traitlets==5.9.0
|
145 |
+
- transformers
|
146 |
+
- trimesh==4.0.2
|
147 |
+
- vit-pytorch==1.2.2
|
148 |
+
- wandb==0.15.3
|
149 |
+
- wcwidth==0.2.6
|
150 |
+
- zipp==3.17.0
|
3DTopia/gradio_demo.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
import mcubes
|
7 |
+
import trimesh
|
8 |
+
import datetime
|
9 |
+
import argparse
|
10 |
+
import subprocess
|
11 |
+
import numpy as np
|
12 |
+
import gradio as gr
|
13 |
+
from tqdm import tqdm
|
14 |
+
import imageio.v2 as imageio
|
15 |
+
import pytorch_lightning as pl
|
16 |
+
from omegaconf import OmegaConf
|
17 |
+
|
18 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
19 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
20 |
+
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
21 |
+
|
22 |
+
from utility.initialize import instantiate_from_config, get_obj_from_str
|
23 |
+
from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes
|
24 |
+
from utility.triplane_renderer.renderer import get_rays, to8b
|
25 |
+
from safetensors.torch import load_file
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
|
28 |
+
import warnings
|
29 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
30 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
31 |
+
|
32 |
+
def add_text(rgb, caption):
|
33 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
34 |
+
# org
|
35 |
+
gap = 10
|
36 |
+
org = (gap, gap)
|
37 |
+
# fontScale
|
38 |
+
fontScale = 0.3
|
39 |
+
# Blue color in BGR
|
40 |
+
color = (255, 0, 0)
|
41 |
+
# Line thickness of 2 px
|
42 |
+
thickness = 1
|
43 |
+
break_caption = []
|
44 |
+
for i in range(len(caption) // 30 + 1):
|
45 |
+
break_caption_i = caption[i*30:(i+1)*30]
|
46 |
+
break_caption.append(break_caption_i)
|
47 |
+
for i, bci in enumerate(break_caption):
|
48 |
+
cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
|
49 |
+
return rgb
|
50 |
+
|
51 |
+
config = "configs/default.yaml"
|
52 |
+
# ckpt = "checkpoints/3dtopia_diffusion_state_dict.ckpt"
|
53 |
+
ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors")
|
54 |
+
configs = OmegaConf.load(config)
|
55 |
+
os.makedirs("tmp", exist_ok=True)
|
56 |
+
|
57 |
+
if ckpt.endswith(".ckpt"):
|
58 |
+
model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params)
|
59 |
+
elif ckpt.endswith(".safetensors"):
|
60 |
+
model = get_obj_from_str(configs.model["target"])(**configs.model.params)
|
61 |
+
model_ckpt = load_file(ckpt)
|
62 |
+
model.load_state_dict(model_ckpt)
|
63 |
+
else:
|
64 |
+
raise NotImplementedError
|
65 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
66 |
+
model = model.to(device)
|
67 |
+
sampler = DDIMSampler(model)
|
68 |
+
|
69 |
+
img_size = configs.model.params.unet_config.params.image_size
|
70 |
+
channels = configs.model.params.unet_config.params.in_channels
|
71 |
+
shape = [channels, img_size, img_size * 3]
|
72 |
+
|
73 |
+
pose_folder = 'assets/sample_data/pose'
|
74 |
+
poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)])
|
75 |
+
batch_rays_list = []
|
76 |
+
H = 128
|
77 |
+
ratio = 512 // H
|
78 |
+
for p in poses_fname:
|
79 |
+
c2w = np.loadtxt(p).reshape(4, 4)
|
80 |
+
c2w[:3, 3] *= 2.2
|
81 |
+
c2w = np.array([
|
82 |
+
[1, 0, 0, 0],
|
83 |
+
[0, 0, -1, 0],
|
84 |
+
[0, 1, 0, 0],
|
85 |
+
[0, 0, 0, 1]
|
86 |
+
]) @ c2w
|
87 |
+
|
88 |
+
k = np.array([
|
89 |
+
[560 / ratio, 0, H * 0.5],
|
90 |
+
[0, 560 / ratio, H * 0.5],
|
91 |
+
[0, 0, 1]
|
92 |
+
])
|
93 |
+
|
94 |
+
rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4]))
|
95 |
+
coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1)
|
96 |
+
coords = torch.reshape(coords, [-1,2]).long()
|
97 |
+
rays_o = rays_o[coords[:, 0], coords[:, 1]]
|
98 |
+
rays_d = rays_d[coords[:, 0], coords[:, 1]]
|
99 |
+
batch_rays = torch.stack([rays_o, rays_d], 0)
|
100 |
+
batch_rays_list.append(batch_rays)
|
101 |
+
batch_rays_list = torch.stack(batch_rays_list, 0)
|
102 |
+
|
103 |
+
def marching_cube(b, text, global_info):
|
104 |
+
# prepare volumn for marching cube
|
105 |
+
res = 128
|
106 |
+
assert 'decode_res' in global_info
|
107 |
+
decode_res = global_info['decode_res']
|
108 |
+
c_list = torch.linspace(-1.2, 1.2, steps=res)
|
109 |
+
grid_x, grid_y, grid_z = torch.meshgrid(
|
110 |
+
c_list, c_list, c_list, indexing='ij'
|
111 |
+
)
|
112 |
+
coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device)
|
113 |
+
plane_axes = generate_planes()
|
114 |
+
feats = sample_from_planes(
|
115 |
+
plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4
|
116 |
+
)
|
117 |
+
fake_dirs = torch.zeros_like(coords)
|
118 |
+
fake_dirs[..., 0] = 1
|
119 |
+
out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs)
|
120 |
+
u = out['sigma'].reshape(res, res, res).detach().cpu().numpy()
|
121 |
+
del out
|
122 |
+
|
123 |
+
# marching cube
|
124 |
+
vertices, triangles = mcubes.marching_cubes(u, 10)
|
125 |
+
min_bound = np.array([-1.2, -1.2, -1.2])
|
126 |
+
max_bound = np.array([1.2, 1.2, 1.2])
|
127 |
+
vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :]
|
128 |
+
pt_vertices = torch.from_numpy(vertices).to(device)
|
129 |
+
|
130 |
+
# extract vertices color
|
131 |
+
res_triplane = 256
|
132 |
+
render_kwargs = {
|
133 |
+
'depth_resolution': 128,
|
134 |
+
'disparity_space_sampling': False,
|
135 |
+
'box_warp': 2.4,
|
136 |
+
'depth_resolution_importance': 128,
|
137 |
+
'clamp_mode': 'softplus',
|
138 |
+
'white_back': True,
|
139 |
+
'det': True
|
140 |
+
}
|
141 |
+
rays_o_list = [
|
142 |
+
np.array([0, 0, 2]),
|
143 |
+
np.array([0, 0, -2]),
|
144 |
+
np.array([0, 2, 0]),
|
145 |
+
np.array([0, -2, 0]),
|
146 |
+
np.array([2, 0, 0]),
|
147 |
+
np.array([-2, 0, 0]),
|
148 |
+
]
|
149 |
+
rgb_final = None
|
150 |
+
diff_final = None
|
151 |
+
for rays_o in tqdm(rays_o_list):
|
152 |
+
rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device)
|
153 |
+
rays_d = pt_vertices.reshape(-1, 3) - rays_o
|
154 |
+
rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1)
|
155 |
+
dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1)
|
156 |
+
|
157 |
+
render_out = model.first_stage_model.triplane_decoder(
|
158 |
+
decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane),
|
159 |
+
rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs,
|
160 |
+
whole_img=False, tvloss=False
|
161 |
+
)
|
162 |
+
rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy()
|
163 |
+
depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy()
|
164 |
+
depth_diff = np.abs(dist - depth)
|
165 |
+
|
166 |
+
if rgb_final is None:
|
167 |
+
rgb_final = rgb.copy()
|
168 |
+
diff_final = depth_diff.copy()
|
169 |
+
|
170 |
+
else:
|
171 |
+
ind = diff_final > depth_diff
|
172 |
+
rgb_final[ind] = rgb[ind]
|
173 |
+
diff_final[ind] = depth_diff[ind]
|
174 |
+
|
175 |
+
# bgr to rgb
|
176 |
+
rgb_final = np.stack([
|
177 |
+
rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0]
|
178 |
+
], -1)
|
179 |
+
|
180 |
+
# export to ply
|
181 |
+
mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8))
|
182 |
+
path = os.path.join('tmp', f"{text.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.ply")
|
183 |
+
trimesh.exchange.export.export_mesh(mesh, path, file_type='ply')
|
184 |
+
|
185 |
+
del vertices, triangles, rgb_final
|
186 |
+
torch.cuda.empty_cache()
|
187 |
+
|
188 |
+
return path
|
189 |
+
|
190 |
+
def infer(prompt, samples, steps, scale, seed, global_info):
|
191 |
+
prompt = prompt.replace('/', '')
|
192 |
+
pl.seed_everything(seed)
|
193 |
+
batch_size = samples
|
194 |
+
with torch.no_grad():
|
195 |
+
noise = None
|
196 |
+
c = model.get_learned_conditioning([prompt])
|
197 |
+
unconditional_c = torch.zeros_like(c)
|
198 |
+
sample, _ = sampler.sample(
|
199 |
+
S=steps,
|
200 |
+
batch_size=batch_size,
|
201 |
+
shape=shape,
|
202 |
+
verbose=False,
|
203 |
+
x_T = noise,
|
204 |
+
conditioning = c.repeat(batch_size, 1, 1),
|
205 |
+
unconditional_guidance_scale=scale,
|
206 |
+
unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1)
|
207 |
+
)
|
208 |
+
decode_res = model.decode_first_stage(sample)
|
209 |
+
|
210 |
+
big_video_list = []
|
211 |
+
|
212 |
+
global_info['decode_res'] = decode_res
|
213 |
+
|
214 |
+
for b in range(batch_size):
|
215 |
+
def render_img(v):
|
216 |
+
rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder(
|
217 |
+
decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device),
|
218 |
+
)
|
219 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
220 |
+
rgb_sample = np.stack(
|
221 |
+
[rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1
|
222 |
+
)
|
223 |
+
rgb_sample = add_text(rgb_sample, str(b))
|
224 |
+
return rgb_sample
|
225 |
+
|
226 |
+
view_num = len(batch_rays_list)
|
227 |
+
video_list = []
|
228 |
+
for v in tqdm(range(view_num//8*3, view_num//8*5, 2)):
|
229 |
+
rgb_sample = render_img(v)
|
230 |
+
video_list.append(rgb_sample)
|
231 |
+
big_video_list.append(video_list)
|
232 |
+
# if batch_size == 2:
|
233 |
+
# cat_video_list = [
|
234 |
+
# np.concatenate([big_video_list[j][i] for j in range(len(big_video_list))], 1) \
|
235 |
+
# for i in range(len(big_video_list[0]))
|
236 |
+
# ]
|
237 |
+
# elif batch_size > 2:
|
238 |
+
# if batch_size == 3:
|
239 |
+
# big_video_list.append(
|
240 |
+
# [np.zeros_like(f) for f in big_video_list[0]]
|
241 |
+
# )
|
242 |
+
# cat_video_list = [
|
243 |
+
# np.concatenate([
|
244 |
+
# np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
|
245 |
+
# np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
|
246 |
+
# ], 0) \
|
247 |
+
# for i in range(len(big_video_list[0]))
|
248 |
+
# ]
|
249 |
+
# else:
|
250 |
+
# cat_video_list = big_video_list[0]
|
251 |
+
|
252 |
+
for _ in range(4 - batch_size):
|
253 |
+
big_video_list.append(
|
254 |
+
[np.zeros_like(f) + 255 for f in big_video_list[0]]
|
255 |
+
)
|
256 |
+
cat_video_list = [
|
257 |
+
np.concatenate([
|
258 |
+
np.concatenate([big_video_list[0][i], big_video_list[1][i]], 1),
|
259 |
+
np.concatenate([big_video_list[2][i], big_video_list[3][i]], 1),
|
260 |
+
], 0) \
|
261 |
+
for i in range(len(big_video_list[0]))
|
262 |
+
]
|
263 |
+
|
264 |
+
path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
|
265 |
+
imageio.mimwrite(path, np.stack(cat_video_list, 0))
|
266 |
+
|
267 |
+
return global_info, path
|
268 |
+
|
269 |
+
def infer_stage2(prompt, selection, seed, global_info):
|
270 |
+
prompt = prompt.replace('/', '')
|
271 |
+
mesh_path = marching_cube(int(selection), prompt, global_info)
|
272 |
+
mesh_name = mesh_path.split('/')[-1][:-4]
|
273 |
+
|
274 |
+
if2_cmd = f"threefiner if2 --mesh {mesh_path} --prompt \"{prompt}\" --outdir tmp --save {mesh_name}_if2.glb --text_dir --front_dir=-y"
|
275 |
+
print(if2_cmd)
|
276 |
+
# os.system(if2_cmd)
|
277 |
+
subprocess.Popen(if2_cmd, shell=True).wait()
|
278 |
+
torch.cuda.empty_cache()
|
279 |
+
|
280 |
+
video_path = f"tmp/{prompt.replace(' ', '_')}_{str(datetime.datetime.now()).replace(' ', '_')}.mp4"
|
281 |
+
render_cmd = f"kire {os.path.join('tmp', mesh_name + '_if2.glb')} --save_video {video_path} --wogui --force_cuda_rast --H 256 --W 256"
|
282 |
+
print(render_cmd)
|
283 |
+
# os.system(render_cmd)
|
284 |
+
subprocess.Popen(render_cmd, shell=True).wait()
|
285 |
+
torch.cuda.empty_cache()
|
286 |
+
|
287 |
+
return video_path, os.path.join('tmp', mesh_name + '_if2.glb')
|
288 |
+
|
289 |
+
block = gr.Blocks()
|
290 |
+
|
291 |
+
with block:
|
292 |
+
global_info = gr.State(dict())
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
with gr.Row():
|
296 |
+
text = gr.Textbox(
|
297 |
+
label = "Enter your prompt",
|
298 |
+
max_lines = 1,
|
299 |
+
placeholder = "Enter your prompt",
|
300 |
+
container = False,
|
301 |
+
)
|
302 |
+
btn = gr.Button("Generate 3D")
|
303 |
+
gallery = gr.Video(height=512)
|
304 |
+
advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
|
305 |
+
with gr.Row(elem_id="advanced-options"):
|
306 |
+
samples = gr.Slider(label="Number of Samples", minimum=1, maximum=4, value=4, step=1)
|
307 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=500, value=50, step=1)
|
308 |
+
scale = gr.Slider(
|
309 |
+
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
|
310 |
+
)
|
311 |
+
seed = gr.Slider(
|
312 |
+
label="Seed",
|
313 |
+
minimum=0,
|
314 |
+
maximum=2147483647,
|
315 |
+
step=1,
|
316 |
+
randomize=True,
|
317 |
+
)
|
318 |
+
gr.on([text.submit, btn.click], infer, inputs=[text, samples, steps, scale, seed, global_info], outputs=[global_info, gallery])
|
319 |
+
advanced_button.click(
|
320 |
+
None,
|
321 |
+
[],
|
322 |
+
text,
|
323 |
+
)
|
324 |
+
with gr.Column():
|
325 |
+
with gr.Row():
|
326 |
+
dropdown = gr.Dropdown(
|
327 |
+
['0', '1', '2', '3'], label="Choose a Candidate For Stage2", value='0'
|
328 |
+
)
|
329 |
+
btn_stage2 = gr.Button("Start Refinement")
|
330 |
+
gallery = gr.Video(height=512)
|
331 |
+
download = gr.File(label="Download Mesh", file_count="single", height=100)
|
332 |
+
gr.on([btn_stage2.click], infer_stage2, inputs=[text, dropdown, seed, global_info], outputs=[gallery, download])
|
333 |
+
|
334 |
+
block.launch(share=True)
|
3DTopia/ldm/data/__init__.py
ADDED
File without changes
|
3DTopia/ldm/data/base.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
3 |
+
|
4 |
+
|
5 |
+
class Txt2ImgIterableBaseDataset(IterableDataset):
|
6 |
+
'''
|
7 |
+
Define an interface to make the IterableDatasets for text2img data chainable
|
8 |
+
'''
|
9 |
+
def __init__(self, num_records=0, valid_ids=None, size=256):
|
10 |
+
super().__init__()
|
11 |
+
self.num_records = num_records
|
12 |
+
self.valid_ids = valid_ids
|
13 |
+
self.sample_ids = valid_ids
|
14 |
+
self.size = size
|
15 |
+
|
16 |
+
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return self.num_records
|
20 |
+
|
21 |
+
@abstractmethod
|
22 |
+
def __iter__(self):
|
23 |
+
pass
|
3DTopia/ldm/data/imagenet.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
+
import cv2
|
3 |
+
import albumentations
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import torchvision.transforms.functional as TF
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from functools import partial
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
from torch.utils.data import Dataset, Subset
|
12 |
+
|
13 |
+
import taming.data.utils as tdu
|
14 |
+
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
+
from taming.data.imagenet import ImagePaths
|
16 |
+
|
17 |
+
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
+
|
19 |
+
|
20 |
+
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
21 |
+
with open(path_to_yaml) as f:
|
22 |
+
di2s = yaml.load(f)
|
23 |
+
return dict((v,k) for k,v in di2s.items())
|
24 |
+
|
25 |
+
|
26 |
+
class ImageNetBase(Dataset):
|
27 |
+
def __init__(self, config=None):
|
28 |
+
self.config = config or OmegaConf.create()
|
29 |
+
if not type(self.config)==dict:
|
30 |
+
self.config = OmegaConf.to_container(self.config)
|
31 |
+
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
+
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
+
self._prepare()
|
34 |
+
self._prepare_synset_to_human()
|
35 |
+
self._prepare_idx_to_synset()
|
36 |
+
self._prepare_human_to_integer_label()
|
37 |
+
self._load()
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.data)
|
41 |
+
|
42 |
+
def __getitem__(self, i):
|
43 |
+
return self.data[i]
|
44 |
+
|
45 |
+
def _prepare(self):
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
def _filter_relpaths(self, relpaths):
|
49 |
+
ignore = set([
|
50 |
+
"n06596364_9591.JPEG",
|
51 |
+
])
|
52 |
+
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
+
if "sub_indices" in self.config:
|
54 |
+
indices = str_to_indices(self.config["sub_indices"])
|
55 |
+
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
+
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
+
files = []
|
58 |
+
for rpath in relpaths:
|
59 |
+
syn = rpath.split("/")[0]
|
60 |
+
if syn in synsets:
|
61 |
+
files.append(rpath)
|
62 |
+
return files
|
63 |
+
else:
|
64 |
+
return relpaths
|
65 |
+
|
66 |
+
def _prepare_synset_to_human(self):
|
67 |
+
SIZE = 2655750
|
68 |
+
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
+
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
+
if (not os.path.exists(self.human_dict) or
|
71 |
+
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
+
download(URL, self.human_dict)
|
73 |
+
|
74 |
+
def _prepare_idx_to_synset(self):
|
75 |
+
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
+
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
+
if (not os.path.exists(self.idx2syn)):
|
78 |
+
download(URL, self.idx2syn)
|
79 |
+
|
80 |
+
def _prepare_human_to_integer_label(self):
|
81 |
+
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
+
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
+
if (not os.path.exists(self.human2integer)):
|
84 |
+
download(URL, self.human2integer)
|
85 |
+
with open(self.human2integer, "r") as f:
|
86 |
+
lines = f.read().splitlines()
|
87 |
+
assert len(lines) == 1000
|
88 |
+
self.human2integer_dict = dict()
|
89 |
+
for line in lines:
|
90 |
+
value, key = line.split(":")
|
91 |
+
self.human2integer_dict[key] = int(value)
|
92 |
+
|
93 |
+
def _load(self):
|
94 |
+
with open(self.txt_filelist, "r") as f:
|
95 |
+
self.relpaths = f.read().splitlines()
|
96 |
+
l1 = len(self.relpaths)
|
97 |
+
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
+
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
+
|
100 |
+
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
+
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
+
|
103 |
+
unique_synsets = np.unique(self.synsets)
|
104 |
+
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
+
if not self.keep_orig_class_label:
|
106 |
+
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
+
else:
|
108 |
+
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
+
|
110 |
+
with open(self.human_dict, "r") as f:
|
111 |
+
human_dict = f.read().splitlines()
|
112 |
+
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
+
|
114 |
+
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
+
|
116 |
+
labels = {
|
117 |
+
"relpath": np.array(self.relpaths),
|
118 |
+
"synsets": np.array(self.synsets),
|
119 |
+
"class_label": np.array(self.class_labels),
|
120 |
+
"human_label": np.array(self.human_labels),
|
121 |
+
}
|
122 |
+
|
123 |
+
if self.process_images:
|
124 |
+
self.size = retrieve(self.config, "size", default=256)
|
125 |
+
self.data = ImagePaths(self.abspaths,
|
126 |
+
labels=labels,
|
127 |
+
size=self.size,
|
128 |
+
random_crop=self.random_crop,
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
self.data = self.abspaths
|
132 |
+
|
133 |
+
|
134 |
+
class ImageNetTrain(ImageNetBase):
|
135 |
+
NAME = "ILSVRC2012_train"
|
136 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
+
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
+
FILES = [
|
139 |
+
"ILSVRC2012_img_train.tar",
|
140 |
+
]
|
141 |
+
SIZES = [
|
142 |
+
147897477120,
|
143 |
+
]
|
144 |
+
|
145 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
+
self.process_images = process_images
|
147 |
+
self.data_root = data_root
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
def _prepare(self):
|
151 |
+
if self.data_root:
|
152 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
+
else:
|
154 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
+
|
157 |
+
self.datadir = os.path.join(self.root, "data")
|
158 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
+
self.expected_length = 1281167
|
160 |
+
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
+
default=True)
|
162 |
+
if not tdu.is_prepared(self.root):
|
163 |
+
# prep
|
164 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
+
|
166 |
+
datadir = self.datadir
|
167 |
+
if not os.path.exists(datadir):
|
168 |
+
path = os.path.join(self.root, self.FILES[0])
|
169 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
+
import academictorrents as at
|
171 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
+
assert atpath == path
|
173 |
+
|
174 |
+
print("Extracting {} to {}".format(path, datadir))
|
175 |
+
os.makedirs(datadir, exist_ok=True)
|
176 |
+
with tarfile.open(path, "r:") as tar:
|
177 |
+
tar.extractall(path=datadir)
|
178 |
+
|
179 |
+
print("Extracting sub-tars.")
|
180 |
+
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
+
for subpath in tqdm(subpaths):
|
182 |
+
subdir = subpath[:-len(".tar")]
|
183 |
+
os.makedirs(subdir, exist_ok=True)
|
184 |
+
with tarfile.open(subpath, "r:") as tar:
|
185 |
+
tar.extractall(path=subdir)
|
186 |
+
|
187 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
+
filelist = sorted(filelist)
|
190 |
+
filelist = "\n".join(filelist)+"\n"
|
191 |
+
with open(self.txt_filelist, "w") as f:
|
192 |
+
f.write(filelist)
|
193 |
+
|
194 |
+
tdu.mark_prepared(self.root)
|
195 |
+
|
196 |
+
|
197 |
+
class ImageNetValidation(ImageNetBase):
|
198 |
+
NAME = "ILSVRC2012_validation"
|
199 |
+
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
+
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
+
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
+
FILES = [
|
203 |
+
"ILSVRC2012_img_val.tar",
|
204 |
+
"validation_synset.txt",
|
205 |
+
]
|
206 |
+
SIZES = [
|
207 |
+
6744924160,
|
208 |
+
1950000,
|
209 |
+
]
|
210 |
+
|
211 |
+
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
+
self.data_root = data_root
|
213 |
+
self.process_images = process_images
|
214 |
+
super().__init__(**kwargs)
|
215 |
+
|
216 |
+
def _prepare(self):
|
217 |
+
if self.data_root:
|
218 |
+
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
+
else:
|
220 |
+
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
+
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
+
self.datadir = os.path.join(self.root, "data")
|
223 |
+
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
+
self.expected_length = 50000
|
225 |
+
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
+
default=False)
|
227 |
+
if not tdu.is_prepared(self.root):
|
228 |
+
# prep
|
229 |
+
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
+
|
231 |
+
datadir = self.datadir
|
232 |
+
if not os.path.exists(datadir):
|
233 |
+
path = os.path.join(self.root, self.FILES[0])
|
234 |
+
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
+
import academictorrents as at
|
236 |
+
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
+
assert atpath == path
|
238 |
+
|
239 |
+
print("Extracting {} to {}".format(path, datadir))
|
240 |
+
os.makedirs(datadir, exist_ok=True)
|
241 |
+
with tarfile.open(path, "r:") as tar:
|
242 |
+
tar.extractall(path=datadir)
|
243 |
+
|
244 |
+
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
+
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
+
download(self.VS_URL, vspath)
|
247 |
+
|
248 |
+
with open(vspath, "r") as f:
|
249 |
+
synset_dict = f.read().splitlines()
|
250 |
+
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
+
|
252 |
+
print("Reorganizing into synset folders")
|
253 |
+
synsets = np.unique(list(synset_dict.values()))
|
254 |
+
for s in synsets:
|
255 |
+
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
+
for k, v in synset_dict.items():
|
257 |
+
src = os.path.join(datadir, k)
|
258 |
+
dst = os.path.join(datadir, v)
|
259 |
+
shutil.move(src, dst)
|
260 |
+
|
261 |
+
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
+
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
+
filelist = sorted(filelist)
|
264 |
+
filelist = "\n".join(filelist)+"\n"
|
265 |
+
with open(self.txt_filelist, "w") as f:
|
266 |
+
f.write(filelist)
|
267 |
+
|
268 |
+
tdu.mark_prepared(self.root)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
class ImageNetSR(Dataset):
|
273 |
+
def __init__(self, size=None,
|
274 |
+
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
+
random_crop=True):
|
276 |
+
"""
|
277 |
+
Imagenet Superresolution Dataloader
|
278 |
+
Performs following ops in order:
|
279 |
+
1. crops a crop of size s from image either as random or center crop
|
280 |
+
2. resizes crop to size with cv2.area_interpolation
|
281 |
+
3. degrades resized crop with degradation_fn
|
282 |
+
|
283 |
+
:param size: resizing to size after cropping
|
284 |
+
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
+
:param downscale_f: Low Resolution Downsample factor
|
286 |
+
:param min_crop_f: determines crop size s,
|
287 |
+
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
+
:param max_crop_f: ""
|
289 |
+
:param data_root:
|
290 |
+
:param random_crop:
|
291 |
+
"""
|
292 |
+
self.base = self.get_base()
|
293 |
+
assert size
|
294 |
+
assert (size / downscale_f).is_integer()
|
295 |
+
self.size = size
|
296 |
+
self.LR_size = int(size / downscale_f)
|
297 |
+
self.min_crop_f = min_crop_f
|
298 |
+
self.max_crop_f = max_crop_f
|
299 |
+
assert(max_crop_f <= 1.)
|
300 |
+
self.center_crop = not random_crop
|
301 |
+
|
302 |
+
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
+
|
304 |
+
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
+
|
306 |
+
if degradation == "bsrgan":
|
307 |
+
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
+
|
309 |
+
elif degradation == "bsrgan_light":
|
310 |
+
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
+
|
312 |
+
else:
|
313 |
+
interpolation_fn = {
|
314 |
+
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
+
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
+
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
+
"cv_area": cv2.INTER_AREA,
|
318 |
+
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
+
"pil_nearest": PIL.Image.NEAREST,
|
320 |
+
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
+
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
+
"pil_box": PIL.Image.BOX,
|
323 |
+
"pil_hamming": PIL.Image.HAMMING,
|
324 |
+
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
+
}[degradation]
|
326 |
+
|
327 |
+
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
+
|
329 |
+
if self.pil_interpolation:
|
330 |
+
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
+
|
332 |
+
else:
|
333 |
+
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
+
interpolation=interpolation_fn)
|
335 |
+
|
336 |
+
def __len__(self):
|
337 |
+
return len(self.base)
|
338 |
+
|
339 |
+
def __getitem__(self, i):
|
340 |
+
example = self.base[i]
|
341 |
+
image = Image.open(example["file_path_"])
|
342 |
+
|
343 |
+
if not image.mode == "RGB":
|
344 |
+
image = image.convert("RGB")
|
345 |
+
|
346 |
+
image = np.array(image).astype(np.uint8)
|
347 |
+
|
348 |
+
min_side_len = min(image.shape[:2])
|
349 |
+
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
+
crop_side_len = int(crop_side_len)
|
351 |
+
|
352 |
+
if self.center_crop:
|
353 |
+
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
+
|
355 |
+
else:
|
356 |
+
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
+
|
358 |
+
image = self.cropper(image=image)["image"]
|
359 |
+
image = self.image_rescaler(image=image)["image"]
|
360 |
+
|
361 |
+
if self.pil_interpolation:
|
362 |
+
image_pil = PIL.Image.fromarray(image)
|
363 |
+
LR_image = self.degradation_process(image_pil)
|
364 |
+
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
+
|
366 |
+
else:
|
367 |
+
LR_image = self.degradation_process(image=image)["image"]
|
368 |
+
|
369 |
+
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
+
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
+
|
372 |
+
return example
|
373 |
+
|
374 |
+
|
375 |
+
class ImageNetSRTrain(ImageNetSR):
|
376 |
+
def __init__(self, **kwargs):
|
377 |
+
super().__init__(**kwargs)
|
378 |
+
|
379 |
+
def get_base(self):
|
380 |
+
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
+
indices = pickle.load(f)
|
382 |
+
dset = ImageNetTrain(process_images=False,)
|
383 |
+
return Subset(dset, indices)
|
384 |
+
|
385 |
+
|
386 |
+
class ImageNetSRValidation(ImageNetSR):
|
387 |
+
def __init__(self, **kwargs):
|
388 |
+
super().__init__(**kwargs)
|
389 |
+
|
390 |
+
def get_base(self):
|
391 |
+
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
+
indices = pickle.load(f)
|
393 |
+
dset = ImageNetValidation(process_images=False,)
|
394 |
+
return Subset(dset, indices)
|
3DTopia/ldm/data/lsun.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import PIL
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
|
9 |
+
class LSUNBase(Dataset):
|
10 |
+
def __init__(self,
|
11 |
+
txt_file,
|
12 |
+
data_root,
|
13 |
+
size=None,
|
14 |
+
interpolation="bicubic",
|
15 |
+
flip_p=0.5
|
16 |
+
):
|
17 |
+
self.data_paths = txt_file
|
18 |
+
self.data_root = data_root
|
19 |
+
with open(self.data_paths, "r") as f:
|
20 |
+
self.image_paths = f.read().splitlines()
|
21 |
+
self._length = len(self.image_paths)
|
22 |
+
self.labels = {
|
23 |
+
"relative_file_path_": [l for l in self.image_paths],
|
24 |
+
"file_path_": [os.path.join(self.data_root, l)
|
25 |
+
for l in self.image_paths],
|
26 |
+
}
|
27 |
+
|
28 |
+
self.size = size
|
29 |
+
self.interpolation = {"linear": PIL.Image.LINEAR,
|
30 |
+
"bilinear": PIL.Image.BILINEAR,
|
31 |
+
"bicubic": PIL.Image.BICUBIC,
|
32 |
+
"lanczos": PIL.Image.LANCZOS,
|
33 |
+
}[interpolation]
|
34 |
+
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return self._length
|
38 |
+
|
39 |
+
def __getitem__(self, i):
|
40 |
+
example = dict((k, self.labels[k][i]) for k in self.labels)
|
41 |
+
image = Image.open(example["file_path_"])
|
42 |
+
if not image.mode == "RGB":
|
43 |
+
image = image.convert("RGB")
|
44 |
+
|
45 |
+
# default to score-sde preprocessing
|
46 |
+
img = np.array(image).astype(np.uint8)
|
47 |
+
crop = min(img.shape[0], img.shape[1])
|
48 |
+
h, w, = img.shape[0], img.shape[1]
|
49 |
+
img = img[(h - crop) // 2:(h + crop) // 2,
|
50 |
+
(w - crop) // 2:(w + crop) // 2]
|
51 |
+
|
52 |
+
image = Image.fromarray(img)
|
53 |
+
if self.size is not None:
|
54 |
+
image = image.resize((self.size, self.size), resample=self.interpolation)
|
55 |
+
|
56 |
+
image = self.flip(image)
|
57 |
+
image = np.array(image).astype(np.uint8)
|
58 |
+
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
59 |
+
return example
|
60 |
+
|
61 |
+
|
62 |
+
class LSUNChurchesTrain(LSUNBase):
|
63 |
+
def __init__(self, **kwargs):
|
64 |
+
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
65 |
+
|
66 |
+
|
67 |
+
class LSUNChurchesValidation(LSUNBase):
|
68 |
+
def __init__(self, flip_p=0., **kwargs):
|
69 |
+
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
70 |
+
flip_p=flip_p, **kwargs)
|
71 |
+
|
72 |
+
|
73 |
+
class LSUNBedroomsTrain(LSUNBase):
|
74 |
+
def __init__(self, **kwargs):
|
75 |
+
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
76 |
+
|
77 |
+
|
78 |
+
class LSUNBedroomsValidation(LSUNBase):
|
79 |
+
def __init__(self, flip_p=0.0, **kwargs):
|
80 |
+
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
81 |
+
flip_p=flip_p, **kwargs)
|
82 |
+
|
83 |
+
|
84 |
+
class LSUNCatsTrain(LSUNBase):
|
85 |
+
def __init__(self, **kwargs):
|
86 |
+
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
87 |
+
|
88 |
+
|
89 |
+
class LSUNCatsValidation(LSUNBase):
|
90 |
+
def __init__(self, flip_p=0., **kwargs):
|
91 |
+
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
92 |
+
flip_p=flip_p, **kwargs)
|
3DTopia/ldm/lr_scheduler.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
+
self.lr_warm_up_steps = warm_up_steps
|
10 |
+
self.lr_start = lr_start
|
11 |
+
self.lr_min = lr_min
|
12 |
+
self.lr_max = lr_max
|
13 |
+
self.lr_max_decay_steps = max_decay_steps
|
14 |
+
self.last_lr = 0.
|
15 |
+
self.verbosity_interval = verbosity_interval
|
16 |
+
|
17 |
+
def schedule(self, n, **kwargs):
|
18 |
+
if self.verbosity_interval > 0:
|
19 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
+
if n < self.lr_warm_up_steps:
|
21 |
+
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
+
self.last_lr = lr
|
23 |
+
return lr
|
24 |
+
else:
|
25 |
+
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
+
t = min(t, 1.0)
|
27 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
+
1 + np.cos(t * np.pi))
|
29 |
+
self.last_lr = lr
|
30 |
+
return lr
|
31 |
+
|
32 |
+
def __call__(self, n, **kwargs):
|
33 |
+
return self.schedule(n,**kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
class LambdaWarmUpCosineScheduler2:
|
37 |
+
"""
|
38 |
+
supports repeated iterations, configurable via lists
|
39 |
+
note: use with a base_lr of 1.0.
|
40 |
+
"""
|
41 |
+
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
+
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
+
self.lr_warm_up_steps = warm_up_steps
|
44 |
+
self.f_start = f_start
|
45 |
+
self.f_min = f_min
|
46 |
+
self.f_max = f_max
|
47 |
+
self.cycle_lengths = cycle_lengths
|
48 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
+
self.last_f = 0.
|
50 |
+
self.verbosity_interval = verbosity_interval
|
51 |
+
|
52 |
+
def find_in_interval(self, n):
|
53 |
+
interval = 0
|
54 |
+
for cl in self.cum_cycles[1:]:
|
55 |
+
if n <= cl:
|
56 |
+
return interval
|
57 |
+
interval += 1
|
58 |
+
|
59 |
+
def schedule(self, n, **kwargs):
|
60 |
+
cycle = self.find_in_interval(n)
|
61 |
+
n = n - self.cum_cycles[cycle]
|
62 |
+
if self.verbosity_interval > 0:
|
63 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
+
f"current cycle {cycle}")
|
65 |
+
if n < self.lr_warm_up_steps[cycle]:
|
66 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
+
self.last_f = f
|
68 |
+
return f
|
69 |
+
else:
|
70 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
+
t = min(t, 1.0)
|
72 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
+
1 + np.cos(t * np.pi))
|
74 |
+
self.last_f = f
|
75 |
+
return f
|
76 |
+
|
77 |
+
def __call__(self, n, **kwargs):
|
78 |
+
return self.schedule(n, **kwargs)
|
79 |
+
|
80 |
+
|
81 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
+
f"current cycle {cycle}")
|
89 |
+
|
90 |
+
if n < self.lr_warm_up_steps[cycle]:
|
91 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
+
self.last_f = f
|
93 |
+
return f
|
94 |
+
else:
|
95 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
|
3DTopia/ldm/models/autoencoder.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from contextlib import contextmanager
|
5 |
+
|
6 |
+
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
+
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
|
13 |
+
|
14 |
+
class VQModel(pl.LightningModule):
|
15 |
+
def __init__(self,
|
16 |
+
ddconfig,
|
17 |
+
lossconfig,
|
18 |
+
n_embed,
|
19 |
+
embed_dim,
|
20 |
+
ckpt_path=None,
|
21 |
+
ignore_keys=[],
|
22 |
+
image_key="image",
|
23 |
+
colorize_nlabels=None,
|
24 |
+
monitor=None,
|
25 |
+
batch_resize_range=None,
|
26 |
+
scheduler_config=None,
|
27 |
+
lr_g_factor=1.0,
|
28 |
+
remap=None,
|
29 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
+
use_ema=False
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.embed_dim = embed_dim
|
34 |
+
self.n_embed = n_embed
|
35 |
+
self.image_key = image_key
|
36 |
+
self.encoder = Encoder(**ddconfig)
|
37 |
+
self.decoder = Decoder(**ddconfig)
|
38 |
+
self.loss = instantiate_from_config(lossconfig)
|
39 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
+
remap=remap,
|
41 |
+
sane_index_shape=sane_index_shape)
|
42 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
+
if colorize_nlabels is not None:
|
45 |
+
assert type(colorize_nlabels)==int
|
46 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
+
if monitor is not None:
|
48 |
+
self.monitor = monitor
|
49 |
+
self.batch_resize_range = batch_resize_range
|
50 |
+
if self.batch_resize_range is not None:
|
51 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
+
|
53 |
+
self.use_ema = use_ema
|
54 |
+
if self.use_ema:
|
55 |
+
self.model_ema = LitEma(self)
|
56 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
+
|
58 |
+
if ckpt_path is not None:
|
59 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
+
self.scheduler_config = scheduler_config
|
61 |
+
self.lr_g_factor = lr_g_factor
|
62 |
+
|
63 |
+
@contextmanager
|
64 |
+
def ema_scope(self, context=None):
|
65 |
+
if self.use_ema:
|
66 |
+
self.model_ema.store(self.parameters())
|
67 |
+
self.model_ema.copy_to(self)
|
68 |
+
if context is not None:
|
69 |
+
print(f"{context}: Switched to EMA weights")
|
70 |
+
try:
|
71 |
+
yield None
|
72 |
+
finally:
|
73 |
+
if self.use_ema:
|
74 |
+
self.model_ema.restore(self.parameters())
|
75 |
+
if context is not None:
|
76 |
+
print(f"{context}: Restored training weights")
|
77 |
+
|
78 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
+
keys = list(sd.keys())
|
81 |
+
for k in keys:
|
82 |
+
for ik in ignore_keys:
|
83 |
+
if k.startswith(ik):
|
84 |
+
print("Deleting key {} from state_dict.".format(k))
|
85 |
+
del sd[k]
|
86 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
+
if len(missing) > 0:
|
89 |
+
print(f"Missing Keys: {missing}")
|
90 |
+
print(f"Unexpected Keys: {unexpected}")
|
91 |
+
|
92 |
+
def on_train_batch_end(self, *args, **kwargs):
|
93 |
+
if self.use_ema:
|
94 |
+
self.model_ema(self)
|
95 |
+
|
96 |
+
def encode(self, x):
|
97 |
+
h = self.encoder(x)
|
98 |
+
h = self.quant_conv(h)
|
99 |
+
quant, emb_loss, info = self.quantize(h)
|
100 |
+
return quant, emb_loss, info
|
101 |
+
|
102 |
+
def encode_to_prequant(self, x):
|
103 |
+
h = self.encoder(x)
|
104 |
+
h = self.quant_conv(h)
|
105 |
+
return h
|
106 |
+
|
107 |
+
def decode(self, quant):
|
108 |
+
quant = self.post_quant_conv(quant)
|
109 |
+
dec = self.decoder(quant)
|
110 |
+
return dec
|
111 |
+
|
112 |
+
def decode_code(self, code_b):
|
113 |
+
quant_b = self.quantize.embed_code(code_b)
|
114 |
+
dec = self.decode(quant_b)
|
115 |
+
return dec
|
116 |
+
|
117 |
+
def forward(self, input, return_pred_indices=False):
|
118 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
+
dec = self.decode(quant)
|
120 |
+
if return_pred_indices:
|
121 |
+
return dec, diff, ind
|
122 |
+
return dec, diff
|
123 |
+
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
+
if self.batch_resize_range is not None:
|
130 |
+
lower_size = self.batch_resize_range[0]
|
131 |
+
upper_size = self.batch_resize_range[1]
|
132 |
+
if self.global_step <= 4:
|
133 |
+
# do the first few batches with max size to avoid later oom
|
134 |
+
new_resize = upper_size
|
135 |
+
else:
|
136 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
+
if new_resize != x.shape[2]:
|
138 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
+
x = x.detach()
|
140 |
+
return x
|
141 |
+
|
142 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
+
# try not to fool the heuristics
|
145 |
+
x = self.get_input(batch, self.image_key)
|
146 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
+
|
148 |
+
if optimizer_idx == 0:
|
149 |
+
# autoencode
|
150 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
+
last_layer=self.get_last_layer(), split="train",
|
152 |
+
predicted_indices=ind)
|
153 |
+
|
154 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
+
return aeloss
|
156 |
+
|
157 |
+
if optimizer_idx == 1:
|
158 |
+
# discriminator
|
159 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
+
last_layer=self.get_last_layer(), split="train")
|
161 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
+
return discloss
|
163 |
+
|
164 |
+
def validation_step(self, batch, batch_idx):
|
165 |
+
log_dict = self._validation_step(batch, batch_idx)
|
166 |
+
with self.ema_scope():
|
167 |
+
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
+
return log_dict
|
169 |
+
|
170 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
+
x = self.get_input(batch, self.image_key)
|
172 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
+
self.global_step,
|
175 |
+
last_layer=self.get_last_layer(),
|
176 |
+
split="val"+suffix,
|
177 |
+
predicted_indices=ind
|
178 |
+
)
|
179 |
+
|
180 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
+
self.global_step,
|
182 |
+
last_layer=self.get_last_layer(),
|
183 |
+
split="val"+suffix,
|
184 |
+
predicted_indices=ind
|
185 |
+
)
|
186 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
+
self.log_dict(log_dict_ae)
|
194 |
+
self.log_dict(log_dict_disc)
|
195 |
+
return self.log_dict
|
196 |
+
|
197 |
+
def configure_optimizers(self):
|
198 |
+
lr_d = self.learning_rate
|
199 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
200 |
+
print("lr_d", lr_d)
|
201 |
+
print("lr_g", lr_g)
|
202 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
203 |
+
list(self.decoder.parameters())+
|
204 |
+
list(self.quantize.parameters())+
|
205 |
+
list(self.quant_conv.parameters())+
|
206 |
+
list(self.post_quant_conv.parameters()),
|
207 |
+
lr=lr_g, betas=(0.5, 0.9))
|
208 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
209 |
+
lr=lr_d, betas=(0.5, 0.9))
|
210 |
+
|
211 |
+
if self.scheduler_config is not None:
|
212 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
213 |
+
|
214 |
+
print("Setting up LambdaLR scheduler...")
|
215 |
+
scheduler = [
|
216 |
+
{
|
217 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
218 |
+
'interval': 'step',
|
219 |
+
'frequency': 1
|
220 |
+
},
|
221 |
+
{
|
222 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
223 |
+
'interval': 'step',
|
224 |
+
'frequency': 1
|
225 |
+
},
|
226 |
+
]
|
227 |
+
return [opt_ae, opt_disc], scheduler
|
228 |
+
return [opt_ae, opt_disc], []
|
229 |
+
|
230 |
+
def get_last_layer(self):
|
231 |
+
return self.decoder.conv_out.weight
|
232 |
+
|
233 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
234 |
+
log = dict()
|
235 |
+
x = self.get_input(batch, self.image_key)
|
236 |
+
x = x.to(self.device)
|
237 |
+
if only_inputs:
|
238 |
+
log["inputs"] = x
|
239 |
+
return log
|
240 |
+
xrec, _ = self(x)
|
241 |
+
if x.shape[1] > 3:
|
242 |
+
# colorize with random projection
|
243 |
+
assert xrec.shape[1] > 3
|
244 |
+
x = self.to_rgb(x)
|
245 |
+
xrec = self.to_rgb(xrec)
|
246 |
+
log["inputs"] = x
|
247 |
+
log["reconstructions"] = xrec
|
248 |
+
if plot_ema:
|
249 |
+
with self.ema_scope():
|
250 |
+
xrec_ema, _ = self(x)
|
251 |
+
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
252 |
+
log["reconstructions_ema"] = xrec_ema
|
253 |
+
return log
|
254 |
+
|
255 |
+
def to_rgb(self, x):
|
256 |
+
assert self.image_key == "segmentation"
|
257 |
+
if not hasattr(self, "colorize"):
|
258 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
259 |
+
x = F.conv2d(x, weight=self.colorize)
|
260 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
261 |
+
return x
|
262 |
+
|
263 |
+
|
264 |
+
class VQModelInterface(VQModel):
|
265 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
266 |
+
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
267 |
+
self.embed_dim = embed_dim
|
268 |
+
|
269 |
+
def encode(self, x):
|
270 |
+
h = self.encoder(x)
|
271 |
+
h = self.quant_conv(h)
|
272 |
+
return h
|
273 |
+
|
274 |
+
def decode(self, h, force_not_quantize=False):
|
275 |
+
# also go through quantization layer
|
276 |
+
if not force_not_quantize:
|
277 |
+
quant, emb_loss, info = self.quantize(h)
|
278 |
+
else:
|
279 |
+
quant = h
|
280 |
+
quant = self.post_quant_conv(quant)
|
281 |
+
dec = self.decoder(quant)
|
282 |
+
return dec
|
283 |
+
|
284 |
+
|
285 |
+
class AutoencoderKL(pl.LightningModule):
|
286 |
+
def __init__(self,
|
287 |
+
ddconfig,
|
288 |
+
lossconfig,
|
289 |
+
embed_dim,
|
290 |
+
ckpt_path=None,
|
291 |
+
ignore_keys=[],
|
292 |
+
image_key="image",
|
293 |
+
colorize_nlabels=None,
|
294 |
+
monitor=None,
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
self.image_key = image_key
|
298 |
+
self.encoder = Encoder(**ddconfig)
|
299 |
+
self.decoder = Decoder(**ddconfig)
|
300 |
+
self.loss = instantiate_from_config(lossconfig)
|
301 |
+
assert ddconfig["double_z"]
|
302 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
303 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
304 |
+
self.embed_dim = embed_dim
|
305 |
+
if colorize_nlabels is not None:
|
306 |
+
assert type(colorize_nlabels)==int
|
307 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
308 |
+
if monitor is not None:
|
309 |
+
self.monitor = monitor
|
310 |
+
if ckpt_path is not None:
|
311 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
312 |
+
|
313 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
314 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
315 |
+
keys = list(sd.keys())
|
316 |
+
for k in keys:
|
317 |
+
for ik in ignore_keys:
|
318 |
+
if k.startswith(ik):
|
319 |
+
print("Deleting key {} from state_dict.".format(k))
|
320 |
+
del sd[k]
|
321 |
+
self.load_state_dict(sd, strict=False)
|
322 |
+
print(f"Restored from {path}")
|
323 |
+
|
324 |
+
def encode(self, x):
|
325 |
+
h = self.encoder(x)
|
326 |
+
moments = self.quant_conv(h)
|
327 |
+
posterior = DiagonalGaussianDistribution(moments)
|
328 |
+
return posterior
|
329 |
+
|
330 |
+
def decode(self, z):
|
331 |
+
z = self.post_quant_conv(z)
|
332 |
+
dec = self.decoder(z)
|
333 |
+
return dec
|
334 |
+
|
335 |
+
def forward(self, input, sample_posterior=True):
|
336 |
+
posterior = self.encode(input)
|
337 |
+
if sample_posterior:
|
338 |
+
z = posterior.sample()
|
339 |
+
else:
|
340 |
+
z = posterior.mode()
|
341 |
+
dec = self.decode(z)
|
342 |
+
return dec, posterior
|
343 |
+
|
344 |
+
def get_input(self, batch, k):
|
345 |
+
x = batch[k]
|
346 |
+
if len(x.shape) == 3:
|
347 |
+
x = x[..., None]
|
348 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
349 |
+
return x
|
350 |
+
|
351 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
352 |
+
inputs = self.get_input(batch, self.image_key)
|
353 |
+
reconstructions, posterior = self(inputs)
|
354 |
+
|
355 |
+
if optimizer_idx == 0:
|
356 |
+
# train encoder+decoder+logvar
|
357 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
358 |
+
last_layer=self.get_last_layer(), split="train")
|
359 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
360 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
361 |
+
return aeloss
|
362 |
+
|
363 |
+
if optimizer_idx == 1:
|
364 |
+
# train the discriminator
|
365 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
366 |
+
last_layer=self.get_last_layer(), split="train")
|
367 |
+
|
368 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
369 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
370 |
+
return discloss
|
371 |
+
|
372 |
+
def validation_step(self, batch, batch_idx):
|
373 |
+
inputs = self.get_input(batch, self.image_key)
|
374 |
+
reconstructions, posterior = self(inputs)
|
375 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
376 |
+
last_layer=self.get_last_layer(), split="val")
|
377 |
+
|
378 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
379 |
+
last_layer=self.get_last_layer(), split="val")
|
380 |
+
|
381 |
+
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
382 |
+
self.log_dict(log_dict_ae)
|
383 |
+
self.log_dict(log_dict_disc)
|
384 |
+
return self.log_dict
|
385 |
+
|
386 |
+
def configure_optimizers(self):
|
387 |
+
lr = self.learning_rate
|
388 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
389 |
+
list(self.decoder.parameters())+
|
390 |
+
list(self.quant_conv.parameters())+
|
391 |
+
list(self.post_quant_conv.parameters()),
|
392 |
+
lr=lr, betas=(0.5, 0.9))
|
393 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
394 |
+
lr=lr, betas=(0.5, 0.9))
|
395 |
+
return [opt_ae, opt_disc], []
|
396 |
+
|
397 |
+
def get_last_layer(self):
|
398 |
+
return self.decoder.conv_out.weight
|
399 |
+
|
400 |
+
@torch.no_grad()
|
401 |
+
def log_images(self, batch, only_inputs=False, **kwargs):
|
402 |
+
log = dict()
|
403 |
+
x = self.get_input(batch, self.image_key)
|
404 |
+
x = x.to(self.device)
|
405 |
+
if not only_inputs:
|
406 |
+
xrec, posterior = self(x)
|
407 |
+
if x.shape[1] > 3:
|
408 |
+
# colorize with random projection
|
409 |
+
assert xrec.shape[1] > 3
|
410 |
+
x = self.to_rgb(x)
|
411 |
+
xrec = self.to_rgb(xrec)
|
412 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
413 |
+
log["reconstructions"] = xrec
|
414 |
+
log["inputs"] = x
|
415 |
+
return log
|
416 |
+
|
417 |
+
def to_rgb(self, x):
|
418 |
+
assert self.image_key == "segmentation"
|
419 |
+
if not hasattr(self, "colorize"):
|
420 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
421 |
+
x = F.conv2d(x, weight=self.colorize)
|
422 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
423 |
+
return x
|
424 |
+
|
425 |
+
|
426 |
+
class IdentityFirstStage(torch.nn.Module):
|
427 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
428 |
+
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
429 |
+
super().__init__()
|
430 |
+
|
431 |
+
def encode(self, x, *args, **kwargs):
|
432 |
+
return x
|
433 |
+
|
434 |
+
def decode(self, x, *args, **kwargs):
|
435 |
+
return x
|
436 |
+
|
437 |
+
def quantize(self, x, *args, **kwargs):
|
438 |
+
if self.vq_interface:
|
439 |
+
return x, None, [None, None, None]
|
440 |
+
return x
|
441 |
+
|
442 |
+
def forward(self, x, *args, **kwargs):
|
443 |
+
return x
|
3DTopia/ldm/models/diffusion/__init__.py
ADDED
File without changes
|
3DTopia/ldm/models/diffusion/classifier.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.optim import AdamW
|
7 |
+
from torch.optim.lr_scheduler import LambdaLR
|
8 |
+
from copy import deepcopy
|
9 |
+
from einops import rearrange
|
10 |
+
from glob import glob
|
11 |
+
from natsort import natsorted
|
12 |
+
|
13 |
+
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
+
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
+
|
16 |
+
__models__ = {
|
17 |
+
'class_label': EncoderUNetModel,
|
18 |
+
'segmentation': UNetModel
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
diffusion_path,
|
32 |
+
num_classes,
|
33 |
+
ckpt_path=None,
|
34 |
+
pool='attention',
|
35 |
+
label_key=None,
|
36 |
+
diffusion_ckpt_path=None,
|
37 |
+
scheduler_config=None,
|
38 |
+
weight_decay=1.e-2,
|
39 |
+
log_steps=10,
|
40 |
+
monitor='val/loss',
|
41 |
+
*args,
|
42 |
+
**kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.num_classes = num_classes
|
45 |
+
# get latest config of diffusion model
|
46 |
+
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
+
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
+
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
+
self.load_diffusion()
|
50 |
+
|
51 |
+
self.monitor = monitor
|
52 |
+
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
+
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
+
self.log_steps = log_steps
|
55 |
+
|
56 |
+
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
+
else self.diffusion_model.cond_stage_key
|
58 |
+
|
59 |
+
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
+
|
61 |
+
if self.label_key not in __models__:
|
62 |
+
raise NotImplementedError()
|
63 |
+
|
64 |
+
self.load_classifier(ckpt_path, pool)
|
65 |
+
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.use_scheduler = self.scheduler_config is not None
|
68 |
+
self.weight_decay = weight_decay
|
69 |
+
|
70 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
+
sd = torch.load(path, map_location="cpu")
|
72 |
+
if "state_dict" in list(sd.keys()):
|
73 |
+
sd = sd["state_dict"]
|
74 |
+
keys = list(sd.keys())
|
75 |
+
for k in keys:
|
76 |
+
for ik in ignore_keys:
|
77 |
+
if k.startswith(ik):
|
78 |
+
print("Deleting key {} from state_dict.".format(k))
|
79 |
+
del sd[k]
|
80 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
+
sd, strict=False)
|
82 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
+
if len(missing) > 0:
|
84 |
+
print(f"Missing Keys: {missing}")
|
85 |
+
if len(unexpected) > 0:
|
86 |
+
print(f"Unexpected Keys: {unexpected}")
|
87 |
+
|
88 |
+
def load_diffusion(self):
|
89 |
+
model = instantiate_from_config(self.diffusion_config)
|
90 |
+
self.diffusion_model = model.eval()
|
91 |
+
self.diffusion_model.train = disabled_train
|
92 |
+
for param in self.diffusion_model.parameters():
|
93 |
+
param.requires_grad = False
|
94 |
+
|
95 |
+
def load_classifier(self, ckpt_path, pool):
|
96 |
+
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
+
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
+
model_config.out_channels = self.num_classes
|
99 |
+
if self.label_key == 'class_label':
|
100 |
+
model_config.pool = pool
|
101 |
+
|
102 |
+
self.model = __models__[self.label_key](**model_config)
|
103 |
+
if ckpt_path is not None:
|
104 |
+
print('#####################################################################')
|
105 |
+
print(f'load from ckpt "{ckpt_path}"')
|
106 |
+
print('#####################################################################')
|
107 |
+
self.init_from_ckpt(ckpt_path)
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def get_x_noisy(self, x, t, noise=None):
|
111 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
+
continuous_sqrt_alpha_cumprod = None
|
113 |
+
if self.diffusion_model.use_continuous_noise:
|
114 |
+
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
+
# todo: make sure t+1 is correct here
|
116 |
+
|
117 |
+
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
+
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
+
|
120 |
+
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
+
return self.model(x_noisy, t)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def get_input(self, batch, k):
|
125 |
+
x = batch[k]
|
126 |
+
if len(x.shape) == 3:
|
127 |
+
x = x[..., None]
|
128 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
+
return x
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def get_conditioning(self, batch, k=None):
|
134 |
+
if k is None:
|
135 |
+
k = self.label_key
|
136 |
+
assert k is not None, 'Needs to provide label key'
|
137 |
+
|
138 |
+
targets = batch[k].to(self.device)
|
139 |
+
|
140 |
+
if self.label_key == 'segmentation':
|
141 |
+
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
+
for down in range(self.numd):
|
143 |
+
h, w = targets.shape[-2:]
|
144 |
+
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
+
|
146 |
+
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
+
|
148 |
+
return targets
|
149 |
+
|
150 |
+
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
+
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
+
if reduction == "mean":
|
153 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
+
elif reduction == "none":
|
155 |
+
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
+
|
157 |
+
def on_train_epoch_start(self):
|
158 |
+
# save some memory
|
159 |
+
self.diffusion_model.model.to('cpu')
|
160 |
+
|
161 |
+
@torch.no_grad()
|
162 |
+
def write_logs(self, loss, logits, targets):
|
163 |
+
log_prefix = 'train' if self.training else 'val'
|
164 |
+
log = {}
|
165 |
+
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
+
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
+
logits, targets, k=1, reduction="mean"
|
168 |
+
)
|
169 |
+
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
+
logits, targets, k=5, reduction="mean"
|
171 |
+
)
|
172 |
+
|
173 |
+
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
+
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
+
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
+
lr = self.optimizers().param_groups[0]['lr']
|
177 |
+
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
+
|
179 |
+
def shared_step(self, batch, t=None):
|
180 |
+
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
+
targets = self.get_conditioning(batch)
|
182 |
+
if targets.dim() == 4:
|
183 |
+
targets = targets.argmax(dim=1)
|
184 |
+
if t is None:
|
185 |
+
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
+
else:
|
187 |
+
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
+
x_noisy = self.get_x_noisy(x, t)
|
189 |
+
logits = self(x_noisy, t)
|
190 |
+
|
191 |
+
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
+
|
193 |
+
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
+
|
195 |
+
loss = loss.mean()
|
196 |
+
return loss, logits, x_noisy, targets
|
197 |
+
|
198 |
+
def training_step(self, batch, batch_idx):
|
199 |
+
loss, *_ = self.shared_step(batch)
|
200 |
+
return loss
|
201 |
+
|
202 |
+
def reset_noise_accs(self):
|
203 |
+
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
+
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
+
|
206 |
+
def on_validation_start(self):
|
207 |
+
self.reset_noise_accs()
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def validation_step(self, batch, batch_idx):
|
211 |
+
loss, *_ = self.shared_step(batch)
|
212 |
+
|
213 |
+
for t in self.noisy_acc:
|
214 |
+
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
+
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
+
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
+
|
218 |
+
return loss
|
219 |
+
|
220 |
+
def configure_optimizers(self):
|
221 |
+
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
+
|
223 |
+
if self.use_scheduler:
|
224 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
+
|
226 |
+
print("Setting up LambdaLR scheduler...")
|
227 |
+
scheduler = [
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
}]
|
233 |
+
return [optimizer], scheduler
|
234 |
+
|
235 |
+
return optimizer
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
+
log = dict()
|
240 |
+
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
+
log['inputs'] = x
|
242 |
+
|
243 |
+
y = self.get_conditioning(batch)
|
244 |
+
|
245 |
+
if self.label_key == 'class_label':
|
246 |
+
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
+
log['labels'] = y
|
248 |
+
|
249 |
+
if ismap(y):
|
250 |
+
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
+
|
252 |
+
for step in range(self.log_steps):
|
253 |
+
current_time = step * self.log_time_interval
|
254 |
+
|
255 |
+
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
+
|
257 |
+
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
+
|
259 |
+
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
+
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
+
|
262 |
+
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
+
|
264 |
+
for key in log:
|
265 |
+
log[key] = log[key][:N]
|
266 |
+
|
267 |
+
return log
|
3DTopia/ldm/models/diffusion/ddim.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
|
9 |
+
extract_into_tensor
|
10 |
+
|
11 |
+
|
12 |
+
class DDIMSampler(object):
|
13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
+
super().__init__()
|
15 |
+
self.model = model
|
16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
+
self.schedule = schedule
|
18 |
+
|
19 |
+
def register_buffer(self, name, attr):
|
20 |
+
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cuda"):
|
22 |
+
attr = attr.to(torch.device("cuda"))
|
23 |
+
setattr(self, name, attr)
|
24 |
+
|
25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
26 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
27 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
28 |
+
alphas_cumprod = self.model.alphas_cumprod
|
29 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
31 |
+
|
32 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
33 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
34 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
35 |
+
|
36 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
37 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
38 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
42 |
+
|
43 |
+
# ddim sampling parameters
|
44 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
45 |
+
ddim_timesteps=self.ddim_timesteps,
|
46 |
+
eta=ddim_eta,verbose=verbose)
|
47 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
48 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
49 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
50 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
51 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
52 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
53 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
54 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def sample(self,
|
58 |
+
S,
|
59 |
+
batch_size,
|
60 |
+
shape,
|
61 |
+
conditioning=None,
|
62 |
+
callback=None,
|
63 |
+
normals_sequence=None,
|
64 |
+
img_callback=None,
|
65 |
+
quantize_x0=False,
|
66 |
+
eta=0.,
|
67 |
+
mask=None,
|
68 |
+
x0=None,
|
69 |
+
temperature=1.,
|
70 |
+
noise_dropout=0.,
|
71 |
+
score_corrector=None,
|
72 |
+
corrector_kwargs=None,
|
73 |
+
verbose=True,
|
74 |
+
x_T=None,
|
75 |
+
log_every_t=100,
|
76 |
+
unconditional_guidance_scale=1.,
|
77 |
+
unconditional_conditioning=None,
|
78 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
79 |
+
**kwargs
|
80 |
+
):
|
81 |
+
if conditioning is not None:
|
82 |
+
if isinstance(conditioning, dict):
|
83 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
84 |
+
if cbs != batch_size:
|
85 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
86 |
+
else:
|
87 |
+
if conditioning.shape[0] != batch_size:
|
88 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
89 |
+
|
90 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
91 |
+
# sampling
|
92 |
+
C, H, W = shape
|
93 |
+
size = (batch_size, C, H, W)
|
94 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
95 |
+
|
96 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
97 |
+
callback=callback,
|
98 |
+
img_callback=img_callback,
|
99 |
+
quantize_denoised=quantize_x0,
|
100 |
+
mask=mask, x0=x0,
|
101 |
+
ddim_use_original_steps=False,
|
102 |
+
noise_dropout=noise_dropout,
|
103 |
+
temperature=temperature,
|
104 |
+
score_corrector=score_corrector,
|
105 |
+
corrector_kwargs=corrector_kwargs,
|
106 |
+
x_T=x_T,
|
107 |
+
log_every_t=log_every_t,
|
108 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
109 |
+
unconditional_conditioning=unconditional_conditioning,
|
110 |
+
)
|
111 |
+
return samples, intermediates
|
112 |
+
|
113 |
+
@torch.no_grad()
|
114 |
+
def ddim_sampling(self, cond, shape,
|
115 |
+
x_T=None, ddim_use_original_steps=False,
|
116 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
117 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
118 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
119 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
120 |
+
device = self.model.betas.device
|
121 |
+
b = shape[0]
|
122 |
+
if x_T is None:
|
123 |
+
img = torch.randn(shape, device=device)
|
124 |
+
else:
|
125 |
+
img = x_T
|
126 |
+
|
127 |
+
if timesteps is None:
|
128 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
129 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
130 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
131 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
132 |
+
|
133 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
134 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
135 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
136 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
137 |
+
|
138 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
139 |
+
|
140 |
+
for i, step in enumerate(iterator):
|
141 |
+
index = total_steps - i - 1
|
142 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
143 |
+
|
144 |
+
if mask is not None:
|
145 |
+
assert x0 is not None
|
146 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
147 |
+
img = img_orig * mask + (1. - mask) * img
|
148 |
+
|
149 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
150 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
151 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
152 |
+
corrector_kwargs=corrector_kwargs,
|
153 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
154 |
+
unconditional_conditioning=unconditional_conditioning)
|
155 |
+
img, pred_x0 = outs
|
156 |
+
if callback: callback(i)
|
157 |
+
if img_callback: img_callback(pred_x0, i)
|
158 |
+
|
159 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
160 |
+
intermediates['x_inter'].append(img)
|
161 |
+
intermediates['pred_x0'].append(pred_x0)
|
162 |
+
|
163 |
+
return img, intermediates
|
164 |
+
|
165 |
+
@torch.no_grad()
|
166 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
167 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
168 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None):
|
169 |
+
b, *_, device = *x.shape, x.device
|
170 |
+
|
171 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
172 |
+
e_t = self.model.apply_model(x, t, c)
|
173 |
+
else:
|
174 |
+
x_in = torch.cat([x] * 2)
|
175 |
+
t_in = torch.cat([t] * 2)
|
176 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
177 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
178 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
179 |
+
|
180 |
+
if score_corrector is not None:
|
181 |
+
assert self.model.parameterization == "eps"
|
182 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
183 |
+
|
184 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
185 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
186 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
187 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
188 |
+
# select parameters corresponding to the currently considered timestep
|
189 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
190 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
191 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
192 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
193 |
+
|
194 |
+
# current prediction for x_0
|
195 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
196 |
+
if quantize_denoised:
|
197 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
198 |
+
# direction pointing to x_t
|
199 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
200 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
201 |
+
if noise_dropout > 0.:
|
202 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
203 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
204 |
+
return x_prev, pred_x0
|
205 |
+
|
206 |
+
@torch.no_grad()
|
207 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
208 |
+
# fast, but does not allow for exact reconstruction
|
209 |
+
# t serves as an index to gather the correct alphas
|
210 |
+
if use_original_steps:
|
211 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
212 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
213 |
+
else:
|
214 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
215 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
216 |
+
|
217 |
+
if noise is None:
|
218 |
+
noise = torch.randn_like(x0)
|
219 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
220 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
224 |
+
use_original_steps=False):
|
225 |
+
|
226 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
227 |
+
timesteps = timesteps[:t_start]
|
228 |
+
|
229 |
+
time_range = np.flip(timesteps)
|
230 |
+
total_steps = timesteps.shape[0]
|
231 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
232 |
+
|
233 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
234 |
+
x_dec = x_latent
|
235 |
+
for i, step in enumerate(iterator):
|
236 |
+
index = total_steps - i - 1
|
237 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
238 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
239 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
240 |
+
unconditional_conditioning=unconditional_conditioning)
|
241 |
+
return x_dec
|
3DTopia/ldm/models/diffusion/ddpm.py
ADDED
@@ -0,0 +1,1746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
import wandb
|
11 |
+
import torch
|
12 |
+
import imageio
|
13 |
+
import torch.nn as nn
|
14 |
+
import numpy as np
|
15 |
+
import pytorch_lightning as pl
|
16 |
+
from torch.optim.lr_scheduler import LambdaLR
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
from contextlib import contextmanager
|
19 |
+
from functools import partial
|
20 |
+
from tqdm import tqdm
|
21 |
+
from torchvision.utils import make_grid
|
22 |
+
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
23 |
+
|
24 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
25 |
+
from ldm.modules.ema import LitEma
|
26 |
+
from module.model_2d import DiagonalGaussianDistribution
|
27 |
+
from ldm.modules.distributions.distributions import normal_kl
|
28 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
29 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
30 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
31 |
+
from utility.triplane_renderer.renderer import to8b
|
32 |
+
|
33 |
+
|
34 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
35 |
+
'crossattn': 'c_crossattn',
|
36 |
+
'adm': 'y'}
|
37 |
+
|
38 |
+
|
39 |
+
def disabled_train(self, mode=True):
|
40 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
41 |
+
does not change anymore."""
|
42 |
+
return self
|
43 |
+
|
44 |
+
|
45 |
+
def uniform_on_device(r1, r2, shape, device):
|
46 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
47 |
+
|
48 |
+
|
49 |
+
class DDPM(pl.LightningModule):
|
50 |
+
# classic DDPM with Gaussian diffusion, in image space
|
51 |
+
def __init__(self,
|
52 |
+
unet_config,
|
53 |
+
timesteps=1000,
|
54 |
+
beta_schedule="linear",
|
55 |
+
loss_type="l2",
|
56 |
+
ckpt_path=None,
|
57 |
+
ignore_keys=[],
|
58 |
+
load_only_unet=False,
|
59 |
+
monitor="val/loss",
|
60 |
+
use_ema=True,
|
61 |
+
first_stage_key="image",
|
62 |
+
image_size=256,
|
63 |
+
channels=3,
|
64 |
+
log_every_t=100,
|
65 |
+
clip_denoised=True,
|
66 |
+
linear_start=1e-4,
|
67 |
+
linear_end=2e-2,
|
68 |
+
cosine_s=8e-3,
|
69 |
+
given_betas=None,
|
70 |
+
original_elbo_weight=0.,
|
71 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
72 |
+
l_simple_weight=1.,
|
73 |
+
conditioning_key=None,
|
74 |
+
parameterization="eps", # all assuming fixed variance schedules
|
75 |
+
scheduler_config=None,
|
76 |
+
use_positional_encodings=False,
|
77 |
+
learn_logvar=False,
|
78 |
+
logvar_init=0.,
|
79 |
+
learning_rate=1e-4,
|
80 |
+
shift_scale=None,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
|
84 |
+
self.parameterization = parameterization
|
85 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
86 |
+
self.cond_stage_model = None
|
87 |
+
self.clip_denoised = clip_denoised
|
88 |
+
self.log_every_t = log_every_t
|
89 |
+
self.first_stage_key = first_stage_key
|
90 |
+
self.image_size = image_size # try conv?
|
91 |
+
self.channels = channels
|
92 |
+
self.use_positional_encodings = use_positional_encodings
|
93 |
+
self.beta_schedule = beta_schedule
|
94 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
95 |
+
count_params(self.model, verbose=True)
|
96 |
+
self.use_ema = use_ema
|
97 |
+
if self.use_ema:
|
98 |
+
self.model_ema = LitEma(self.model)
|
99 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
100 |
+
|
101 |
+
self.use_scheduler = scheduler_config is not None
|
102 |
+
if self.use_scheduler:
|
103 |
+
self.scheduler_config = scheduler_config
|
104 |
+
|
105 |
+
self.v_posterior = v_posterior
|
106 |
+
self.original_elbo_weight = original_elbo_weight
|
107 |
+
self.l_simple_weight = l_simple_weight
|
108 |
+
|
109 |
+
if monitor is not None:
|
110 |
+
self.monitor = monitor
|
111 |
+
if ckpt_path is not None:
|
112 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
113 |
+
|
114 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
115 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s, shift_scale=shift_scale)
|
116 |
+
|
117 |
+
self.loss_type = loss_type
|
118 |
+
|
119 |
+
self.learn_logvar = learn_logvar
|
120 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
121 |
+
if self.learn_logvar:
|
122 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
123 |
+
|
124 |
+
self.learning_rate = learning_rate
|
125 |
+
|
126 |
+
|
127 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
128 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None):
|
129 |
+
if exists(given_betas):
|
130 |
+
betas = given_betas
|
131 |
+
else:
|
132 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
133 |
+
cosine_s=cosine_s, shift_scale=shift_scale)
|
134 |
+
alphas = 1. - betas
|
135 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
136 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
137 |
+
|
138 |
+
timesteps, = betas.shape
|
139 |
+
self.num_timesteps = int(timesteps)
|
140 |
+
print("Using timesteps of {}".format(self.num_timesteps))
|
141 |
+
self.linear_start = linear_start
|
142 |
+
self.linear_end = linear_end
|
143 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
144 |
+
|
145 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
146 |
+
|
147 |
+
self.register_buffer('betas', to_torch(betas))
|
148 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
149 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
150 |
+
|
151 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
152 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
153 |
+
# print("sqrt_alphas_cumprod", np.sqrt(alphas_cumprod))
|
154 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
155 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
156 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
157 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
158 |
+
|
159 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
160 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
161 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
162 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
163 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
164 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
165 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
166 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
167 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
168 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
169 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
170 |
+
|
171 |
+
if self.parameterization == "eps":
|
172 |
+
lvlb_weights = self.betas ** 2 / (
|
173 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
174 |
+
elif self.parameterization == "x0":
|
175 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
176 |
+
elif self.parameterization == "v":
|
177 |
+
lvlb_weights = torch.ones_like(self.betas ** 2 / (
|
178 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
|
179 |
+
else:
|
180 |
+
raise NotImplementedError("mu not supported")
|
181 |
+
# TODO how to choose this term
|
182 |
+
lvlb_weights[0] = lvlb_weights[1]
|
183 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
184 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
185 |
+
|
186 |
+
@contextmanager
|
187 |
+
def ema_scope(self, context=None):
|
188 |
+
if self.use_ema:
|
189 |
+
self.model_ema.store(self.model.parameters())
|
190 |
+
self.model_ema.copy_to(self.model)
|
191 |
+
if context is not None:
|
192 |
+
print(f"{context}: Switched to EMA weights")
|
193 |
+
try:
|
194 |
+
yield None
|
195 |
+
finally:
|
196 |
+
if self.use_ema:
|
197 |
+
self.model_ema.restore(self.model.parameters())
|
198 |
+
if context is not None:
|
199 |
+
print(f"{context}: Restored training weights")
|
200 |
+
|
201 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
202 |
+
sd = torch.load(path, map_location="cpu")
|
203 |
+
if "state_dict" in list(sd.keys()):
|
204 |
+
sd = sd["state_dict"]
|
205 |
+
keys = list(sd.keys())
|
206 |
+
for k in keys:
|
207 |
+
for ik in ignore_keys:
|
208 |
+
if k.startswith(ik):
|
209 |
+
print("Deleting key {} from state_dict.".format(k))
|
210 |
+
del sd[k]
|
211 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
212 |
+
sd, strict=False)
|
213 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
214 |
+
if len(missing) > 0:
|
215 |
+
print(f"Missing Keys: {missing}")
|
216 |
+
if len(unexpected) > 0:
|
217 |
+
print(f"Unexpected Keys: {unexpected}")
|
218 |
+
|
219 |
+
def q_mean_variance(self, x_start, t):
|
220 |
+
"""
|
221 |
+
Get the distribution q(x_t | x_0).
|
222 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
223 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
224 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
225 |
+
"""
|
226 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
227 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
228 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
229 |
+
return mean, variance, log_variance
|
230 |
+
|
231 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
232 |
+
return (
|
233 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
234 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
235 |
+
)
|
236 |
+
|
237 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
238 |
+
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
239 |
+
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
240 |
+
return (
|
241 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
|
242 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
243 |
+
)
|
244 |
+
|
245 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
246 |
+
return (
|
247 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
|
248 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
|
249 |
+
)
|
250 |
+
|
251 |
+
def q_posterior(self, x_start, x_t, t):
|
252 |
+
posterior_mean = (
|
253 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
254 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
255 |
+
)
|
256 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
257 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
258 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
259 |
+
|
260 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
261 |
+
model_out = self.model(x, t)
|
262 |
+
if self.parameterization == "eps":
|
263 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
264 |
+
elif self.parameterization == "x0":
|
265 |
+
x_recon = model_out
|
266 |
+
elif self.parameterization == "v":
|
267 |
+
x_recon = self.predict_start_from_z_and_v(x, t, model_out)
|
268 |
+
if clip_denoised:
|
269 |
+
x_recon.clamp_(-1., 1.)
|
270 |
+
|
271 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
272 |
+
return model_mean, posterior_variance, posterior_log_variance
|
273 |
+
|
274 |
+
@torch.no_grad()
|
275 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
276 |
+
b, *_, device = *x.shape, x.device
|
277 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
278 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
279 |
+
# no noise when t == 0
|
280 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
281 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
282 |
+
|
283 |
+
@torch.no_grad()
|
284 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
285 |
+
device = self.betas.device
|
286 |
+
b = shape[0]
|
287 |
+
img = torch.randn(shape, device=device)
|
288 |
+
intermediates = [img]
|
289 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
290 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
291 |
+
clip_denoised=self.clip_denoised)
|
292 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
293 |
+
intermediates.append(img)
|
294 |
+
if return_intermediates:
|
295 |
+
return img, intermediates
|
296 |
+
return img
|
297 |
+
|
298 |
+
@torch.no_grad()
|
299 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
300 |
+
image_size = self.image_size
|
301 |
+
channels = self.channels
|
302 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
303 |
+
return_intermediates=return_intermediates)
|
304 |
+
|
305 |
+
def q_sample(self, x_start, t, noise=None):
|
306 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
307 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
308 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
309 |
+
|
310 |
+
def get_v(self, x, noise, t):
|
311 |
+
return (
|
312 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
313 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
314 |
+
)
|
315 |
+
|
316 |
+
def get_loss(self, pred, target, mean=True):
|
317 |
+
if self.loss_type == 'l1':
|
318 |
+
loss = (target - pred).abs()
|
319 |
+
if mean:
|
320 |
+
loss = loss.mean()
|
321 |
+
elif self.loss_type == 'l2':
|
322 |
+
if mean:
|
323 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
324 |
+
else:
|
325 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
326 |
+
else:
|
327 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
328 |
+
|
329 |
+
return loss
|
330 |
+
|
331 |
+
def p_losses(self, x_start, t, noise=None):
|
332 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
333 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
334 |
+
model_out = self.model(x_noisy, t)
|
335 |
+
|
336 |
+
loss_dict = {}
|
337 |
+
if self.parameterization == "eps":
|
338 |
+
target = noise
|
339 |
+
elif self.parameterization == "x0":
|
340 |
+
target = x_start
|
341 |
+
elif self.parameterization == "v":
|
342 |
+
target = self.get_v(x_start, noise, t)
|
343 |
+
else:
|
344 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
345 |
+
|
346 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
347 |
+
|
348 |
+
log_prefix = 'train' if self.training else 'val'
|
349 |
+
|
350 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
351 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
352 |
+
|
353 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
354 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
355 |
+
|
356 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
357 |
+
|
358 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
359 |
+
|
360 |
+
return loss, loss_dict
|
361 |
+
|
362 |
+
def forward(self, x, *args, **kwargs):
|
363 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
364 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
365 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
366 |
+
return self.p_losses(x, t, *args, **kwargs)
|
367 |
+
|
368 |
+
def get_input(self, batch, k):
|
369 |
+
x = batch[k]
|
370 |
+
if isinstance(x, list):
|
371 |
+
return x
|
372 |
+
if len(x.shape) == 3:
|
373 |
+
x = x[..., None]
|
374 |
+
# x = rearrange(x, 'b h w c -> b c h w')
|
375 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
376 |
+
return x
|
377 |
+
|
378 |
+
def shared_step(self, batch):
|
379 |
+
x = self.get_input(batch, self.first_stage_key)
|
380 |
+
loss, loss_dict = self(x)
|
381 |
+
return loss, loss_dict
|
382 |
+
|
383 |
+
def training_step(self, batch, batch_idx):
|
384 |
+
loss, loss_dict = self.shared_step(batch)
|
385 |
+
|
386 |
+
self.log_dict(loss_dict, prog_bar=False,
|
387 |
+
logger=True, on_step=True, on_epoch=True)
|
388 |
+
|
389 |
+
self.log("global_step", self.global_step,
|
390 |
+
prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
391 |
+
|
392 |
+
if self.use_scheduler:
|
393 |
+
lr = self.optimizers().param_groups[0]['lr']
|
394 |
+
self.log('lr_abs', lr, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
395 |
+
|
396 |
+
return loss
|
397 |
+
|
398 |
+
@torch.no_grad()
|
399 |
+
def validation_step(self, batch, batch_idx):
|
400 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
401 |
+
with self.ema_scope():
|
402 |
+
_, loss_dict_ema = self.shared_step(batch)
|
403 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
404 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
405 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
406 |
+
|
407 |
+
def on_train_batch_end(self, *args, **kwargs):
|
408 |
+
if self.use_ema:
|
409 |
+
self.model_ema(self.model)
|
410 |
+
|
411 |
+
def _get_rows_from_list(self, samples):
|
412 |
+
n_imgs_per_row = len(samples)
|
413 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
414 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
415 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
416 |
+
return denoise_grid
|
417 |
+
|
418 |
+
@torch.no_grad()
|
419 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
420 |
+
log = dict()
|
421 |
+
x = self.get_input(batch, self.first_stage_key)
|
422 |
+
N = min(x.shape[0], N)
|
423 |
+
n_row = min(x.shape[0], n_row)
|
424 |
+
x = x.to(self.device)[:N]
|
425 |
+
log["inputs"] = x
|
426 |
+
|
427 |
+
# get diffusion row
|
428 |
+
diffusion_row = list()
|
429 |
+
x_start = x[:n_row]
|
430 |
+
|
431 |
+
for t in range(self.num_timesteps):
|
432 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
433 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
434 |
+
t = t.to(self.device).long()
|
435 |
+
noise = torch.randn_like(x_start)
|
436 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
437 |
+
diffusion_row.append(x_noisy)
|
438 |
+
|
439 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
440 |
+
|
441 |
+
if sample:
|
442 |
+
# get denoise row
|
443 |
+
with self.ema_scope("Plotting"):
|
444 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
445 |
+
|
446 |
+
log["samples"] = samples
|
447 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
448 |
+
|
449 |
+
if return_keys:
|
450 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
451 |
+
return log
|
452 |
+
else:
|
453 |
+
return {key: log[key] for key in return_keys}
|
454 |
+
return log
|
455 |
+
|
456 |
+
def configure_optimizers(self):
|
457 |
+
lr = self.learning_rate
|
458 |
+
params = list(self.model.parameters())
|
459 |
+
if self.learn_logvar:
|
460 |
+
params = params + [self.logvar]
|
461 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
462 |
+
return opt
|
463 |
+
|
464 |
+
|
465 |
+
class LatentDiffusion(DDPM):
|
466 |
+
"""main class"""
|
467 |
+
def __init__(self,
|
468 |
+
first_stage_config,
|
469 |
+
cond_stage_config,
|
470 |
+
num_timesteps_cond=None,
|
471 |
+
cond_stage_key="image",
|
472 |
+
cond_stage_trainable=False,
|
473 |
+
concat_mode=True,
|
474 |
+
cond_stage_forward=None,
|
475 |
+
conditioning_key=None,
|
476 |
+
scale_factor=1.0,
|
477 |
+
scale_shift=0.0,
|
478 |
+
scale_by_std=False,
|
479 |
+
use_3daware=False,
|
480 |
+
*args, **kwargs):
|
481 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
482 |
+
self.scale_by_std = scale_by_std
|
483 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
484 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
485 |
+
if conditioning_key is None:
|
486 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
487 |
+
if cond_stage_config == '__is_unconditional__':
|
488 |
+
conditioning_key = None
|
489 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
490 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
491 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
492 |
+
self.concat_mode = concat_mode
|
493 |
+
self.cond_stage_trainable = cond_stage_trainable
|
494 |
+
self.cond_stage_key = cond_stage_key
|
495 |
+
try:
|
496 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
497 |
+
except:
|
498 |
+
self.num_downs = 0
|
499 |
+
if not scale_by_std:
|
500 |
+
self.scale_factor = scale_factor
|
501 |
+
self.scale_shift = scale_shift
|
502 |
+
else:
|
503 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
504 |
+
self.instantiate_first_stage(first_stage_config)
|
505 |
+
self.instantiate_cond_stage(cond_stage_config)
|
506 |
+
self.cond_stage_forward = cond_stage_forward
|
507 |
+
self.clip_denoised = False
|
508 |
+
self.bbox_tokenizer = None
|
509 |
+
|
510 |
+
self.restarted_from_ckpt = False
|
511 |
+
if ckpt_path is not None:
|
512 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
513 |
+
self.restarted_from_ckpt = True
|
514 |
+
|
515 |
+
self.use_3daware = use_3daware
|
516 |
+
|
517 |
+
self.is_test = False
|
518 |
+
|
519 |
+
self.test_mode = None
|
520 |
+
self.test_tag = ""
|
521 |
+
|
522 |
+
def make_cond_schedule(self, ):
|
523 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
524 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
525 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
526 |
+
|
527 |
+
@rank_zero_only
|
528 |
+
@torch.no_grad()
|
529 |
+
def on_train_batch_start(self, batch, batch_idx):
|
530 |
+
# only for very first batch
|
531 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
532 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
533 |
+
# set rescale weight to 1./std of encodings
|
534 |
+
print("### USING STD-RESCALING ###")
|
535 |
+
x = super().get_input(batch, self.first_stage_key)
|
536 |
+
x = x.to(self.device)
|
537 |
+
encoder_posterior = self.encode_first_stage(x)
|
538 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
539 |
+
del self.scale_factor
|
540 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
541 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
542 |
+
print("### USING STD-RESCALING ###")
|
543 |
+
|
544 |
+
def register_schedule(self,
|
545 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
546 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None):
|
547 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s, shift_scale)
|
548 |
+
|
549 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
550 |
+
if self.shorten_cond_schedule:
|
551 |
+
self.make_cond_schedule()
|
552 |
+
|
553 |
+
def instantiate_first_stage(self, config):
|
554 |
+
model = instantiate_from_config(config)
|
555 |
+
self.first_stage_model = model.eval()
|
556 |
+
self.first_stage_model.train = disabled_train
|
557 |
+
for param in self.first_stage_model.parameters():
|
558 |
+
param.requires_grad = False
|
559 |
+
|
560 |
+
def instantiate_cond_stage(self, config):
|
561 |
+
if not self.cond_stage_trainable:
|
562 |
+
if config == "__is_first_stage__":
|
563 |
+
print("Using first stage also as cond stage.")
|
564 |
+
self.cond_stage_model = self.first_stage_model
|
565 |
+
elif config == "__is_unconditional__":
|
566 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
567 |
+
self.cond_stage_model = None
|
568 |
+
# self.be_unconditional = True
|
569 |
+
else:
|
570 |
+
model = instantiate_from_config(config)
|
571 |
+
self.cond_stage_model = model.eval()
|
572 |
+
self.cond_stage_model.train = disabled_train
|
573 |
+
for param in self.cond_stage_model.parameters():
|
574 |
+
param.requires_grad = False
|
575 |
+
else:
|
576 |
+
assert config != '__is_first_stage__'
|
577 |
+
assert config != '__is_unconditional__'
|
578 |
+
model = instantiate_from_config(config)
|
579 |
+
self.cond_stage_model = model
|
580 |
+
|
581 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
582 |
+
denoise_row = []
|
583 |
+
for zd in tqdm(samples, desc=desc):
|
584 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
585 |
+
force_not_quantize=force_no_decoder_quantization))
|
586 |
+
n_imgs_per_row = len(denoise_row)
|
587 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
588 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
589 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
590 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
591 |
+
return denoise_grid
|
592 |
+
|
593 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
594 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
595 |
+
z = encoder_posterior.mode()
|
596 |
+
# z = encoder_posterior.sample()
|
597 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
598 |
+
z = encoder_posterior
|
599 |
+
else:
|
600 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
601 |
+
return self.scale_factor * (z + self.scale_shift)
|
602 |
+
|
603 |
+
def get_learned_conditioning(self, c):
|
604 |
+
if self.cond_stage_forward is None:
|
605 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
606 |
+
c = self.cond_stage_model.encode(c)
|
607 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
608 |
+
c = c.mode()
|
609 |
+
else:
|
610 |
+
c = self.cond_stage_model(c).float()
|
611 |
+
else:
|
612 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
613 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
614 |
+
return c
|
615 |
+
|
616 |
+
def meshgrid(self, h, w):
|
617 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
618 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
619 |
+
|
620 |
+
arr = torch.cat([y, x], dim=-1)
|
621 |
+
return arr
|
622 |
+
|
623 |
+
def delta_border(self, h, w):
|
624 |
+
"""
|
625 |
+
:param h: height
|
626 |
+
:param w: width
|
627 |
+
:return: normalized distance to image border,
|
628 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
629 |
+
"""
|
630 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
631 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
632 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
633 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
634 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
635 |
+
return edge_dist
|
636 |
+
|
637 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
638 |
+
weighting = self.delta_border(h, w)
|
639 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
640 |
+
self.split_input_params["clip_max_weight"], )
|
641 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
642 |
+
|
643 |
+
if self.split_input_params["tie_braker"]:
|
644 |
+
L_weighting = self.delta_border(Ly, Lx)
|
645 |
+
L_weighting = torch.clip(L_weighting,
|
646 |
+
self.split_input_params["clip_min_tie_weight"],
|
647 |
+
self.split_input_params["clip_max_tie_weight"])
|
648 |
+
|
649 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
650 |
+
weighting = weighting * L_weighting
|
651 |
+
return weighting
|
652 |
+
|
653 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
654 |
+
"""
|
655 |
+
:param x: img of size (bs, c, h, w)
|
656 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
657 |
+
"""
|
658 |
+
bs, nc, h, w = x.shape
|
659 |
+
|
660 |
+
# number of crops in image
|
661 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
662 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
663 |
+
|
664 |
+
if uf == 1 and df == 1:
|
665 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
666 |
+
unfold = torch.nn.Unfold(**fold_params)
|
667 |
+
|
668 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
669 |
+
|
670 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
671 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
672 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
673 |
+
|
674 |
+
elif uf > 1 and df == 1:
|
675 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
676 |
+
unfold = torch.nn.Unfold(**fold_params)
|
677 |
+
|
678 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
679 |
+
dilation=1, padding=0,
|
680 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
681 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
682 |
+
|
683 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
684 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
685 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
686 |
+
|
687 |
+
elif df > 1 and uf == 1:
|
688 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
689 |
+
unfold = torch.nn.Unfold(**fold_params)
|
690 |
+
|
691 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
692 |
+
dilation=1, padding=0,
|
693 |
+
stride=(stride[0] // df, stride[1] // df))
|
694 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
695 |
+
|
696 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
697 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
698 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
699 |
+
|
700 |
+
else:
|
701 |
+
raise NotImplementedError
|
702 |
+
|
703 |
+
return fold, unfold, normalization, weighting
|
704 |
+
|
705 |
+
@torch.no_grad()
|
706 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
707 |
+
cond_key=None, return_original_cond=False, bs=None):
|
708 |
+
x = super().get_input(batch, k)
|
709 |
+
if bs is not None:
|
710 |
+
x = x[:bs]
|
711 |
+
x = x.to(self.device)
|
712 |
+
encoder_posterior = self.encode_first_stage(x)
|
713 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
714 |
+
|
715 |
+
if self.model.conditioning_key is not None:
|
716 |
+
if cond_key is None:
|
717 |
+
cond_key = self.cond_stage_key
|
718 |
+
if cond_key != self.first_stage_key:
|
719 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
720 |
+
xc = batch[cond_key]
|
721 |
+
elif cond_key == 'class_label':
|
722 |
+
xc = batch
|
723 |
+
else:
|
724 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
725 |
+
else:
|
726 |
+
xc = x
|
727 |
+
if not self.cond_stage_trainable or force_c_encode:
|
728 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
729 |
+
# import pudb; pudb.set_trace()
|
730 |
+
c = self.get_learned_conditioning(xc)
|
731 |
+
else:
|
732 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
733 |
+
else:
|
734 |
+
c = xc
|
735 |
+
if bs is not None:
|
736 |
+
c = c[:bs]
|
737 |
+
|
738 |
+
if self.use_positional_encodings:
|
739 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
740 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
741 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
742 |
+
|
743 |
+
else:
|
744 |
+
c = None
|
745 |
+
xc = None
|
746 |
+
if self.use_positional_encodings:
|
747 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
748 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
749 |
+
out = [z, c]
|
750 |
+
if return_first_stage_outputs:
|
751 |
+
xrec = self.decode_first_stage(z)
|
752 |
+
out.extend([x, xrec])
|
753 |
+
if return_original_cond:
|
754 |
+
out.append(xc)
|
755 |
+
|
756 |
+
return out
|
757 |
+
|
758 |
+
@torch.no_grad()
|
759 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
760 |
+
# assert not predict_cids
|
761 |
+
# if predict_cids:
|
762 |
+
# if z.dim() == 4:
|
763 |
+
# z = torch.argmax(z.exp(), dim=1).long()
|
764 |
+
# z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
765 |
+
# z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
766 |
+
|
767 |
+
# import os
|
768 |
+
# import random
|
769 |
+
# import string
|
770 |
+
# z_np = z.detach().cpu().numpy()
|
771 |
+
# fname = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) + '.npy'
|
772 |
+
# with open(os.path.join('/mnt/lustre/hongfangzhou.p/AE3D/tmp', fname), 'wb') as f:
|
773 |
+
# np.save(f, z_np)
|
774 |
+
|
775 |
+
z = 1. / self.scale_factor * z - self.scale_shift
|
776 |
+
|
777 |
+
# if hasattr(self, "split_input_params"):
|
778 |
+
# if self.split_input_params["patch_distributed_vq"]:
|
779 |
+
# ks = self.split_input_params["ks"] # eg. (128, 128)
|
780 |
+
# stride = self.split_input_params["stride"] # eg. (64, 64)
|
781 |
+
# uf = self.split_input_params["vqf"]
|
782 |
+
# bs, nc, h, w = z.shape
|
783 |
+
# if ks[0] > h or ks[1] > w:
|
784 |
+
# ks = (min(ks[0], h), min(ks[1], w))
|
785 |
+
# print("reducing Kernel")
|
786 |
+
|
787 |
+
# if stride[0] > h or stride[1] > w:
|
788 |
+
# stride = (min(stride[0], h), min(stride[1], w))
|
789 |
+
# print("reducing stride")
|
790 |
+
|
791 |
+
# fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
792 |
+
|
793 |
+
# z = unfold(z) # (bn, nc * prod(**ks), L)
|
794 |
+
# # 1. Reshape to img shape
|
795 |
+
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
796 |
+
|
797 |
+
# # 2. apply model loop over last dim
|
798 |
+
# if isinstance(self.first_stage_model, VQModelInterface):
|
799 |
+
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
800 |
+
# force_not_quantize=predict_cids or force_not_quantize)
|
801 |
+
# for i in range(z.shape[-1])]
|
802 |
+
# else:
|
803 |
+
|
804 |
+
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
805 |
+
# for i in range(z.shape[-1])]
|
806 |
+
|
807 |
+
# o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
808 |
+
# o = o * weighting
|
809 |
+
# # Reverse 1. reshape to img shape
|
810 |
+
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
811 |
+
# # stitch crops together
|
812 |
+
# decoded = fold(o)
|
813 |
+
# decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
814 |
+
# return decoded
|
815 |
+
# else:
|
816 |
+
# if isinstance(self.first_stage_model, VQModelInterface):
|
817 |
+
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
818 |
+
# else:
|
819 |
+
# return self.first_stage_model.decode(z)
|
820 |
+
|
821 |
+
# else:
|
822 |
+
# if isinstance(self.first_stage_model, VQModelInterface):
|
823 |
+
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
824 |
+
# else:
|
825 |
+
return self.first_stage_model.decode(z, unrollout=True)
|
826 |
+
|
827 |
+
# same as above but without decorator
|
828 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
829 |
+
if predict_cids:
|
830 |
+
if z.dim() == 4:
|
831 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
832 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
833 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
834 |
+
|
835 |
+
z = 1. / self.scale_factor * z - self.scale_shift
|
836 |
+
|
837 |
+
if hasattr(self, "split_input_params"):
|
838 |
+
if self.split_input_params["patch_distributed_vq"]:
|
839 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
840 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
841 |
+
uf = self.split_input_params["vqf"]
|
842 |
+
bs, nc, h, w = z.shape
|
843 |
+
if ks[0] > h or ks[1] > w:
|
844 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
845 |
+
print("reducing Kernel")
|
846 |
+
|
847 |
+
if stride[0] > h or stride[1] > w:
|
848 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
849 |
+
print("reducing stride")
|
850 |
+
|
851 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
852 |
+
|
853 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
854 |
+
# 1. Reshape to img shape
|
855 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
856 |
+
|
857 |
+
# 2. apply model loop over last dim
|
858 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
859 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
860 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
861 |
+
for i in range(z.shape[-1])]
|
862 |
+
else:
|
863 |
+
|
864 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
865 |
+
for i in range(z.shape[-1])]
|
866 |
+
|
867 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
868 |
+
o = o * weighting
|
869 |
+
# Reverse 1. reshape to img shape
|
870 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
871 |
+
# stitch crops together
|
872 |
+
decoded = fold(o)
|
873 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
874 |
+
return decoded
|
875 |
+
else:
|
876 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
877 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
878 |
+
else:
|
879 |
+
return self.first_stage_model.decode(z)
|
880 |
+
|
881 |
+
else:
|
882 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
883 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
884 |
+
else:
|
885 |
+
return self.first_stage_model.decode(z)
|
886 |
+
|
887 |
+
@torch.no_grad()
|
888 |
+
def encode_first_stage(self, x):
|
889 |
+
# if hasattr(self, "split_input_params"):
|
890 |
+
# if self.split_input_params["patch_distributed_vq"]:
|
891 |
+
# ks = self.split_input_params["ks"] # eg. (128, 128)
|
892 |
+
# stride = self.split_input_params["stride"] # eg. (64, 64)
|
893 |
+
# df = self.split_input_params["vqf"]
|
894 |
+
# self.split_input_params['original_image_size'] = x.shape[-2:]
|
895 |
+
# bs, nc, h, w = x.shape
|
896 |
+
# if ks[0] > h or ks[1] > w:
|
897 |
+
# ks = (min(ks[0], h), min(ks[1], w))
|
898 |
+
# print("reducing Kernel")
|
899 |
+
|
900 |
+
# if stride[0] > h or stride[1] > w:
|
901 |
+
# stride = (min(stride[0], h), min(stride[1], w))
|
902 |
+
# print("reducing stride")
|
903 |
+
|
904 |
+
# fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
905 |
+
# z = unfold(x) # (bn, nc * prod(**ks), L)
|
906 |
+
# # Reshape to img shape
|
907 |
+
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
908 |
+
|
909 |
+
# output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
910 |
+
# for i in range(z.shape[-1])]
|
911 |
+
|
912 |
+
# o = torch.stack(output_list, axis=-1)
|
913 |
+
# o = o * weighting
|
914 |
+
|
915 |
+
# # Reverse reshape to img shape
|
916 |
+
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
917 |
+
# # stitch crops together
|
918 |
+
# decoded = fold(o)
|
919 |
+
# decoded = decoded / normalization
|
920 |
+
# return decoded
|
921 |
+
|
922 |
+
# else:
|
923 |
+
# return self.first_stage_model.encode(x)
|
924 |
+
# else:
|
925 |
+
return self.first_stage_model.encode(x, rollout=True)
|
926 |
+
|
927 |
+
def get_norm(self, x):
|
928 |
+
norm = torch.linalg.norm(x, dim=-1, keepdim=True)
|
929 |
+
norm[norm == 0] = 1
|
930 |
+
|
931 |
+
assert norm.shape[-1] == 1
|
932 |
+
assert norm.shape[0] == x.shape[0]
|
933 |
+
assert norm.shape[1] == x.shape[1]
|
934 |
+
assert x.shape[1] == 1
|
935 |
+
|
936 |
+
return norm
|
937 |
+
|
938 |
+
def random_text_feature_noise(self, c):
|
939 |
+
noise = torch.randn_like(c)
|
940 |
+
# alpha = 0.999
|
941 |
+
alpha = 1
|
942 |
+
nc = alpha * c / self.get_norm(c) + (1 - alpha) * noise / self.get_norm(noise)
|
943 |
+
nc = nc / self.get_norm(nc)
|
944 |
+
|
945 |
+
import random
|
946 |
+
if random.randint(0, 10) == 0:
|
947 |
+
nc[:] = 0
|
948 |
+
nc = c
|
949 |
+
|
950 |
+
return nc
|
951 |
+
|
952 |
+
def shared_step(self, batch, **kwargs):
|
953 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
954 |
+
# print("Random augment text feature...")
|
955 |
+
c = self.random_text_feature_noise(c)
|
956 |
+
loss = self(x, c)
|
957 |
+
return loss
|
958 |
+
|
959 |
+
def forward(self, x, c=None, return_inter=False, *args, **kwargs):
|
960 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
961 |
+
if self.model.conditioning_key is not None:
|
962 |
+
assert c is not None
|
963 |
+
if self.cond_stage_trainable:
|
964 |
+
c = self.get_learned_conditioning(c)
|
965 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
966 |
+
tc = self.cond_ids[t].to(self.device)
|
967 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
968 |
+
return self.p_losses(x, c, t, return_inter=return_inter, *args, **kwargs)
|
969 |
+
|
970 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
971 |
+
def rescale_bbox(bbox):
|
972 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
973 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
974 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
975 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
976 |
+
return x0, y0, w, h
|
977 |
+
|
978 |
+
return [rescale_bbox(b) for b in bboxes]
|
979 |
+
|
980 |
+
def to3daware(self, triplane):
|
981 |
+
res = triplane.shape[-2]
|
982 |
+
plane1 = triplane[..., :res]
|
983 |
+
plane2 = triplane[..., res:2*res]
|
984 |
+
plane3 = triplane[..., 2*res:3*res]
|
985 |
+
|
986 |
+
x_mp = torch.nn.AvgPool2d((res, 1))
|
987 |
+
y_mp = torch.nn.AvgPool2d((1, res))
|
988 |
+
x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2)
|
989 |
+
y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2)
|
990 |
+
# for plane1
|
991 |
+
plane21 = x_mp_rep(plane2)
|
992 |
+
plane31 = torch.flip(y_mp_rep(plane3), (3,))
|
993 |
+
new_plane1 = torch.cat([plane1, plane21, plane31], 1)
|
994 |
+
# for plane2
|
995 |
+
plane12 = y_mp_rep(plane1)
|
996 |
+
plane32 = x_mp_rep(plane3)
|
997 |
+
new_plane2 = torch.cat([plane2, plane12, plane32], 1)
|
998 |
+
# for plane3
|
999 |
+
plane13 = torch.flip(x_mp_rep(plane1), (2,))
|
1000 |
+
plane23 = y_mp_rep(plane2)
|
1001 |
+
new_plane3 = torch.cat([plane3, plane13, plane23], 1)
|
1002 |
+
|
1003 |
+
new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous()
|
1004 |
+
return new_plane
|
1005 |
+
|
1006 |
+
# B, C, H, W = h.shape
|
1007 |
+
# h_xy = th.cat([h[..., 0:(W//3)], h[..., (W//3):(2*W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1)
|
1008 |
+
# h_xz = th.cat([h[..., (W//3):(2*W//3)], h[..., 0:(W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3)], 1)
|
1009 |
+
# h_zy = th.cat([h[..., (2*W//3):W], h[..., 0:(W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1), h[..., (W//3):(2*W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1)
|
1010 |
+
# h = th.cat([h_xy, h_xz, h_zy], -1)
|
1011 |
+
|
1012 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
1013 |
+
|
1014 |
+
if isinstance(cond, dict):
|
1015 |
+
# hybrid case, cond is exptected to be a dict
|
1016 |
+
pass
|
1017 |
+
else:
|
1018 |
+
if not isinstance(cond, list):
|
1019 |
+
cond = [cond]
|
1020 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
1021 |
+
cond = {key: cond}
|
1022 |
+
|
1023 |
+
if hasattr(self, "split_input_params"):
|
1024 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
1025 |
+
assert not return_ids
|
1026 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
1027 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
1028 |
+
|
1029 |
+
h, w = x_noisy.shape[-2:]
|
1030 |
+
|
1031 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
1032 |
+
|
1033 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
1034 |
+
# Reshape to img shape
|
1035 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
1036 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
1037 |
+
|
1038 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
1039 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
1040 |
+
c_key = next(iter(cond.keys())) # get key
|
1041 |
+
c = next(iter(cond.values())) # get value
|
1042 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
1043 |
+
c = c[0] # get element
|
1044 |
+
|
1045 |
+
c = unfold(c)
|
1046 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
1047 |
+
|
1048 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
1049 |
+
|
1050 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
1051 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
1052 |
+
|
1053 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
1054 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
1055 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
1056 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
1057 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
1058 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
1059 |
+
rescale_latent = 2 ** (num_downs)
|
1060 |
+
|
1061 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
1062 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
1063 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
1064 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
1065 |
+
for patch_nr in range(z.shape[-1])]
|
1066 |
+
|
1067 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
1068 |
+
patch_limits = [(x_tl, y_tl,
|
1069 |
+
rescale_latent * ks[0] / full_img_w,
|
1070 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
1071 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
1072 |
+
|
1073 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
1074 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
1075 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
1076 |
+
print(patch_limits_tknzd[0].shape)
|
1077 |
+
# cut tknzd crop position from conditioning
|
1078 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
1079 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
1080 |
+
print(cut_cond.shape)
|
1081 |
+
|
1082 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
1083 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
1084 |
+
print(adapted_cond.shape)
|
1085 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
1086 |
+
print(adapted_cond.shape)
|
1087 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
1088 |
+
print(adapted_cond.shape)
|
1089 |
+
|
1090 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
1091 |
+
|
1092 |
+
else:
|
1093 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
1094 |
+
|
1095 |
+
# apply model by loop over crops
|
1096 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
1097 |
+
assert not isinstance(output_list[0],
|
1098 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
1099 |
+
|
1100 |
+
o = torch.stack(output_list, axis=-1)
|
1101 |
+
o = o * weighting
|
1102 |
+
# Reverse reshape to img shape
|
1103 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
1104 |
+
# stitch crops together
|
1105 |
+
x_recon = fold(o) / normalization
|
1106 |
+
|
1107 |
+
else:
|
1108 |
+
if self.use_3daware:
|
1109 |
+
x_noisy_3daware = self.to3daware(x_noisy)
|
1110 |
+
x_recon = self.model(x_noisy_3daware, t, **cond)
|
1111 |
+
else:
|
1112 |
+
x_recon = self.model(x_noisy, t, **cond)
|
1113 |
+
|
1114 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
1115 |
+
return x_recon[0]
|
1116 |
+
else:
|
1117 |
+
return x_recon
|
1118 |
+
|
1119 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
1120 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
1121 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
1122 |
+
|
1123 |
+
def _prior_bpd(self, x_start):
|
1124 |
+
"""
|
1125 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1126 |
+
bits-per-dim.
|
1127 |
+
This term can't be optimized, as it only depends on the encoder.
|
1128 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1129 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1130 |
+
"""
|
1131 |
+
batch_size = x_start.shape[0]
|
1132 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1133 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1134 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1135 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1136 |
+
|
1137 |
+
def p_losses(self, x_start, cond, t, noise=None, return_inter=False):
|
1138 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1139 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1140 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1141 |
+
|
1142 |
+
loss_dict = {}
|
1143 |
+
prefix = 'train' if self.training else 'val'
|
1144 |
+
|
1145 |
+
if self.parameterization == "x0":
|
1146 |
+
target = x_start
|
1147 |
+
elif self.parameterization == "eps":
|
1148 |
+
target = noise
|
1149 |
+
elif self.parameterization == "v":
|
1150 |
+
target = self.get_v(x_start, noise, t)
|
1151 |
+
else:
|
1152 |
+
raise NotImplementedError()
|
1153 |
+
|
1154 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1155 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1156 |
+
|
1157 |
+
logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device)
|
1158 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1159 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1160 |
+
if self.learn_logvar:
|
1161 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1162 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1163 |
+
|
1164 |
+
loss = self.l_simple_weight * loss.mean()
|
1165 |
+
|
1166 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1167 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1168 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1169 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1170 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1171 |
+
|
1172 |
+
if return_inter:
|
1173 |
+
return loss, loss_dict, self.predict_start_from_noise(x_noisy, t=t, noise=model_output)
|
1174 |
+
else:
|
1175 |
+
return loss, loss_dict
|
1176 |
+
|
1177 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1178 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1179 |
+
t_in = t
|
1180 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1181 |
+
|
1182 |
+
if score_corrector is not None:
|
1183 |
+
assert self.parameterization == "eps"
|
1184 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1185 |
+
|
1186 |
+
if return_codebook_ids:
|
1187 |
+
model_out, logits = model_out
|
1188 |
+
|
1189 |
+
if self.parameterization == "eps":
|
1190 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1191 |
+
elif self.parameterization == "x0":
|
1192 |
+
x_recon = model_out
|
1193 |
+
elif self.parameterization == "v":
|
1194 |
+
x_recon = self.predict_start_from_z_and_v(x, t, model_out)
|
1195 |
+
else:
|
1196 |
+
raise NotImplementedError()
|
1197 |
+
|
1198 |
+
if clip_denoised:
|
1199 |
+
x_recon.clamp_(-1., 1.)
|
1200 |
+
if quantize_denoised:
|
1201 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1202 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1203 |
+
if return_codebook_ids:
|
1204 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1205 |
+
elif return_x0:
|
1206 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1207 |
+
else:
|
1208 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1209 |
+
|
1210 |
+
@torch.no_grad()
|
1211 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1212 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1213 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1214 |
+
b, *_, device = *x.shape, x.device
|
1215 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1216 |
+
return_codebook_ids=return_codebook_ids,
|
1217 |
+
quantize_denoised=quantize_denoised,
|
1218 |
+
return_x0=return_x0,
|
1219 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1220 |
+
if return_codebook_ids:
|
1221 |
+
raise DeprecationWarning("Support dropped.")
|
1222 |
+
model_mean, _, model_log_variance, logits = outputs
|
1223 |
+
elif return_x0:
|
1224 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1225 |
+
else:
|
1226 |
+
model_mean, _, model_log_variance = outputs
|
1227 |
+
|
1228 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1229 |
+
if noise_dropout > 0.:
|
1230 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1231 |
+
# no noise when t == 0
|
1232 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1233 |
+
|
1234 |
+
if return_codebook_ids:
|
1235 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1236 |
+
if return_x0:
|
1237 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1238 |
+
else:
|
1239 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1240 |
+
|
1241 |
+
@torch.no_grad()
|
1242 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1243 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1244 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1245 |
+
log_every_t=None):
|
1246 |
+
if not log_every_t:
|
1247 |
+
log_every_t = self.log_every_t
|
1248 |
+
timesteps = self.num_timesteps
|
1249 |
+
if batch_size is not None:
|
1250 |
+
b = batch_size if batch_size is not None else shape[0]
|
1251 |
+
shape = [batch_size] + list(shape)
|
1252 |
+
else:
|
1253 |
+
b = batch_size = shape[0]
|
1254 |
+
if x_T is None:
|
1255 |
+
img = torch.randn(shape, device=self.device)
|
1256 |
+
else:
|
1257 |
+
img = x_T
|
1258 |
+
intermediates = []
|
1259 |
+
if cond is not None:
|
1260 |
+
if isinstance(cond, dict):
|
1261 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1262 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1263 |
+
else:
|
1264 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1265 |
+
|
1266 |
+
if start_T is not None:
|
1267 |
+
timesteps = min(timesteps, start_T)
|
1268 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1269 |
+
total=timesteps) if verbose else reversed(
|
1270 |
+
range(0, timesteps))
|
1271 |
+
if type(temperature) == float:
|
1272 |
+
temperature = [temperature] * timesteps
|
1273 |
+
|
1274 |
+
for i in iterator:
|
1275 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1276 |
+
if self.shorten_cond_schedule:
|
1277 |
+
assert self.model.conditioning_key != 'hybrid'
|
1278 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1279 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1280 |
+
|
1281 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1282 |
+
clip_denoised=self.clip_denoised,
|
1283 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1284 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1285 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1286 |
+
if mask is not None:
|
1287 |
+
assert x0 is not None
|
1288 |
+
img_orig = self.q_sample(x0, ts)
|
1289 |
+
img = img_orig * mask + (1. - mask) * img
|
1290 |
+
|
1291 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1292 |
+
intermediates.append(x0_partial)
|
1293 |
+
if callback: callback(i)
|
1294 |
+
if img_callback: img_callback(img, i)
|
1295 |
+
return img, intermediates
|
1296 |
+
|
1297 |
+
@torch.no_grad()
|
1298 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1299 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1300 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1301 |
+
log_every_t=None):
|
1302 |
+
|
1303 |
+
if not log_every_t:
|
1304 |
+
log_every_t = self.log_every_t
|
1305 |
+
device = self.betas.device
|
1306 |
+
b = shape[0]
|
1307 |
+
if x_T is None:
|
1308 |
+
img = torch.randn(shape, device=device)
|
1309 |
+
else:
|
1310 |
+
img = x_T
|
1311 |
+
|
1312 |
+
intermediates = [img]
|
1313 |
+
if timesteps is None:
|
1314 |
+
timesteps = self.num_timesteps
|
1315 |
+
|
1316 |
+
if start_T is not None:
|
1317 |
+
timesteps = min(timesteps, start_T)
|
1318 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1319 |
+
range(0, timesteps))
|
1320 |
+
|
1321 |
+
if mask is not None:
|
1322 |
+
assert x0 is not None
|
1323 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1324 |
+
|
1325 |
+
for i in iterator:
|
1326 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1327 |
+
if self.shorten_cond_schedule:
|
1328 |
+
assert self.model.conditioning_key != 'hybrid'
|
1329 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1330 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1331 |
+
|
1332 |
+
# if self.is_test and i % 50 == 0:
|
1333 |
+
# decode_res = self.decode_first_stage(img)
|
1334 |
+
# rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1335 |
+
# decode_res, self.batch_rays, self.batch_img,
|
1336 |
+
# )
|
1337 |
+
# rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
1338 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_{}.png".format(i)), rgb_sample)
|
1339 |
+
# colorize_res = self.first_stage_model.to_rgb(img)
|
1340 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_latent_{}.png".format(i)), colorize_res[0])
|
1341 |
+
|
1342 |
+
img = self.p_sample(img, cond, ts,
|
1343 |
+
clip_denoised=self.clip_denoised,
|
1344 |
+
quantize_denoised=quantize_denoised)
|
1345 |
+
if mask is not None:
|
1346 |
+
img_orig = self.q_sample(x0, ts)
|
1347 |
+
img = img_orig * mask + (1. - mask) * img
|
1348 |
+
|
1349 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1350 |
+
intermediates.append(img)
|
1351 |
+
if callback: callback(i)
|
1352 |
+
if img_callback: img_callback(img, i)
|
1353 |
+
|
1354 |
+
if return_intermediates:
|
1355 |
+
return img, intermediates
|
1356 |
+
return img
|
1357 |
+
|
1358 |
+
@torch.no_grad()
|
1359 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1360 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1361 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1362 |
+
if shape is None:
|
1363 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size * 3)
|
1364 |
+
if cond is not None:
|
1365 |
+
if isinstance(cond, dict):
|
1366 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1367 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1368 |
+
else:
|
1369 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1370 |
+
return self.p_sample_loop(cond,
|
1371 |
+
shape,
|
1372 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1373 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1374 |
+
mask=mask, x0=x0)
|
1375 |
+
|
1376 |
+
@torch.no_grad()
|
1377 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1378 |
+
|
1379 |
+
if ddim:
|
1380 |
+
ddim_sampler = DDIMSampler(self)
|
1381 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1382 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1383 |
+
shape,cond,verbose=False,**kwargs)
|
1384 |
+
|
1385 |
+
else:
|
1386 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1387 |
+
return_intermediates=True,**kwargs)
|
1388 |
+
|
1389 |
+
return samples, intermediates
|
1390 |
+
|
1391 |
+
@torch.no_grad()
|
1392 |
+
def validation_step(self, batch, batch_idx):
|
1393 |
+
# x, c = self.get_input(batch, self.first_stage_key)
|
1394 |
+
# self.batch_rays = batch['batch_rays'][0][1:2]
|
1395 |
+
# self.batch_img = batch['img'][0][1:2]
|
1396 |
+
# self.is_test = True
|
1397 |
+
# self.test_schedule(x[0:1])
|
1398 |
+
# exit(0)
|
1399 |
+
|
1400 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
1401 |
+
with self.ema_scope():
|
1402 |
+
# _, loss_dict_ema = self.shared_step(batch)
|
1403 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
1404 |
+
_, loss_dict_ema, inter_res = self(x, c, return_inter=True)
|
1405 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
1406 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
1407 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
1408 |
+
|
1409 |
+
if batch_idx < 2:
|
1410 |
+
if self.num_timesteps < 1000:
|
1411 |
+
x_T = self.q_sample(x_start=x[0:1], t=torch.full((1,), self.num_timesteps-1, device=x.device, dtype=torch.long), noise=torch.randn_like(x[0:1]))
|
1412 |
+
print("Specifying x_T when sampling!")
|
1413 |
+
else:
|
1414 |
+
x_T = None
|
1415 |
+
with self.ema_scope():
|
1416 |
+
res = self.sample(c, 1, shape=x[0:1].shape, x_T = x_T)
|
1417 |
+
decode_res = self.decode_first_stage(res)
|
1418 |
+
decode_input = self.decode_first_stage(x[:1])
|
1419 |
+
decode_output = self.decode_first_stage(inter_res[:1])
|
1420 |
+
|
1421 |
+
colorize_res = self.first_stage_model.to_rgb(res)[0]
|
1422 |
+
colorize_x = self.first_stage_model.to_rgb(x[:1])[0]
|
1423 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0])
|
1424 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0])
|
1425 |
+
|
1426 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1427 |
+
decode_res, batch['batch_rays'][0], batch['img'][0],
|
1428 |
+
)
|
1429 |
+
rgb_input, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1430 |
+
decode_input, batch['batch_rays'][0], batch['img'][0],
|
1431 |
+
)
|
1432 |
+
rgb_output, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1433 |
+
decode_output, batch['batch_rays'][0], batch['img'][0],
|
1434 |
+
)
|
1435 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())
|
1436 |
+
rgb_input = to8b(rgb_input.detach().cpu().numpy())
|
1437 |
+
rgb_output = to8b(rgb_output.detach().cpu().numpy())
|
1438 |
+
|
1439 |
+
if rgb_sample.shape[0] == 1:
|
1440 |
+
rgb_all = np.concatenate([rgb_sample[0], rgb_input[0], rgb_output[0]], 1)
|
1441 |
+
else:
|
1442 |
+
rgb_all = np.concatenate([rgb_sample[1], rgb_input[1], rgb_output[1]], 1)
|
1443 |
+
|
1444 |
+
rgb_all = np.stack([rgb_all[..., 2], rgb_all[..., 1], rgb_all[..., 0]], -1)
|
1445 |
+
|
1446 |
+
if self.model.conditioning_key is not None:
|
1447 |
+
if self.cond_stage_key == 'img_cond':
|
1448 |
+
cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0)
|
1449 |
+
rgb_all = np.concatenate([rgb_all, to8b(cond_img.cpu().numpy())], 1)
|
1450 |
+
else:
|
1451 |
+
import cv2
|
1452 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
1453 |
+
# org
|
1454 |
+
org = (50, 50)
|
1455 |
+
# fontScale
|
1456 |
+
fontScale = 1
|
1457 |
+
# Blue color in BGR
|
1458 |
+
color = (255, 0, 0)
|
1459 |
+
# Line thickness of 2 px
|
1460 |
+
thickness = 2
|
1461 |
+
caption = super().get_input(batch, self.cond_stage_key)[0]
|
1462 |
+
break_caption = []
|
1463 |
+
for i in range(len(caption) // 30 + 1):
|
1464 |
+
break_caption_i = caption[i*30:(i+1)*30]
|
1465 |
+
break_caption.append(break_caption_i)
|
1466 |
+
for i, bci in enumerate(break_caption):
|
1467 |
+
cv2.putText(rgb_all, bci, (50, 50*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
|
1468 |
+
|
1469 |
+
self.logger.experiment.log({
|
1470 |
+
"val/vis": [wandb.Image(rgb_all)],
|
1471 |
+
"val/colorize_rse": [wandb.Image(colorize_res)],
|
1472 |
+
"val/colorize_x": [wandb.Image(colorize_x)],
|
1473 |
+
})
|
1474 |
+
|
1475 |
+
@torch.no_grad()
|
1476 |
+
def test_schedule(self, x_start, freq=50):
|
1477 |
+
noise = torch.randn_like(x_start)
|
1478 |
+
img_list = []
|
1479 |
+
latent_list = []
|
1480 |
+
for t in tqdm(range(self.num_timesteps)):
|
1481 |
+
if t % freq == 0:
|
1482 |
+
t_long = torch.Tensor([t,]).long().to(x_start.device)
|
1483 |
+
x_noisy = self.q_sample(x_start=x_start, t=t_long, noise=noise)
|
1484 |
+
decode_res = self.decode_first_stage(x_noisy)
|
1485 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1486 |
+
decode_res, self.batch_rays, self.batch_img,
|
1487 |
+
)
|
1488 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
1489 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}.png".format(t)), rgb_sample)
|
1490 |
+
colorize_res = self.first_stage_model.to_rgb(x_noisy)
|
1491 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}.png".format(t)), colorize_res[0])
|
1492 |
+
img_list.append(rgb_sample)
|
1493 |
+
latent_list.append(colorize_res[0])
|
1494 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(img_list, 1))
|
1495 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(latent_list, 1))
|
1496 |
+
|
1497 |
+
@torch.no_grad()
|
1498 |
+
def test_step(self, batch, batch_idx):
|
1499 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
1500 |
+
if self.test_mode == 'fid':
|
1501 |
+
bs = x.shape[0]
|
1502 |
+
else:
|
1503 |
+
bs = 1
|
1504 |
+
if self.test_mode == 'noise_schedule':
|
1505 |
+
self.batch_rays = batch['batch_rays'][0][33:34]
|
1506 |
+
self.batch_img = batch['img'][0][33:34]
|
1507 |
+
self.is_test = True
|
1508 |
+
self.test_schedule(x)
|
1509 |
+
exit(0)
|
1510 |
+
with self.ema_scope():
|
1511 |
+
if c is not None:
|
1512 |
+
res = self.sample(c[:bs], bs, shape=x[0:bs].shape)
|
1513 |
+
else:
|
1514 |
+
res = self.sample(None, bs, shape=x[0:bs].shape)
|
1515 |
+
decode_res = self.decode_first_stage(res)
|
1516 |
+
if self.test_mode == 'fid':
|
1517 |
+
folder = os.path.join(self.logger.log_dir, 'FID_' + self.test_tag)
|
1518 |
+
if not os.path.exists(folder):
|
1519 |
+
os.makedirs(folder, exist_ok=True)
|
1520 |
+
rgb_sample_list = []
|
1521 |
+
for b in range(bs):
|
1522 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1523 |
+
decode_res[b:b+1], batch['batch_rays'][b], batch['img'][b],
|
1524 |
+
)
|
1525 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())
|
1526 |
+
rgb_sample_list.append(rgb_sample)
|
1527 |
+
for i in range(len(rgb_sample_list)):
|
1528 |
+
for v in range(rgb_sample_list[i].shape[0]):
|
1529 |
+
imageio.imwrite(os.path.join(folder, "sample_{}_{}_{}.png".format(batch_idx, i, v)), rgb_sample_list[i][v])
|
1530 |
+
elif self.test_mode == 'sample':
|
1531 |
+
colorize_res = self.first_stage_model.to_rgb(res)
|
1532 |
+
colorize_x = self.first_stage_model.to_rgb(x[:1])
|
1533 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0])
|
1534 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0])
|
1535 |
+
if self.model.conditioning_key is not None:
|
1536 |
+
cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0)
|
1537 |
+
cond_img = to8b(cond_img.cpu().numpy())
|
1538 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "cond_{}_{}.png".format(batch_idx, 0)), cond_img)
|
1539 |
+
for b in range(bs):
|
1540 |
+
video = []
|
1541 |
+
for v in tqdm(range(batch['batch_rays'].shape[1])):
|
1542 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1543 |
+
decode_res[b:b+1], batch['batch_rays'][0][v:v+1], batch['img'][0][v:v+1],
|
1544 |
+
)
|
1545 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
1546 |
+
video.append(rgb_sample)
|
1547 |
+
imageio.mimwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b)), video, fps=24)
|
1548 |
+
print("Saving to {}".format(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b))))
|
1549 |
+
|
1550 |
+
@torch.no_grad()
|
1551 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1552 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1553 |
+
plot_diffusion_rows=True, **kwargs):
|
1554 |
+
|
1555 |
+
use_ddim = ddim_steps is not None
|
1556 |
+
|
1557 |
+
log = dict()
|
1558 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1559 |
+
return_first_stage_outputs=True,
|
1560 |
+
force_c_encode=True,
|
1561 |
+
return_original_cond=True,
|
1562 |
+
bs=N)
|
1563 |
+
N = min(x.shape[0], N)
|
1564 |
+
n_row = min(x.shape[0], n_row)
|
1565 |
+
log["inputs"] = x
|
1566 |
+
log["reconstruction"] = xrec
|
1567 |
+
if self.model.conditioning_key is not None:
|
1568 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1569 |
+
xc = self.cond_stage_model.decode(c)
|
1570 |
+
log["conditioning"] = xc
|
1571 |
+
elif self.cond_stage_key in ["caption"]:
|
1572 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1573 |
+
log["conditioning"] = xc
|
1574 |
+
elif self.cond_stage_key == 'class_label':
|
1575 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1576 |
+
log['conditioning'] = xc
|
1577 |
+
elif isimage(xc):
|
1578 |
+
log["conditioning"] = xc
|
1579 |
+
if ismap(xc):
|
1580 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1581 |
+
|
1582 |
+
if plot_diffusion_rows:
|
1583 |
+
# get diffusion row
|
1584 |
+
diffusion_row = list()
|
1585 |
+
z_start = z[:n_row]
|
1586 |
+
for t in range(self.num_timesteps):
|
1587 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1588 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1589 |
+
t = t.to(self.device).long()
|
1590 |
+
noise = torch.randn_like(z_start)
|
1591 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1592 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1593 |
+
|
1594 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1595 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1596 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1597 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1598 |
+
log["diffusion_row"] = diffusion_grid
|
1599 |
+
|
1600 |
+
if sample:
|
1601 |
+
# get denoise row
|
1602 |
+
with self.ema_scope("Plotting"):
|
1603 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1604 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1605 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1606 |
+
x_samples = self.decode_first_stage(samples)
|
1607 |
+
log["samples"] = x_samples
|
1608 |
+
if plot_denoise_rows:
|
1609 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1610 |
+
log["denoise_row"] = denoise_grid
|
1611 |
+
|
1612 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1613 |
+
self.first_stage_model, IdentityFirstStage):
|
1614 |
+
# also display when quantizing x0 while sampling
|
1615 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1616 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1617 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1618 |
+
quantize_denoised=True)
|
1619 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1620 |
+
# quantize_denoised=True)
|
1621 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1622 |
+
log["samples_x0_quantized"] = x_samples
|
1623 |
+
|
1624 |
+
if inpaint:
|
1625 |
+
# make a simple center square
|
1626 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1627 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1628 |
+
# zeros will be filled in
|
1629 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1630 |
+
mask = mask[:, None, ...]
|
1631 |
+
with self.ema_scope("Plotting Inpaint"):
|
1632 |
+
|
1633 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1634 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1635 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1636 |
+
log["samples_inpainting"] = x_samples
|
1637 |
+
log["mask"] = mask
|
1638 |
+
|
1639 |
+
# outpaint
|
1640 |
+
with self.ema_scope("Plotting Outpaint"):
|
1641 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1642 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1643 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1644 |
+
log["samples_outpainting"] = x_samples
|
1645 |
+
|
1646 |
+
if plot_progressive_rows:
|
1647 |
+
with self.ema_scope("Plotting Progressives"):
|
1648 |
+
img, progressives = self.progressive_denoising(c,
|
1649 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1650 |
+
batch_size=N)
|
1651 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1652 |
+
log["progressive_row"] = prog_row
|
1653 |
+
|
1654 |
+
if return_keys:
|
1655 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1656 |
+
return log
|
1657 |
+
else:
|
1658 |
+
return {key: log[key] for key in return_keys}
|
1659 |
+
return log
|
1660 |
+
|
1661 |
+
def configure_optimizers(self):
|
1662 |
+
lr = self.learning_rate
|
1663 |
+
params = list(self.model.parameters())
|
1664 |
+
if self.cond_stage_trainable:
|
1665 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1666 |
+
params = params + list(self.cond_stage_model.parameters())
|
1667 |
+
if self.learn_logvar:
|
1668 |
+
print('Diffusion model optimizing logvar')
|
1669 |
+
params.append(self.logvar)
|
1670 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1671 |
+
if self.use_scheduler:
|
1672 |
+
assert 'target' in self.scheduler_config
|
1673 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1674 |
+
|
1675 |
+
print("Setting up LambdaLR scheduler...")
|
1676 |
+
scheduler = [
|
1677 |
+
{
|
1678 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1679 |
+
'interval': 'step',
|
1680 |
+
'frequency': 1
|
1681 |
+
}]
|
1682 |
+
return [opt], scheduler
|
1683 |
+
return opt
|
1684 |
+
|
1685 |
+
@torch.no_grad()
|
1686 |
+
def to_rgb(self, x):
|
1687 |
+
x = x.float()
|
1688 |
+
if not hasattr(self, "colorize"):
|
1689 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1690 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1691 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1692 |
+
return x
|
1693 |
+
|
1694 |
+
|
1695 |
+
|
1696 |
+
class DiffusionWrapper(pl.LightningModule):
|
1697 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1698 |
+
super().__init__()
|
1699 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1700 |
+
self.conditioning_key = conditioning_key
|
1701 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
1702 |
+
|
1703 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
1704 |
+
if self.conditioning_key is None:
|
1705 |
+
out = self.diffusion_model(x, t)
|
1706 |
+
elif self.conditioning_key == 'concat':
|
1707 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1708 |
+
out = self.diffusion_model(xc, t)
|
1709 |
+
elif self.conditioning_key == 'crossattn':
|
1710 |
+
cc = torch.cat(c_crossattn, 1)
|
1711 |
+
out = self.diffusion_model(x, t, context=cc)
|
1712 |
+
elif self.conditioning_key == 'hybrid':
|
1713 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1714 |
+
cc = torch.cat(c_crossattn, 1)
|
1715 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1716 |
+
elif self.conditioning_key == 'adm':
|
1717 |
+
cc = c_crossattn[0]
|
1718 |
+
out = self.diffusion_model(x, t, y=cc)
|
1719 |
+
else:
|
1720 |
+
raise NotImplementedError()
|
1721 |
+
|
1722 |
+
return out
|
1723 |
+
|
1724 |
+
|
1725 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
1726 |
+
# TODO: move all layout-specific hacks to this class
|
1727 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1728 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1729 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1730 |
+
|
1731 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1732 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1733 |
+
|
1734 |
+
key = 'train' if self.training else 'validation'
|
1735 |
+
dset = self.trainer.datamodule.datasets[key]
|
1736 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1737 |
+
|
1738 |
+
bbox_imgs = []
|
1739 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1740 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1741 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1742 |
+
bbox_imgs.append(bboximg)
|
1743 |
+
|
1744 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1745 |
+
logs['bbox_image'] = cond_img
|
1746 |
+
return logs
|
3DTopia/ldm/models/diffusion/ddpm_preprocess.py
ADDED
@@ -0,0 +1,1716 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
wild mixture of
|
3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
+
https://github.com/CompVis/taming-transformers
|
6 |
+
-- merci
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
import wandb
|
11 |
+
import torch
|
12 |
+
import imageio
|
13 |
+
import torch.nn as nn
|
14 |
+
import numpy as np
|
15 |
+
import pytorch_lightning as pl
|
16 |
+
from torch.optim.lr_scheduler import LambdaLR
|
17 |
+
from einops import rearrange, repeat
|
18 |
+
from contextlib import contextmanager
|
19 |
+
from functools import partial
|
20 |
+
from tqdm import tqdm
|
21 |
+
from torchvision.utils import make_grid
|
22 |
+
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
23 |
+
|
24 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
25 |
+
from ldm.modules.ema import LitEma
|
26 |
+
from module.model_2d import DiagonalGaussianDistribution
|
27 |
+
from ldm.modules.distributions.distributions import normal_kl
|
28 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
29 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
30 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
31 |
+
from utility.triplane_renderer.renderer import to8b
|
32 |
+
|
33 |
+
import ipdb
|
34 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
35 |
+
'crossattn': 'c_crossattn',
|
36 |
+
'adm': 'y'}
|
37 |
+
|
38 |
+
|
39 |
+
def disabled_train(self, mode=True):
|
40 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
41 |
+
does not change anymore."""
|
42 |
+
return self
|
43 |
+
|
44 |
+
|
45 |
+
def uniform_on_device(r1, r2, shape, device):
|
46 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
47 |
+
|
48 |
+
|
49 |
+
class DDPM(pl.LightningModule):
|
50 |
+
# classic DDPM with Gaussian diffusion, in image space
|
51 |
+
def __init__(self,
|
52 |
+
unet_config,
|
53 |
+
timesteps=1000,
|
54 |
+
beta_schedule="linear",
|
55 |
+
loss_type="l2",
|
56 |
+
ckpt_path=None,
|
57 |
+
ignore_keys=[],
|
58 |
+
load_only_unet=False,
|
59 |
+
monitor="val/loss",
|
60 |
+
use_ema=True,
|
61 |
+
first_stage_key="image",
|
62 |
+
image_size=256,
|
63 |
+
channels=3,
|
64 |
+
log_every_t=100,
|
65 |
+
clip_denoised=True,
|
66 |
+
linear_start=1e-4,
|
67 |
+
linear_end=2e-2,
|
68 |
+
cosine_s=8e-3,
|
69 |
+
given_betas=None,
|
70 |
+
original_elbo_weight=0.,
|
71 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
72 |
+
l_simple_weight=1.,
|
73 |
+
conditioning_key=None,
|
74 |
+
parameterization="eps", # all assuming fixed variance schedules
|
75 |
+
scheduler_config=None,
|
76 |
+
use_positional_encodings=False,
|
77 |
+
learn_logvar=False,
|
78 |
+
logvar_init=0.,
|
79 |
+
learning_rate=1e-4,
|
80 |
+
shift_scale=None,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
|
84 |
+
self.parameterization = parameterization
|
85 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
86 |
+
self.cond_stage_model = None
|
87 |
+
self.clip_denoised = clip_denoised
|
88 |
+
self.log_every_t = log_every_t
|
89 |
+
self.first_stage_key = first_stage_key
|
90 |
+
self.image_size = image_size # try conv?
|
91 |
+
self.channels = channels
|
92 |
+
self.use_positional_encodings = use_positional_encodings
|
93 |
+
self.beta_schedule = beta_schedule
|
94 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
95 |
+
count_params(self.model, verbose=True)
|
96 |
+
self.use_ema = use_ema
|
97 |
+
if self.use_ema:
|
98 |
+
self.model_ema = LitEma(self.model)
|
99 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
100 |
+
|
101 |
+
self.use_scheduler = scheduler_config is not None
|
102 |
+
if self.use_scheduler:
|
103 |
+
self.scheduler_config = scheduler_config
|
104 |
+
|
105 |
+
self.v_posterior = v_posterior
|
106 |
+
self.original_elbo_weight = original_elbo_weight
|
107 |
+
self.l_simple_weight = l_simple_weight
|
108 |
+
|
109 |
+
if monitor is not None:
|
110 |
+
self.monitor = monitor
|
111 |
+
if ckpt_path is not None:
|
112 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
113 |
+
|
114 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
115 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s, shift_scale=shift_scale)
|
116 |
+
|
117 |
+
self.loss_type = loss_type
|
118 |
+
|
119 |
+
self.learn_logvar = learn_logvar
|
120 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
121 |
+
if self.learn_logvar:
|
122 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
123 |
+
|
124 |
+
self.learning_rate = learning_rate
|
125 |
+
|
126 |
+
|
127 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
128 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None):
|
129 |
+
if exists(given_betas):
|
130 |
+
betas = given_betas
|
131 |
+
else:
|
132 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
133 |
+
cosine_s=cosine_s, shift_scale=shift_scale)
|
134 |
+
alphas = 1. - betas
|
135 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
136 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
137 |
+
|
138 |
+
timesteps, = betas.shape
|
139 |
+
self.num_timesteps = int(timesteps)
|
140 |
+
print("Using timesteps of {}".format(self.num_timesteps))
|
141 |
+
self.linear_start = linear_start
|
142 |
+
self.linear_end = linear_end
|
143 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
144 |
+
|
145 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
146 |
+
|
147 |
+
self.register_buffer('betas', to_torch(betas))
|
148 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
149 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
150 |
+
|
151 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
152 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
153 |
+
# print("sqrt_alphas_cumprod", np.sqrt(alphas_cumprod))
|
154 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
155 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
156 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
157 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
158 |
+
|
159 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
160 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
161 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
162 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
163 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
164 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
165 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
166 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
167 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
168 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
169 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
170 |
+
|
171 |
+
if self.parameterization == "eps":
|
172 |
+
lvlb_weights = self.betas ** 2 / (
|
173 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
174 |
+
elif self.parameterization == "x0":
|
175 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
176 |
+
elif self.parameterization == "v":
|
177 |
+
lvlb_weights = torch.ones_like(self.betas ** 2 / (
|
178 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
|
179 |
+
else:
|
180 |
+
raise NotImplementedError("mu not supported")
|
181 |
+
# TODO how to choose this term
|
182 |
+
lvlb_weights[0] = lvlb_weights[1]
|
183 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
184 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
185 |
+
|
186 |
+
@contextmanager
|
187 |
+
def ema_scope(self, context=None):
|
188 |
+
if self.use_ema:
|
189 |
+
self.model_ema.store(self.model.parameters())
|
190 |
+
self.model_ema.copy_to(self.model)
|
191 |
+
if context is not None:
|
192 |
+
print(f"{context}: Switched to EMA weights")
|
193 |
+
try:
|
194 |
+
yield None
|
195 |
+
finally:
|
196 |
+
if self.use_ema:
|
197 |
+
self.model_ema.restore(self.model.parameters())
|
198 |
+
if context is not None:
|
199 |
+
print(f"{context}: Restored training weights")
|
200 |
+
|
201 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
202 |
+
sd = torch.load(path, map_location="cpu")
|
203 |
+
if "state_dict" in list(sd.keys()):
|
204 |
+
sd = sd["state_dict"]
|
205 |
+
keys = list(sd.keys())
|
206 |
+
for k in keys:
|
207 |
+
for ik in ignore_keys:
|
208 |
+
if k.startswith(ik):
|
209 |
+
print("Deleting key {} from state_dict.".format(k))
|
210 |
+
del sd[k]
|
211 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
212 |
+
sd, strict=False)
|
213 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
214 |
+
if len(missing) > 0:
|
215 |
+
print(f"Missing Keys: {missing}")
|
216 |
+
if len(unexpected) > 0:
|
217 |
+
print(f"Unexpected Keys: {unexpected}")
|
218 |
+
|
219 |
+
def q_mean_variance(self, x_start, t):
|
220 |
+
"""
|
221 |
+
Get the distribution q(x_t | x_0).
|
222 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
223 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
224 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
225 |
+
"""
|
226 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
227 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
228 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
229 |
+
return mean, variance, log_variance
|
230 |
+
|
231 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
232 |
+
return (
|
233 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
234 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
235 |
+
)
|
236 |
+
|
237 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
238 |
+
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
239 |
+
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
240 |
+
return (
|
241 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
|
242 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
243 |
+
)
|
244 |
+
|
245 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
246 |
+
return (
|
247 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
|
248 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
|
249 |
+
)
|
250 |
+
|
251 |
+
def q_posterior(self, x_start, x_t, t):
|
252 |
+
posterior_mean = (
|
253 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
254 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
255 |
+
)
|
256 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
257 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
258 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
259 |
+
|
260 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
261 |
+
model_out = self.model(x, t)
|
262 |
+
if self.parameterization == "eps":
|
263 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
264 |
+
elif self.parameterization == "x0":
|
265 |
+
x_recon = model_out
|
266 |
+
elif self.parameterization == "v":
|
267 |
+
x_recon = self.predict_start_from_z_and_v(x, t, model_out)
|
268 |
+
if clip_denoised:
|
269 |
+
x_recon.clamp_(-1., 1.)
|
270 |
+
|
271 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
272 |
+
return model_mean, posterior_variance, posterior_log_variance
|
273 |
+
|
274 |
+
@torch.no_grad()
|
275 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
276 |
+
b, *_, device = *x.shape, x.device
|
277 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
278 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
279 |
+
# no noise when t == 0
|
280 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
281 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
282 |
+
|
283 |
+
@torch.no_grad()
|
284 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
285 |
+
device = self.betas.device
|
286 |
+
b = shape[0]
|
287 |
+
img = torch.randn(shape, device=device)
|
288 |
+
intermediates = [img]
|
289 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
290 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
291 |
+
clip_denoised=self.clip_denoised)
|
292 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
293 |
+
intermediates.append(img)
|
294 |
+
if return_intermediates:
|
295 |
+
return img, intermediates
|
296 |
+
return img
|
297 |
+
|
298 |
+
@torch.no_grad()
|
299 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
300 |
+
image_size = self.image_size
|
301 |
+
channels = self.channels
|
302 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
303 |
+
return_intermediates=return_intermediates)
|
304 |
+
|
305 |
+
def q_sample(self, x_start, t, noise=None):
|
306 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
307 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
308 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
309 |
+
|
310 |
+
def get_v(self, x, noise, t):
|
311 |
+
return (
|
312 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
313 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
314 |
+
)
|
315 |
+
|
316 |
+
def get_loss(self, pred, target, mean=True):
|
317 |
+
if self.loss_type == 'l1':
|
318 |
+
loss = (target - pred).abs()
|
319 |
+
if mean:
|
320 |
+
loss = loss.mean()
|
321 |
+
elif self.loss_type == 'l2':
|
322 |
+
if mean:
|
323 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
324 |
+
else:
|
325 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
326 |
+
else:
|
327 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
328 |
+
|
329 |
+
return loss
|
330 |
+
|
331 |
+
def p_losses(self, x_start, t, noise=None):
|
332 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
333 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
334 |
+
model_out = self.model(x_noisy, t)
|
335 |
+
|
336 |
+
loss_dict = {}
|
337 |
+
if self.parameterization == "eps":
|
338 |
+
target = noise
|
339 |
+
elif self.parameterization == "x0":
|
340 |
+
target = x_start
|
341 |
+
elif self.parameterization == "v":
|
342 |
+
target = self.get_v(x_start, noise, t)
|
343 |
+
else:
|
344 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
345 |
+
|
346 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
347 |
+
|
348 |
+
log_prefix = 'train' if self.training else 'val'
|
349 |
+
|
350 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
351 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
352 |
+
|
353 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
354 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
355 |
+
|
356 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
357 |
+
|
358 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
359 |
+
|
360 |
+
return loss, loss_dict
|
361 |
+
|
362 |
+
def forward(self, x, *args, **kwargs):
|
363 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
364 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
365 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
366 |
+
return self.p_losses(x, t, *args, **kwargs)
|
367 |
+
|
368 |
+
def get_input(self, batch, k):
|
369 |
+
x = batch[k]
|
370 |
+
if isinstance(x, list):
|
371 |
+
return x
|
372 |
+
# if len(x.shape) == 3:
|
373 |
+
# x = x[..., None]
|
374 |
+
# x = rearrange(x, 'b h w c -> b c h w')
|
375 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
376 |
+
return x
|
377 |
+
|
378 |
+
def shared_step(self, batch):
|
379 |
+
x = self.get_input(batch, self.first_stage_key)
|
380 |
+
loss, loss_dict = self(x)
|
381 |
+
return loss, loss_dict
|
382 |
+
|
383 |
+
def training_step(self, batch, batch_idx):
|
384 |
+
loss, loss_dict = self.shared_step(batch)
|
385 |
+
|
386 |
+
self.log_dict(loss_dict, prog_bar=False,
|
387 |
+
logger=True, on_step=True, on_epoch=True)
|
388 |
+
|
389 |
+
self.log("global_step", self.global_step,
|
390 |
+
prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
391 |
+
|
392 |
+
if self.use_scheduler:
|
393 |
+
lr = self.optimizers().param_groups[0]['lr']
|
394 |
+
self.log('lr_abs', lr, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
395 |
+
|
396 |
+
return loss
|
397 |
+
|
398 |
+
@torch.no_grad()
|
399 |
+
def validation_step(self, batch, batch_idx):
|
400 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
401 |
+
with self.ema_scope():
|
402 |
+
_, loss_dict_ema = self.shared_step(batch)
|
403 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
404 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
405 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
406 |
+
|
407 |
+
def on_train_batch_end(self, *args, **kwargs):
|
408 |
+
if self.use_ema:
|
409 |
+
self.model_ema(self.model)
|
410 |
+
|
411 |
+
def _get_rows_from_list(self, samples):
|
412 |
+
n_imgs_per_row = len(samples)
|
413 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
414 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
415 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
416 |
+
return denoise_grid
|
417 |
+
|
418 |
+
@torch.no_grad()
|
419 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
420 |
+
log = dict()
|
421 |
+
x = self.get_input(batch, self.first_stage_key)
|
422 |
+
N = min(x.shape[0], N)
|
423 |
+
n_row = min(x.shape[0], n_row)
|
424 |
+
x = x.to(self.device)[:N]
|
425 |
+
log["inputs"] = x
|
426 |
+
|
427 |
+
# get diffusion row
|
428 |
+
diffusion_row = list()
|
429 |
+
x_start = x[:n_row]
|
430 |
+
|
431 |
+
for t in range(self.num_timesteps):
|
432 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
433 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
434 |
+
t = t.to(self.device).long()
|
435 |
+
noise = torch.randn_like(x_start)
|
436 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
437 |
+
diffusion_row.append(x_noisy)
|
438 |
+
|
439 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
440 |
+
|
441 |
+
if sample:
|
442 |
+
# get denoise row
|
443 |
+
with self.ema_scope("Plotting"):
|
444 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
445 |
+
|
446 |
+
log["samples"] = samples
|
447 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
448 |
+
|
449 |
+
if return_keys:
|
450 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
451 |
+
return log
|
452 |
+
else:
|
453 |
+
return {key: log[key] for key in return_keys}
|
454 |
+
return log
|
455 |
+
|
456 |
+
def configure_optimizers(self):
|
457 |
+
lr = self.learning_rate
|
458 |
+
params = list(self.model.parameters())
|
459 |
+
if self.learn_logvar:
|
460 |
+
params = params + [self.logvar]
|
461 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
462 |
+
return opt
|
463 |
+
|
464 |
+
|
465 |
+
class LatentDiffusion(DDPM):
|
466 |
+
"""main class"""
|
467 |
+
def __init__(self,
|
468 |
+
first_stage_config,
|
469 |
+
cond_stage_config,
|
470 |
+
num_timesteps_cond=None,
|
471 |
+
cond_stage_key="image",
|
472 |
+
cond_stage_trainable=False,
|
473 |
+
concat_mode=True,
|
474 |
+
cond_stage_forward=None,
|
475 |
+
conditioning_key=None,
|
476 |
+
scale_factor=1.0,
|
477 |
+
scale_shift=0.0,
|
478 |
+
scale_by_std=False,
|
479 |
+
use_3daware=False,
|
480 |
+
*args, **kwargs):
|
481 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
482 |
+
self.scale_by_std = scale_by_std
|
483 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
484 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
485 |
+
if conditioning_key is None:
|
486 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
487 |
+
if cond_stage_config == '__is_unconditional__':
|
488 |
+
conditioning_key = None
|
489 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
490 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
491 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
492 |
+
self.concat_mode = concat_mode
|
493 |
+
self.cond_stage_trainable = cond_stage_trainable
|
494 |
+
self.cond_stage_key = cond_stage_key
|
495 |
+
try:
|
496 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
497 |
+
except:
|
498 |
+
self.num_downs = 0
|
499 |
+
if not scale_by_std:
|
500 |
+
self.scale_factor = scale_factor
|
501 |
+
self.scale_shift = scale_shift
|
502 |
+
else:
|
503 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
504 |
+
self.instantiate_first_stage(first_stage_config)
|
505 |
+
# self.instantiate_cond_stage(cond_stage_config)
|
506 |
+
self.cond_stage_forward = cond_stage_forward
|
507 |
+
self.clip_denoised = False
|
508 |
+
self.bbox_tokenizer = None
|
509 |
+
|
510 |
+
self.restarted_from_ckpt = False
|
511 |
+
if ckpt_path is not None:
|
512 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
513 |
+
self.restarted_from_ckpt = True
|
514 |
+
|
515 |
+
self.use_3daware = use_3daware
|
516 |
+
|
517 |
+
self.is_test = False
|
518 |
+
|
519 |
+
self.test_mode = None
|
520 |
+
self.test_tag = ""
|
521 |
+
|
522 |
+
def make_cond_schedule(self, ):
|
523 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
524 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
525 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
526 |
+
|
527 |
+
@rank_zero_only
|
528 |
+
@torch.no_grad()
|
529 |
+
def on_train_batch_start(self, batch, batch_idx):
|
530 |
+
# only for very first batch
|
531 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
532 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
533 |
+
# set rescale weight to 1./std of encodings
|
534 |
+
print("### USING STD-RESCALING ###")
|
535 |
+
x = super().get_input(batch, self.first_stage_key)
|
536 |
+
x = x.to(self.device)
|
537 |
+
encoder_posterior = self.encode_first_stage(x)
|
538 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
539 |
+
del self.scale_factor
|
540 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
541 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
542 |
+
print("### USING STD-RESCALING ###")
|
543 |
+
|
544 |
+
def register_schedule(self,
|
545 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
546 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None):
|
547 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s, shift_scale)
|
548 |
+
|
549 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
550 |
+
if self.shorten_cond_schedule:
|
551 |
+
self.make_cond_schedule()
|
552 |
+
|
553 |
+
def instantiate_first_stage(self, config):
|
554 |
+
model = instantiate_from_config(config)
|
555 |
+
self.first_stage_model = model.eval()
|
556 |
+
self.first_stage_model.train = disabled_train
|
557 |
+
for param in self.first_stage_model.parameters():
|
558 |
+
param.requires_grad = False
|
559 |
+
|
560 |
+
def instantiate_cond_stage(self, config):
|
561 |
+
if not self.cond_stage_trainable:
|
562 |
+
if config == "__is_first_stage__":
|
563 |
+
print("Using first stage also as cond stage.")
|
564 |
+
self.cond_stage_model = self.first_stage_model
|
565 |
+
elif config == "__is_unconditional__":
|
566 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
567 |
+
self.cond_stage_model = None
|
568 |
+
# self.be_unconditional = True
|
569 |
+
else:
|
570 |
+
model = instantiate_from_config(config)
|
571 |
+
self.cond_stage_model = model.eval()
|
572 |
+
self.cond_stage_model.train = disabled_train
|
573 |
+
for param in self.cond_stage_model.parameters():
|
574 |
+
param.requires_grad = False
|
575 |
+
else:
|
576 |
+
assert config != '__is_first_stage__'
|
577 |
+
assert config != '__is_unconditional__'
|
578 |
+
model = instantiate_from_config(config)
|
579 |
+
self.cond_stage_model = model
|
580 |
+
|
581 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
582 |
+
denoise_row = []
|
583 |
+
for zd in tqdm(samples, desc=desc):
|
584 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
585 |
+
force_not_quantize=force_no_decoder_quantization))
|
586 |
+
n_imgs_per_row = len(denoise_row)
|
587 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
588 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
589 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
590 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
591 |
+
return denoise_grid
|
592 |
+
|
593 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
594 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
595 |
+
z = encoder_posterior.sample()
|
596 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
597 |
+
z = encoder_posterior
|
598 |
+
else:
|
599 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
600 |
+
return self.scale_factor * (z + self.scale_shift)
|
601 |
+
|
602 |
+
def get_learned_conditioning(self, c):
|
603 |
+
if self.cond_stage_forward is None:
|
604 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
605 |
+
c = self.cond_stage_model.encode(c)
|
606 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
607 |
+
c = c.mode()
|
608 |
+
else:
|
609 |
+
c = self.cond_stage_model(c).float()
|
610 |
+
else:
|
611 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
612 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
613 |
+
return c
|
614 |
+
|
615 |
+
def meshgrid(self, h, w):
|
616 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
617 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
618 |
+
|
619 |
+
arr = torch.cat([y, x], dim=-1)
|
620 |
+
return arr
|
621 |
+
|
622 |
+
def delta_border(self, h, w):
|
623 |
+
"""
|
624 |
+
:param h: height
|
625 |
+
:param w: width
|
626 |
+
:return: normalized distance to image border,
|
627 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
628 |
+
"""
|
629 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
630 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
631 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
632 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
633 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
634 |
+
return edge_dist
|
635 |
+
|
636 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
637 |
+
weighting = self.delta_border(h, w)
|
638 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
639 |
+
self.split_input_params["clip_max_weight"], )
|
640 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
641 |
+
|
642 |
+
if self.split_input_params["tie_braker"]:
|
643 |
+
L_weighting = self.delta_border(Ly, Lx)
|
644 |
+
L_weighting = torch.clip(L_weighting,
|
645 |
+
self.split_input_params["clip_min_tie_weight"],
|
646 |
+
self.split_input_params["clip_max_tie_weight"])
|
647 |
+
|
648 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
649 |
+
weighting = weighting * L_weighting
|
650 |
+
return weighting
|
651 |
+
|
652 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
653 |
+
"""
|
654 |
+
:param x: img of size (bs, c, h, w)
|
655 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
656 |
+
"""
|
657 |
+
bs, nc, h, w = x.shape
|
658 |
+
|
659 |
+
# number of crops in image
|
660 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
661 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
662 |
+
|
663 |
+
if uf == 1 and df == 1:
|
664 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
665 |
+
unfold = torch.nn.Unfold(**fold_params)
|
666 |
+
|
667 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
668 |
+
|
669 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
670 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
671 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
672 |
+
|
673 |
+
elif uf > 1 and df == 1:
|
674 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
675 |
+
unfold = torch.nn.Unfold(**fold_params)
|
676 |
+
|
677 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
678 |
+
dilation=1, padding=0,
|
679 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
680 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
681 |
+
|
682 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
683 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
684 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
685 |
+
|
686 |
+
elif df > 1 and uf == 1:
|
687 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
688 |
+
unfold = torch.nn.Unfold(**fold_params)
|
689 |
+
|
690 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
691 |
+
dilation=1, padding=0,
|
692 |
+
stride=(stride[0] // df, stride[1] // df))
|
693 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
694 |
+
|
695 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
696 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
697 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
698 |
+
|
699 |
+
else:
|
700 |
+
raise NotImplementedError
|
701 |
+
|
702 |
+
return fold, unfold, normalization, weighting
|
703 |
+
|
704 |
+
@torch.no_grad()
|
705 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
706 |
+
cond_key=None, return_original_cond=False, bs=None):
|
707 |
+
#ipdb.set_trace()
|
708 |
+
x = super().get_input(batch, k)
|
709 |
+
if bs is not None:
|
710 |
+
x = x[:bs]
|
711 |
+
#ipdb.set_trace()
|
712 |
+
z = x.to(self.device) #[:1,:8,:32,:96]
|
713 |
+
z = self.scale_factor * (z + self.scale_shift)
|
714 |
+
# encoder_posterior = self.encode_first_stage(x)
|
715 |
+
# z = self.get_first_stage_encoding(encoder_posterior).detach()
|
716 |
+
#ipdb.set_trace()
|
717 |
+
if self.model.conditioning_key is not None:
|
718 |
+
if cond_key is None:
|
719 |
+
cond_key = self.cond_stage_key
|
720 |
+
if cond_key != self.first_stage_key:
|
721 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
722 |
+
xc = batch[cond_key]
|
723 |
+
elif cond_key == 'class_label':
|
724 |
+
xc = batch
|
725 |
+
else:
|
726 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
727 |
+
else:
|
728 |
+
xc = x
|
729 |
+
#ipdb.set_trace()
|
730 |
+
c = xc
|
731 |
+
if bs is not None:
|
732 |
+
c = c[:bs]
|
733 |
+
|
734 |
+
if self.use_positional_encodings:
|
735 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
736 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
737 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
738 |
+
|
739 |
+
else:
|
740 |
+
c = None
|
741 |
+
xc = None
|
742 |
+
if self.use_positional_encodings:
|
743 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
744 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
745 |
+
out = [z, c]
|
746 |
+
if return_first_stage_outputs:
|
747 |
+
xrec = self.decode_first_stage(z)
|
748 |
+
out.extend([x, xrec])
|
749 |
+
if return_original_cond:
|
750 |
+
out.append(xc)
|
751 |
+
|
752 |
+
return out
|
753 |
+
|
754 |
+
@torch.no_grad()
|
755 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
756 |
+
# assert not predict_cids
|
757 |
+
# if predict_cids:
|
758 |
+
# if z.dim() == 4:
|
759 |
+
# z = torch.argmax(z.exp(), dim=1).long()
|
760 |
+
# z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
761 |
+
# z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
762 |
+
|
763 |
+
# import os
|
764 |
+
# import random
|
765 |
+
# import string
|
766 |
+
# z_np = z.detach().cpu().numpy()
|
767 |
+
# fname = ''.join(random.choices(string.ascii_uppercase + string.digits, k=8)) + '.npy'
|
768 |
+
# with open(os.path.join('/mnt/lustre/hongfangzhou.p/AE3D/tmp', fname), 'wb') as f:
|
769 |
+
# np.save(f, z_np)
|
770 |
+
|
771 |
+
z = 1. / self.scale_factor * z - self.scale_shift
|
772 |
+
|
773 |
+
# if hasattr(self, "split_input_params"):
|
774 |
+
# if self.split_input_params["patch_distributed_vq"]:
|
775 |
+
# ks = self.split_input_params["ks"] # eg. (128, 128)
|
776 |
+
# stride = self.split_input_params["stride"] # eg. (64, 64)
|
777 |
+
# uf = self.split_input_params["vqf"]
|
778 |
+
# bs, nc, h, w = z.shape
|
779 |
+
# if ks[0] > h or ks[1] > w:
|
780 |
+
# ks = (min(ks[0], h), min(ks[1], w))
|
781 |
+
# print("reducing Kernel")
|
782 |
+
|
783 |
+
# if stride[0] > h or stride[1] > w:
|
784 |
+
# stride = (min(stride[0], h), min(stride[1], w))
|
785 |
+
# print("reducing stride")
|
786 |
+
|
787 |
+
# fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
788 |
+
|
789 |
+
# z = unfold(z) # (bn, nc * prod(**ks), L)
|
790 |
+
# # 1. Reshape to img shape
|
791 |
+
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
792 |
+
|
793 |
+
# # 2. apply model loop over last dim
|
794 |
+
# if isinstance(self.first_stage_model, VQModelInterface):
|
795 |
+
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
796 |
+
# force_not_quantize=predict_cids or force_not_quantize)
|
797 |
+
# for i in range(z.shape[-1])]
|
798 |
+
# else:
|
799 |
+
|
800 |
+
# output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
801 |
+
# for i in range(z.shape[-1])]
|
802 |
+
|
803 |
+
# o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
804 |
+
# o = o * weighting
|
805 |
+
# # Reverse 1. reshape to img shape
|
806 |
+
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
807 |
+
# # stitch crops together
|
808 |
+
# decoded = fold(o)
|
809 |
+
# decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
810 |
+
# return decoded
|
811 |
+
# else:
|
812 |
+
# if isinstance(self.first_stage_model, VQModelInterface):
|
813 |
+
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
814 |
+
# else:
|
815 |
+
# return self.first_stage_model.decode(z)
|
816 |
+
|
817 |
+
# else:
|
818 |
+
# if isinstance(self.first_stage_model, VQModelInterface):
|
819 |
+
# return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
820 |
+
# else:
|
821 |
+
return self.first_stage_model.decode(z, unrollout=True)
|
822 |
+
|
823 |
+
# same as above but without decorator
|
824 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
825 |
+
if predict_cids:
|
826 |
+
if z.dim() == 4:
|
827 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
828 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
829 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
830 |
+
|
831 |
+
z = 1. / self.scale_factor * z - self.scale_shift
|
832 |
+
|
833 |
+
if hasattr(self, "split_input_params"):
|
834 |
+
if self.split_input_params["patch_distributed_vq"]:
|
835 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
836 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
837 |
+
uf = self.split_input_params["vqf"]
|
838 |
+
bs, nc, h, w = z.shape
|
839 |
+
if ks[0] > h or ks[1] > w:
|
840 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
841 |
+
print("reducing Kernel")
|
842 |
+
|
843 |
+
if stride[0] > h or stride[1] > w:
|
844 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
845 |
+
print("reducing stride")
|
846 |
+
|
847 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
848 |
+
|
849 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
850 |
+
# 1. Reshape to img shape
|
851 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
852 |
+
|
853 |
+
# 2. apply model loop over last dim
|
854 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
855 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
856 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
857 |
+
for i in range(z.shape[-1])]
|
858 |
+
else:
|
859 |
+
|
860 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
861 |
+
for i in range(z.shape[-1])]
|
862 |
+
|
863 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
864 |
+
o = o * weighting
|
865 |
+
# Reverse 1. reshape to img shape
|
866 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
867 |
+
# stitch crops together
|
868 |
+
decoded = fold(o)
|
869 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
870 |
+
return decoded
|
871 |
+
else:
|
872 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
873 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
874 |
+
else:
|
875 |
+
return self.first_stage_model.decode(z)
|
876 |
+
|
877 |
+
else:
|
878 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
879 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
880 |
+
else:
|
881 |
+
return self.first_stage_model.decode(z)
|
882 |
+
|
883 |
+
@torch.no_grad()
|
884 |
+
def encode_first_stage(self, x):
|
885 |
+
# if hasattr(self, "split_input_params"):
|
886 |
+
# if self.split_input_params["patch_distributed_vq"]:
|
887 |
+
# ks = self.split_input_params["ks"] # eg. (128, 128)
|
888 |
+
# stride = self.split_input_params["stride"] # eg. (64, 64)
|
889 |
+
# df = self.split_input_params["vqf"]
|
890 |
+
# self.split_input_params['original_image_size'] = x.shape[-2:]
|
891 |
+
# bs, nc, h, w = x.shape
|
892 |
+
# if ks[0] > h or ks[1] > w:
|
893 |
+
# ks = (min(ks[0], h), min(ks[1], w))
|
894 |
+
# print("reducing Kernel")
|
895 |
+
|
896 |
+
# if stride[0] > h or stride[1] > w:
|
897 |
+
# stride = (min(stride[0], h), min(stride[1], w))
|
898 |
+
# print("reducing stride")
|
899 |
+
|
900 |
+
# fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
901 |
+
# z = unfold(x) # (bn, nc * prod(**ks), L)
|
902 |
+
# # Reshape to img shape
|
903 |
+
# z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
904 |
+
|
905 |
+
# output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
906 |
+
# for i in range(z.shape[-1])]
|
907 |
+
|
908 |
+
# o = torch.stack(output_list, axis=-1)
|
909 |
+
# o = o * weighting
|
910 |
+
|
911 |
+
# # Reverse reshape to img shape
|
912 |
+
# o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
913 |
+
# # stitch crops together
|
914 |
+
# decoded = fold(o)
|
915 |
+
# decoded = decoded / normalization
|
916 |
+
# return decoded
|
917 |
+
|
918 |
+
# else:
|
919 |
+
# return self.first_stage_model.encode(x)
|
920 |
+
# else:
|
921 |
+
return self.first_stage_model.encode(x, rollout=True)
|
922 |
+
|
923 |
+
def shared_step(self, batch, **kwargs):
|
924 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
925 |
+
loss = self(x, c)
|
926 |
+
return loss
|
927 |
+
|
928 |
+
def forward(self, x, cond=None, return_inter=False, *args, **kwargs):
|
929 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
930 |
+
#ipdb.set_trace()
|
931 |
+
if self.model.conditioning_key is not None:
|
932 |
+
assert cond is not None
|
933 |
+
if self.cond_stage_trainable:
|
934 |
+
cond = self.get_learned_conditioning(cond)
|
935 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
936 |
+
tc = self.cond_ids[t].to(self.device)
|
937 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond.float()))
|
938 |
+
#ipdb.set_trace()
|
939 |
+
return self.p_losses(x, cond, t, return_inter=return_inter, *args, **kwargs)
|
940 |
+
|
941 |
+
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
942 |
+
def rescale_bbox(bbox):
|
943 |
+
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
944 |
+
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
945 |
+
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
946 |
+
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
947 |
+
return x0, y0, w, h
|
948 |
+
|
949 |
+
return [rescale_bbox(b) for b in bboxes]
|
950 |
+
|
951 |
+
def to3daware(self, triplane):
|
952 |
+
res = triplane.shape[-2]
|
953 |
+
plane1 = triplane[..., :res]
|
954 |
+
plane2 = triplane[..., res:2*res]
|
955 |
+
plane3 = triplane[..., 2*res:3*res]
|
956 |
+
|
957 |
+
x_mp = torch.nn.AvgPool2d((res, 1))
|
958 |
+
y_mp = torch.nn.AvgPool2d((1, res))
|
959 |
+
x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2)
|
960 |
+
y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2)
|
961 |
+
# for plane1
|
962 |
+
plane21 = x_mp_rep(plane2)
|
963 |
+
plane31 = torch.flip(y_mp_rep(plane3), (3,))
|
964 |
+
new_plane1 = torch.cat([plane1, plane21, plane31], 1)
|
965 |
+
# for plane2
|
966 |
+
plane12 = y_mp_rep(plane1)
|
967 |
+
plane32 = x_mp_rep(plane3)
|
968 |
+
new_plane2 = torch.cat([plane2, plane12, plane32], 1)
|
969 |
+
# for plane3
|
970 |
+
plane13 = torch.flip(x_mp_rep(plane1), (2,))
|
971 |
+
plane23 = y_mp_rep(plane2)
|
972 |
+
new_plane3 = torch.cat([plane3, plane13, plane23], 1)
|
973 |
+
|
974 |
+
new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous()
|
975 |
+
return new_plane
|
976 |
+
|
977 |
+
# B, C, H, W = h.shape
|
978 |
+
# h_xy = th.cat([h[..., 0:(W//3)], h[..., (W//3):(2*W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1)
|
979 |
+
# h_xz = th.cat([h[..., (W//3):(2*W//3)], h[..., 0:(W//3)].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3), h[..., (2*W//3):W].mean(-1).unsqueeze(-1).repeat(1, 1, 1, W//3)], 1)
|
980 |
+
# h_zy = th.cat([h[..., (2*W//3):W], h[..., 0:(W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1), h[..., (W//3):(2*W//3)].mean(-2).unsqueeze(-2).repeat(1, 1, H, 1)], 1)
|
981 |
+
# h = th.cat([h_xy, h_xz, h_zy], -1)
|
982 |
+
|
983 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
984 |
+
#ipdb.set_trace()
|
985 |
+
if isinstance(cond, dict):
|
986 |
+
# hybrid case, cond is exptected to be a dict
|
987 |
+
pass
|
988 |
+
else:
|
989 |
+
if not isinstance(cond, list):
|
990 |
+
cond = [cond]
|
991 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
992 |
+
cond = {key: cond}
|
993 |
+
|
994 |
+
if hasattr(self, "split_input_params"):
|
995 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
996 |
+
assert not return_ids
|
997 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
998 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
999 |
+
|
1000 |
+
h, w = x_noisy.shape[-2:]
|
1001 |
+
|
1002 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
1003 |
+
|
1004 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
1005 |
+
# Reshape to img shape
|
1006 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
1007 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
1008 |
+
|
1009 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
1010 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
1011 |
+
c_key = next(iter(cond.keys())) # get key
|
1012 |
+
c = next(iter(cond.values())) # get value
|
1013 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
1014 |
+
c = c[0] # get element
|
1015 |
+
|
1016 |
+
c = unfold(c)
|
1017 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
1018 |
+
|
1019 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
1020 |
+
|
1021 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
1022 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
1023 |
+
|
1024 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
1025 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
1026 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
1027 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
1028 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
1029 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
1030 |
+
rescale_latent = 2 ** (num_downs)
|
1031 |
+
|
1032 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
1033 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
1034 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
1035 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
1036 |
+
for patch_nr in range(z.shape[-1])]
|
1037 |
+
|
1038 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
1039 |
+
patch_limits = [(x_tl, y_tl,
|
1040 |
+
rescale_latent * ks[0] / full_img_w,
|
1041 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
1042 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
1043 |
+
|
1044 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
1045 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
1046 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
1047 |
+
print(patch_limits_tknzd[0].shape)
|
1048 |
+
# cut tknzd crop position from conditioning
|
1049 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
1050 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
1051 |
+
print(cut_cond.shape)
|
1052 |
+
|
1053 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
1054 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
1055 |
+
print(adapted_cond.shape)
|
1056 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
1057 |
+
print(adapted_cond.shape)
|
1058 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
1059 |
+
print(adapted_cond.shape)
|
1060 |
+
|
1061 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
1062 |
+
|
1063 |
+
else:
|
1064 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
1065 |
+
|
1066 |
+
# apply model by loop over crops
|
1067 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
1068 |
+
assert not isinstance(output_list[0],
|
1069 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
1070 |
+
|
1071 |
+
o = torch.stack(output_list, axis=-1)
|
1072 |
+
o = o * weighting
|
1073 |
+
# Reverse reshape to img shape
|
1074 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
1075 |
+
# stitch crops together
|
1076 |
+
x_recon = fold(o) / normalization
|
1077 |
+
|
1078 |
+
else:
|
1079 |
+
if self.use_3daware:
|
1080 |
+
x_noisy_3daware = self.to3daware(x_noisy)
|
1081 |
+
x_recon = self.model(x_noisy_3daware, t, **cond)
|
1082 |
+
else:
|
1083 |
+
x_recon = self.model(x_noisy, t, **cond)
|
1084 |
+
|
1085 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
1086 |
+
return x_recon[0]
|
1087 |
+
else:
|
1088 |
+
return x_recon
|
1089 |
+
|
1090 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
1091 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
1092 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
1093 |
+
|
1094 |
+
def _prior_bpd(self, x_start):
|
1095 |
+
"""
|
1096 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1097 |
+
bits-per-dim.
|
1098 |
+
This term can't be optimized, as it only depends on the encoder.
|
1099 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1100 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1101 |
+
"""
|
1102 |
+
batch_size = x_start.shape[0]
|
1103 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1104 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1105 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1106 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1107 |
+
|
1108 |
+
def p_losses(self, x_start, cond, t, noise=None, return_inter=False):
|
1109 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1110 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1111 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1112 |
+
|
1113 |
+
loss_dict = {}
|
1114 |
+
prefix = 'train' if self.training else 'val'
|
1115 |
+
|
1116 |
+
if self.parameterization == "x0":
|
1117 |
+
target = x_start
|
1118 |
+
elif self.parameterization == "eps":
|
1119 |
+
target = noise
|
1120 |
+
elif self.parameterization == "v":
|
1121 |
+
target = self.get_v(x_start, noise, t)
|
1122 |
+
else:
|
1123 |
+
raise NotImplementedError()
|
1124 |
+
|
1125 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1126 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1127 |
+
|
1128 |
+
logvar_t = self.logvar[t.to(self.logvar.device)].to(self.device)
|
1129 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1130 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1131 |
+
if self.learn_logvar:
|
1132 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1133 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1134 |
+
|
1135 |
+
loss = self.l_simple_weight * loss.mean()
|
1136 |
+
|
1137 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1138 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1139 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1140 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1141 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1142 |
+
|
1143 |
+
if return_inter:
|
1144 |
+
return loss, loss_dict, self.predict_start_from_noise(x_noisy, t=t, noise=model_output)
|
1145 |
+
else:
|
1146 |
+
return loss, loss_dict
|
1147 |
+
|
1148 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1149 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1150 |
+
t_in = t
|
1151 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1152 |
+
|
1153 |
+
if score_corrector is not None:
|
1154 |
+
assert self.parameterization == "eps"
|
1155 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1156 |
+
|
1157 |
+
if return_codebook_ids:
|
1158 |
+
model_out, logits = model_out
|
1159 |
+
|
1160 |
+
if self.parameterization == "eps":
|
1161 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1162 |
+
elif self.parameterization == "x0":
|
1163 |
+
x_recon = model_out
|
1164 |
+
elif self.parameterization == "v":
|
1165 |
+
x_recon = self.predict_start_from_z_and_v(x, t, model_out)
|
1166 |
+
else:
|
1167 |
+
raise NotImplementedError()
|
1168 |
+
|
1169 |
+
if clip_denoised:
|
1170 |
+
x_recon.clamp_(-1., 1.)
|
1171 |
+
if quantize_denoised:
|
1172 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1173 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1174 |
+
if return_codebook_ids:
|
1175 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1176 |
+
elif return_x0:
|
1177 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1178 |
+
else:
|
1179 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1180 |
+
|
1181 |
+
@torch.no_grad()
|
1182 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1183 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1184 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1185 |
+
b, *_, device = *x.shape, x.device
|
1186 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1187 |
+
return_codebook_ids=return_codebook_ids,
|
1188 |
+
quantize_denoised=quantize_denoised,
|
1189 |
+
return_x0=return_x0,
|
1190 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1191 |
+
if return_codebook_ids:
|
1192 |
+
raise DeprecationWarning("Support dropped.")
|
1193 |
+
model_mean, _, model_log_variance, logits = outputs
|
1194 |
+
elif return_x0:
|
1195 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1196 |
+
else:
|
1197 |
+
model_mean, _, model_log_variance = outputs
|
1198 |
+
|
1199 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1200 |
+
if noise_dropout > 0.:
|
1201 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1202 |
+
# no noise when t == 0
|
1203 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1204 |
+
|
1205 |
+
if return_codebook_ids:
|
1206 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1207 |
+
if return_x0:
|
1208 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1209 |
+
else:
|
1210 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1211 |
+
|
1212 |
+
@torch.no_grad()
|
1213 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1214 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1215 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1216 |
+
log_every_t=None):
|
1217 |
+
if not log_every_t:
|
1218 |
+
log_every_t = self.log_every_t
|
1219 |
+
timesteps = self.num_timesteps
|
1220 |
+
if batch_size is not None:
|
1221 |
+
b = batch_size if batch_size is not None else shape[0]
|
1222 |
+
shape = [batch_size] + list(shape)
|
1223 |
+
else:
|
1224 |
+
b = batch_size = shape[0]
|
1225 |
+
if x_T is None:
|
1226 |
+
img = torch.randn(shape, device=self.device)
|
1227 |
+
else:
|
1228 |
+
img = x_T
|
1229 |
+
intermediates = []
|
1230 |
+
if cond is not None:
|
1231 |
+
if isinstance(cond, dict):
|
1232 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1233 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1234 |
+
else:
|
1235 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1236 |
+
|
1237 |
+
if start_T is not None:
|
1238 |
+
timesteps = min(timesteps, start_T)
|
1239 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1240 |
+
total=timesteps) if verbose else reversed(
|
1241 |
+
range(0, timesteps))
|
1242 |
+
if type(temperature) == float:
|
1243 |
+
temperature = [temperature] * timesteps
|
1244 |
+
|
1245 |
+
for i in iterator:
|
1246 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1247 |
+
if self.shorten_cond_schedule:
|
1248 |
+
assert self.model.conditioning_key != 'hybrid'
|
1249 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1250 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1251 |
+
|
1252 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1253 |
+
clip_denoised=self.clip_denoised,
|
1254 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1255 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1256 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1257 |
+
if mask is not None:
|
1258 |
+
assert x0 is not None
|
1259 |
+
img_orig = self.q_sample(x0, ts)
|
1260 |
+
img = img_orig * mask + (1. - mask) * img
|
1261 |
+
|
1262 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1263 |
+
intermediates.append(x0_partial)
|
1264 |
+
if callback: callback(i)
|
1265 |
+
if img_callback: img_callback(img, i)
|
1266 |
+
return img, intermediates
|
1267 |
+
|
1268 |
+
@torch.no_grad()
|
1269 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1270 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1271 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1272 |
+
log_every_t=None):
|
1273 |
+
|
1274 |
+
if not log_every_t:
|
1275 |
+
log_every_t = self.log_every_t
|
1276 |
+
device = self.betas.device
|
1277 |
+
b = shape[0]
|
1278 |
+
if x_T is None:
|
1279 |
+
img = torch.randn(shape, device=device)
|
1280 |
+
else:
|
1281 |
+
img = x_T
|
1282 |
+
|
1283 |
+
intermediates = [img]
|
1284 |
+
if timesteps is None:
|
1285 |
+
timesteps = self.num_timesteps
|
1286 |
+
|
1287 |
+
if start_T is not None:
|
1288 |
+
timesteps = min(timesteps, start_T)
|
1289 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1290 |
+
range(0, timesteps))
|
1291 |
+
|
1292 |
+
if mask is not None:
|
1293 |
+
assert x0 is not None
|
1294 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1295 |
+
|
1296 |
+
for i in iterator:
|
1297 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1298 |
+
if self.shorten_cond_schedule:
|
1299 |
+
assert self.model.conditioning_key != 'hybrid'
|
1300 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1301 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1302 |
+
|
1303 |
+
# if self.is_test and i % 50 == 0:
|
1304 |
+
# decode_res = self.decode_first_stage(img)
|
1305 |
+
# rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1306 |
+
# decode_res, self.batch_rays, self.batch_img,
|
1307 |
+
# )
|
1308 |
+
# rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
1309 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_{}.png".format(i)), rgb_sample)
|
1310 |
+
# colorize_res = self.first_stage_model.to_rgb(img)
|
1311 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "sample_process_latent_{}.png".format(i)), colorize_res[0])
|
1312 |
+
|
1313 |
+
img = self.p_sample(img, cond, ts,
|
1314 |
+
clip_denoised=self.clip_denoised,
|
1315 |
+
quantize_denoised=quantize_denoised)
|
1316 |
+
if mask is not None:
|
1317 |
+
img_orig = self.q_sample(x0, ts)
|
1318 |
+
img = img_orig * mask + (1. - mask) * img
|
1319 |
+
|
1320 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1321 |
+
intermediates.append(img)
|
1322 |
+
if callback: callback(i)
|
1323 |
+
if img_callback: img_callback(img, i)
|
1324 |
+
|
1325 |
+
if return_intermediates:
|
1326 |
+
return img, intermediates
|
1327 |
+
return img
|
1328 |
+
|
1329 |
+
@torch.no_grad()
|
1330 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1331 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1332 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1333 |
+
if shape is None:
|
1334 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size * 3)
|
1335 |
+
if cond is not None:
|
1336 |
+
if isinstance(cond, dict):
|
1337 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1338 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1339 |
+
else:
|
1340 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1341 |
+
return self.p_sample_loop(cond,
|
1342 |
+
shape,
|
1343 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1344 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1345 |
+
mask=mask, x0=x0)
|
1346 |
+
|
1347 |
+
@torch.no_grad()
|
1348 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1349 |
+
|
1350 |
+
if ddim:
|
1351 |
+
ddim_sampler = DDIMSampler(self)
|
1352 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1353 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1354 |
+
shape,cond,verbose=False,**kwargs)
|
1355 |
+
|
1356 |
+
else:
|
1357 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1358 |
+
return_intermediates=True,**kwargs)
|
1359 |
+
|
1360 |
+
return samples, intermediates
|
1361 |
+
|
1362 |
+
@torch.no_grad()
|
1363 |
+
def validation_step(self, batch, batch_idx):
|
1364 |
+
# x, c = self.get_input(batch, self.first_stage_key)
|
1365 |
+
# self.batch_rays = batch['batch_rays'][0][1:2]
|
1366 |
+
# self.batch_img = batch['img'][0][1:2]
|
1367 |
+
# self.is_test = True
|
1368 |
+
# self.test_schedule(x[0:1])
|
1369 |
+
# exit(0)
|
1370 |
+
|
1371 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
1372 |
+
with self.ema_scope():
|
1373 |
+
# _, loss_dict_ema = self.shared_step(batch)
|
1374 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
1375 |
+
_, loss_dict_ema, inter_res = self(x, c, return_inter=True)
|
1376 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
1377 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
1378 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
1379 |
+
|
1380 |
+
if batch_idx < 2:
|
1381 |
+
if self.num_timesteps < 1000:
|
1382 |
+
x_T = self.q_sample(x_start=x[0:1], t=torch.full((1,), self.num_timesteps-1, device=x.device, dtype=torch.long), noise=torch.randn_like(x[0:1]))
|
1383 |
+
print("Specifying x_T when sampling!")
|
1384 |
+
else:
|
1385 |
+
x_T = None
|
1386 |
+
with self.ema_scope():
|
1387 |
+
res = self.sample(c, 1, shape=x[0:1].shape, x_T = x_T)
|
1388 |
+
decode_res = self.decode_first_stage(res)
|
1389 |
+
decode_input = self.decode_first_stage(x[:1])
|
1390 |
+
decode_output = self.decode_first_stage(inter_res[:1])
|
1391 |
+
|
1392 |
+
colorize_res = self.first_stage_model.to_rgb(res)[0]
|
1393 |
+
colorize_x = self.first_stage_model.to_rgb(x[:1])[0]
|
1394 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0])
|
1395 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0])
|
1396 |
+
|
1397 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1398 |
+
decode_res, batch['batch_rays'][0], batch['img'][0],
|
1399 |
+
)
|
1400 |
+
rgb_input, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1401 |
+
decode_input, batch['batch_rays'][0], batch['img'][0],
|
1402 |
+
)
|
1403 |
+
rgb_output, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1404 |
+
decode_output, batch['batch_rays'][0], batch['img'][0],
|
1405 |
+
)
|
1406 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())
|
1407 |
+
rgb_input = to8b(rgb_input.detach().cpu().numpy())
|
1408 |
+
rgb_output = to8b(rgb_output.detach().cpu().numpy())
|
1409 |
+
|
1410 |
+
if rgb_sample.shape[0] == 1:
|
1411 |
+
rgb_all = np.concatenate([rgb_sample[0], rgb_input[0], rgb_output[0]], 1)
|
1412 |
+
else:
|
1413 |
+
rgb_all = np.concatenate([rgb_sample[1], rgb_input[1], rgb_output[1]], 1)
|
1414 |
+
|
1415 |
+
|
1416 |
+
if self.model.conditioning_key is not None:
|
1417 |
+
if self.cond_stage_key == 'img_cond':
|
1418 |
+
cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0)
|
1419 |
+
rgb_all = np.concatenate([rgb_all, to8b(cond_img.cpu().numpy())], 1)
|
1420 |
+
elif 'caption' in self.cond_stage_key:
|
1421 |
+
import cv2
|
1422 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
1423 |
+
# org
|
1424 |
+
org = (50, 50)
|
1425 |
+
# fontScale
|
1426 |
+
fontScale = 1
|
1427 |
+
# Blue color in BGR
|
1428 |
+
color = (255, 0, 0)
|
1429 |
+
# Line thickness of 2 px
|
1430 |
+
thickness = 2
|
1431 |
+
caption = super().get_input(batch, 'caption')[0]
|
1432 |
+
break_caption = []
|
1433 |
+
for i in range(len(caption) // 30 + 1):
|
1434 |
+
break_caption_i = caption[i*30:(i+1)*30]
|
1435 |
+
break_caption.append(break_caption_i)
|
1436 |
+
for i, bci in enumerate(break_caption):
|
1437 |
+
cv2.putText(rgb_all, bci, (50, 50*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
|
1438 |
+
|
1439 |
+
self.logger.experiment.log({
|
1440 |
+
"val/vis": [wandb.Image(rgb_all)],
|
1441 |
+
"val/colorize_rse": [wandb.Image(colorize_res)],
|
1442 |
+
"val/colorize_x": [wandb.Image(colorize_x)],
|
1443 |
+
})
|
1444 |
+
|
1445 |
+
@torch.no_grad()
|
1446 |
+
def test_schedule(self, x_start, freq=50):
|
1447 |
+
noise = torch.randn_like(x_start)
|
1448 |
+
img_list = []
|
1449 |
+
latent_list = []
|
1450 |
+
for t in tqdm(range(self.num_timesteps)):
|
1451 |
+
if t % freq == 0:
|
1452 |
+
t_long = torch.Tensor([t,]).long().to(x_start.device)
|
1453 |
+
x_noisy = self.q_sample(x_start=x_start, t=t_long, noise=noise)
|
1454 |
+
decode_res = self.decode_first_stage(x_noisy)
|
1455 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1456 |
+
decode_res, self.batch_rays, self.batch_img,
|
1457 |
+
)
|
1458 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
1459 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}.png".format(t)), rgb_sample)
|
1460 |
+
colorize_res = self.first_stage_model.to_rgb(x_noisy)
|
1461 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}.png".format(t)), colorize_res[0])
|
1462 |
+
img_list.append(rgb_sample)
|
1463 |
+
latent_list.append(colorize_res[0])
|
1464 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(img_list, 1))
|
1465 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "add_noise_latent_{}_{}_{}_{}.png".format(self.linear_start, self.linear_end, self.beta_schedule, self.scale_factor)), np.concatenate(latent_list, 1))
|
1466 |
+
|
1467 |
+
@torch.no_grad()
|
1468 |
+
def test_step(self, batch, batch_idx):
|
1469 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
1470 |
+
if self.test_mode == 'fid':
|
1471 |
+
bs = x.shape[0]
|
1472 |
+
else:
|
1473 |
+
bs = 1
|
1474 |
+
if self.test_mode == 'noise_schedule':
|
1475 |
+
self.batch_rays = batch['batch_rays'][0][33:34]
|
1476 |
+
self.batch_img = batch['img'][0][33:34]
|
1477 |
+
self.is_test = True
|
1478 |
+
self.test_schedule(x)
|
1479 |
+
exit(0)
|
1480 |
+
with self.ema_scope():
|
1481 |
+
if c is not None:
|
1482 |
+
res = self.sample(c[:bs], bs, shape=x[0:bs].shape)
|
1483 |
+
else:
|
1484 |
+
res = self.sample(None, bs, shape=x[0:bs].shape)
|
1485 |
+
decode_res = self.decode_first_stage(res)
|
1486 |
+
if self.test_mode == 'fid':
|
1487 |
+
folder = os.path.join(self.logger.log_dir, 'FID_' + self.test_tag)
|
1488 |
+
if not os.path.exists(folder):
|
1489 |
+
os.makedirs(folder, exist_ok=True)
|
1490 |
+
rgb_sample_list = []
|
1491 |
+
for b in range(bs):
|
1492 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1493 |
+
decode_res[b:b+1], batch['batch_rays'][b], batch['img'][b],
|
1494 |
+
)
|
1495 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())
|
1496 |
+
rgb_sample_list.append(rgb_sample)
|
1497 |
+
for i in range(len(rgb_sample_list)):
|
1498 |
+
for v in range(rgb_sample_list[i].shape[0]):
|
1499 |
+
imageio.imwrite(os.path.join(folder, "sample_{}_{}_{}.png".format(batch_idx, i, v)), rgb_sample_list[i][v])
|
1500 |
+
elif self.test_mode == 'sample':
|
1501 |
+
colorize_res = self.first_stage_model.to_rgb(res)
|
1502 |
+
colorize_x = self.first_stage_model.to_rgb(x[:1])
|
1503 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.png".format(batch_idx, 0)), colorize_res[0])
|
1504 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "gt_{}_{}.png".format(batch_idx, 0)), colorize_x[0])
|
1505 |
+
if self.model.conditioning_key is not None:
|
1506 |
+
cond_img = super().get_input(batch, self.cond_stage_key)[0].permute(1, 2, 0)
|
1507 |
+
cond_img = to8b(cond_img.cpu().numpy())
|
1508 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "cond_{}_{}.png".format(batch_idx, 0)), cond_img)
|
1509 |
+
for b in range(bs):
|
1510 |
+
video = []
|
1511 |
+
for v in tqdm(range(batch['batch_rays'].shape[1])):
|
1512 |
+
rgb_sample, _ = self.first_stage_model.render_triplane_eg3d_decoder(
|
1513 |
+
decode_res[b:b+1], batch['batch_rays'][0][v:v+1], batch['img'][0][v:v+1],
|
1514 |
+
)
|
1515 |
+
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
|
1516 |
+
video.append(rgb_sample)
|
1517 |
+
imageio.mimwrite(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b)), video, fps=24)
|
1518 |
+
print("Saving to {}".format(os.path.join(self.logger.log_dir, "sample_{}_{}.mp4".format(batch_idx, b))))
|
1519 |
+
|
1520 |
+
@torch.no_grad()
|
1521 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1522 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1523 |
+
plot_diffusion_rows=True, **kwargs):
|
1524 |
+
|
1525 |
+
use_ddim = ddim_steps is not None
|
1526 |
+
|
1527 |
+
log = dict()
|
1528 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1529 |
+
return_first_stage_outputs=True,
|
1530 |
+
force_c_encode=True,
|
1531 |
+
return_original_cond=True,
|
1532 |
+
bs=N)
|
1533 |
+
N = min(x.shape[0], N)
|
1534 |
+
n_row = min(x.shape[0], n_row)
|
1535 |
+
log["inputs"] = x
|
1536 |
+
log["reconstruction"] = xrec
|
1537 |
+
if self.model.conditioning_key is not None:
|
1538 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1539 |
+
xc = self.cond_stage_model.decode(c)
|
1540 |
+
log["conditioning"] = xc
|
1541 |
+
elif self.cond_stage_key in ["caption"]:
|
1542 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1543 |
+
log["conditioning"] = xc
|
1544 |
+
elif self.cond_stage_key == 'class_label':
|
1545 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1546 |
+
log['conditioning'] = xc
|
1547 |
+
elif isimage(xc):
|
1548 |
+
log["conditioning"] = xc
|
1549 |
+
if ismap(xc):
|
1550 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1551 |
+
|
1552 |
+
if plot_diffusion_rows:
|
1553 |
+
# get diffusion row
|
1554 |
+
diffusion_row = list()
|
1555 |
+
z_start = z[:n_row]
|
1556 |
+
for t in range(self.num_timesteps):
|
1557 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1558 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1559 |
+
t = t.to(self.device).long()
|
1560 |
+
noise = torch.randn_like(z_start)
|
1561 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1562 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1563 |
+
|
1564 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1565 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1566 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1567 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1568 |
+
log["diffusion_row"] = diffusion_grid
|
1569 |
+
|
1570 |
+
if sample:
|
1571 |
+
# get denoise row
|
1572 |
+
with self.ema_scope("Plotting"):
|
1573 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1574 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1575 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1576 |
+
x_samples = self.decode_first_stage(samples)
|
1577 |
+
log["samples"] = x_samples
|
1578 |
+
if plot_denoise_rows:
|
1579 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1580 |
+
log["denoise_row"] = denoise_grid
|
1581 |
+
|
1582 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1583 |
+
self.first_stage_model, IdentityFirstStage):
|
1584 |
+
# also display when quantizing x0 while sampling
|
1585 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1586 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1587 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1588 |
+
quantize_denoised=True)
|
1589 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1590 |
+
# quantize_denoised=True)
|
1591 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1592 |
+
log["samples_x0_quantized"] = x_samples
|
1593 |
+
|
1594 |
+
if inpaint:
|
1595 |
+
# make a simple center square
|
1596 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1597 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1598 |
+
# zeros will be filled in
|
1599 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1600 |
+
mask = mask[:, None, ...]
|
1601 |
+
with self.ema_scope("Plotting Inpaint"):
|
1602 |
+
|
1603 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1604 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1605 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1606 |
+
log["samples_inpainting"] = x_samples
|
1607 |
+
log["mask"] = mask
|
1608 |
+
|
1609 |
+
# outpaint
|
1610 |
+
with self.ema_scope("Plotting Outpaint"):
|
1611 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1612 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1613 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1614 |
+
log["samples_outpainting"] = x_samples
|
1615 |
+
|
1616 |
+
if plot_progressive_rows:
|
1617 |
+
with self.ema_scope("Plotting Progressives"):
|
1618 |
+
img, progressives = self.progressive_denoising(c,
|
1619 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1620 |
+
batch_size=N)
|
1621 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1622 |
+
log["progressive_row"] = prog_row
|
1623 |
+
|
1624 |
+
if return_keys:
|
1625 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1626 |
+
return log
|
1627 |
+
else:
|
1628 |
+
return {key: log[key] for key in return_keys}
|
1629 |
+
return log
|
1630 |
+
|
1631 |
+
def configure_optimizers(self):
|
1632 |
+
lr = self.learning_rate
|
1633 |
+
params = list(self.model.parameters())
|
1634 |
+
if self.cond_stage_trainable:
|
1635 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1636 |
+
params = params + list(self.cond_stage_model.parameters())
|
1637 |
+
if self.learn_logvar:
|
1638 |
+
print('Diffusion model optimizing logvar')
|
1639 |
+
params.append(self.logvar)
|
1640 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1641 |
+
if self.use_scheduler:
|
1642 |
+
assert 'target' in self.scheduler_config
|
1643 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1644 |
+
|
1645 |
+
print("Setting up LambdaLR scheduler...")
|
1646 |
+
scheduler = [
|
1647 |
+
{
|
1648 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1649 |
+
'interval': 'step',
|
1650 |
+
'frequency': 1
|
1651 |
+
}]
|
1652 |
+
return [opt], scheduler
|
1653 |
+
return opt
|
1654 |
+
|
1655 |
+
@torch.no_grad()
|
1656 |
+
def to_rgb(self, x):
|
1657 |
+
x = x.float()
|
1658 |
+
if not hasattr(self, "colorize"):
|
1659 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1660 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1661 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1662 |
+
return x
|
1663 |
+
|
1664 |
+
|
1665 |
+
|
1666 |
+
class DiffusionWrapper(pl.LightningModule):
|
1667 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1668 |
+
super().__init__()
|
1669 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1670 |
+
self.conditioning_key = conditioning_key
|
1671 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
1672 |
+
|
1673 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
1674 |
+
if self.conditioning_key is None:
|
1675 |
+
out = self.diffusion_model(x, t)
|
1676 |
+
elif self.conditioning_key == 'concat':
|
1677 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1678 |
+
out = self.diffusion_model(xc, t)
|
1679 |
+
elif self.conditioning_key == 'crossattn':
|
1680 |
+
cc = torch.cat(c_crossattn, 1)
|
1681 |
+
out = self.diffusion_model(x, t, context=cc)
|
1682 |
+
elif self.conditioning_key == 'hybrid':
|
1683 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1684 |
+
cc = torch.cat(c_crossattn, 1)
|
1685 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1686 |
+
elif self.conditioning_key == 'adm':
|
1687 |
+
cc = c_crossattn[0]
|
1688 |
+
out = self.diffusion_model(x, t, y=cc)
|
1689 |
+
else:
|
1690 |
+
raise NotImplementedError()
|
1691 |
+
|
1692 |
+
return out
|
1693 |
+
|
1694 |
+
|
1695 |
+
class Layout2ImgDiffusion(LatentDiffusion):
|
1696 |
+
# TODO: move all layout-specific hacks to this class
|
1697 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1698 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1699 |
+
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1700 |
+
|
1701 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1702 |
+
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1703 |
+
|
1704 |
+
key = 'train' if self.training else 'validation'
|
1705 |
+
dset = self.trainer.datamodule.datasets[key]
|
1706 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1707 |
+
|
1708 |
+
bbox_imgs = []
|
1709 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1710 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1711 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1712 |
+
bbox_imgs.append(bboximg)
|
1713 |
+
|
1714 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1715 |
+
logs['bbox_image'] = cond_img
|
1716 |
+
return logs
|
3DTopia/ldm/models/diffusion/dpm_solver/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .sampler import DPMSolverSampler
|
3DTopia/ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
@@ -0,0 +1,1184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
class NoiseScheduleVP:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
schedule='discrete',
|
10 |
+
betas=None,
|
11 |
+
alphas_cumprod=None,
|
12 |
+
continuous_beta_0=0.1,
|
13 |
+
continuous_beta_1=20.,
|
14 |
+
):
|
15 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
16 |
+
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
|
22 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
23 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
24 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
25 |
+
|
26 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
27 |
+
sigma_t = self.marginal_std(t)
|
28 |
+
lambda_t = self.marginal_lambda(t)
|
29 |
+
|
30 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
31 |
+
|
32 |
+
t = self.inverse_lambda(lambda_t)
|
33 |
+
|
34 |
+
===============================================================
|
35 |
+
|
36 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
37 |
+
|
38 |
+
1. For discrete-time DPMs:
|
39 |
+
|
40 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
41 |
+
t_i = (i + 1) / N
|
42 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
43 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
47 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
48 |
+
|
49 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
50 |
+
|
51 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
52 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
53 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
54 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
55 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
56 |
+
and
|
57 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
58 |
+
|
59 |
+
|
60 |
+
2. For continuous-time DPMs:
|
61 |
+
|
62 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
63 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
64 |
+
|
65 |
+
Args:
|
66 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
67 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
68 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
69 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
70 |
+
T: A `float` number. The ending time of the forward process.
|
71 |
+
|
72 |
+
===============================================================
|
73 |
+
|
74 |
+
Args:
|
75 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
76 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
77 |
+
Returns:
|
78 |
+
A wrapper object of the forward SDE (VP type).
|
79 |
+
|
80 |
+
===============================================================
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
85 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
86 |
+
|
87 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
88 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
89 |
+
|
90 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
91 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
92 |
+
|
93 |
+
"""
|
94 |
+
|
95 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
96 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
97 |
+
|
98 |
+
self.schedule = schedule
|
99 |
+
if schedule == 'discrete':
|
100 |
+
if betas is not None:
|
101 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
102 |
+
else:
|
103 |
+
assert alphas_cumprod is not None
|
104 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
105 |
+
self.total_N = len(log_alphas)
|
106 |
+
self.T = 1.
|
107 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
108 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
109 |
+
else:
|
110 |
+
self.total_N = 1000
|
111 |
+
self.beta_0 = continuous_beta_0
|
112 |
+
self.beta_1 = continuous_beta_1
|
113 |
+
self.cosine_s = 0.008
|
114 |
+
self.cosine_beta_max = 999.
|
115 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
116 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
+
self.schedule = schedule
|
118 |
+
if schedule == 'cosine':
|
119 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
120 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
121 |
+
self.T = 0.9946
|
122 |
+
else:
|
123 |
+
self.T = 1.
|
124 |
+
|
125 |
+
def marginal_log_mean_coeff(self, t):
|
126 |
+
"""
|
127 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
128 |
+
"""
|
129 |
+
if self.schedule == 'discrete':
|
130 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
131 |
+
elif self.schedule == 'linear':
|
132 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
133 |
+
elif self.schedule == 'cosine':
|
134 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
135 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
136 |
+
return log_alpha_t
|
137 |
+
|
138 |
+
def marginal_alpha(self, t):
|
139 |
+
"""
|
140 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
141 |
+
"""
|
142 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
143 |
+
|
144 |
+
def marginal_std(self, t):
|
145 |
+
"""
|
146 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
147 |
+
"""
|
148 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
149 |
+
|
150 |
+
def marginal_lambda(self, t):
|
151 |
+
"""
|
152 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
153 |
+
"""
|
154 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
155 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
156 |
+
return log_mean_coeff - log_std
|
157 |
+
|
158 |
+
def inverse_lambda(self, lamb):
|
159 |
+
"""
|
160 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
161 |
+
"""
|
162 |
+
if self.schedule == 'linear':
|
163 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
164 |
+
Delta = self.beta_0**2 + tmp
|
165 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
166 |
+
elif self.schedule == 'discrete':
|
167 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
168 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
169 |
+
return t.reshape((-1,))
|
170 |
+
else:
|
171 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
172 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
173 |
+
t = t_fn(log_alpha)
|
174 |
+
return t
|
175 |
+
|
176 |
+
|
177 |
+
def model_wrapper(
|
178 |
+
model,
|
179 |
+
noise_schedule,
|
180 |
+
model_type="noise",
|
181 |
+
model_kwargs={},
|
182 |
+
guidance_type="uncond",
|
183 |
+
condition=None,
|
184 |
+
unconditional_condition=None,
|
185 |
+
guidance_scale=1.,
|
186 |
+
classifier_fn=None,
|
187 |
+
classifier_kwargs={},
|
188 |
+
):
|
189 |
+
"""Create a wrapper function for the noise prediction model.
|
190 |
+
|
191 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
192 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
193 |
+
|
194 |
+
We support four types of the diffusion model by setting `model_type`:
|
195 |
+
|
196 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
197 |
+
|
198 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
199 |
+
|
200 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
201 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
202 |
+
|
203 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
204 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
205 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
206 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
207 |
+
|
208 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
209 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
210 |
+
```
|
211 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
212 |
+
```
|
213 |
+
|
214 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
215 |
+
1. "uncond": unconditional sampling by DPMs.
|
216 |
+
The input `model` has the following format:
|
217 |
+
``
|
218 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
219 |
+
``
|
220 |
+
|
221 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
222 |
+
The input `model` has the following format:
|
223 |
+
``
|
224 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
225 |
+
``
|
226 |
+
|
227 |
+
The input `classifier_fn` has the following format:
|
228 |
+
``
|
229 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
230 |
+
``
|
231 |
+
|
232 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
233 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
234 |
+
|
235 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
236 |
+
The input `model` has the following format:
|
237 |
+
``
|
238 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
239 |
+
``
|
240 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
241 |
+
|
242 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
243 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
244 |
+
|
245 |
+
|
246 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
247 |
+
or continuous-time labels (i.e. epsilon to T).
|
248 |
+
|
249 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
250 |
+
``
|
251 |
+
def model_fn(x, t_continuous) -> noise:
|
252 |
+
t_input = get_model_input_time(t_continuous)
|
253 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
254 |
+
``
|
255 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
256 |
+
|
257 |
+
===============================================================
|
258 |
+
|
259 |
+
Args:
|
260 |
+
model: A diffusion model with the corresponding format described above.
|
261 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
262 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
263 |
+
"noise" or "x_start" or "v" or "score".
|
264 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
265 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
266 |
+
"uncond" or "classifier" or "classifier-free".
|
267 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
268 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
269 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
270 |
+
Only used for "classifier-free" guidance type.
|
271 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
272 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
273 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
274 |
+
Returns:
|
275 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
276 |
+
"""
|
277 |
+
|
278 |
+
def get_model_input_time(t_continuous):
|
279 |
+
"""
|
280 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
281 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
282 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
283 |
+
"""
|
284 |
+
if noise_schedule.schedule == 'discrete':
|
285 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
286 |
+
else:
|
287 |
+
return t_continuous
|
288 |
+
|
289 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
290 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
291 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
292 |
+
t_input = get_model_input_time(t_continuous)
|
293 |
+
if cond is None:
|
294 |
+
output = model(x, t_input, **model_kwargs)
|
295 |
+
else:
|
296 |
+
output = model(x, t_input, cond, **model_kwargs)
|
297 |
+
if model_type == "noise":
|
298 |
+
return output
|
299 |
+
elif model_type == "x_start":
|
300 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
301 |
+
dims = x.dim()
|
302 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
303 |
+
elif model_type == "v":
|
304 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
305 |
+
dims = x.dim()
|
306 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
307 |
+
elif model_type == "score":
|
308 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
309 |
+
dims = x.dim()
|
310 |
+
return -expand_dims(sigma_t, dims) * output
|
311 |
+
|
312 |
+
def cond_grad_fn(x, t_input):
|
313 |
+
"""
|
314 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
315 |
+
"""
|
316 |
+
with torch.enable_grad():
|
317 |
+
x_in = x.detach().requires_grad_(True)
|
318 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
319 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
320 |
+
|
321 |
+
def model_fn(x, t_continuous):
|
322 |
+
"""
|
323 |
+
The noise predicition model function that is used for DPM-Solver.
|
324 |
+
"""
|
325 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
326 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
327 |
+
if guidance_type == "uncond":
|
328 |
+
return noise_pred_fn(x, t_continuous)
|
329 |
+
elif guidance_type == "classifier":
|
330 |
+
assert classifier_fn is not None
|
331 |
+
t_input = get_model_input_time(t_continuous)
|
332 |
+
cond_grad = cond_grad_fn(x, t_input)
|
333 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
334 |
+
noise = noise_pred_fn(x, t_continuous)
|
335 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
336 |
+
elif guidance_type == "classifier-free":
|
337 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
338 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
339 |
+
else:
|
340 |
+
x_in = torch.cat([x] * 2)
|
341 |
+
t_in = torch.cat([t_continuous] * 2)
|
342 |
+
c_in = torch.cat([unconditional_condition, condition])
|
343 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
344 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
345 |
+
|
346 |
+
assert model_type in ["noise", "x_start", "v"]
|
347 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
348 |
+
return model_fn
|
349 |
+
|
350 |
+
|
351 |
+
class DPM_Solver:
|
352 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
353 |
+
"""Construct a DPM-Solver.
|
354 |
+
|
355 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
356 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
357 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
358 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
359 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
363 |
+
``
|
364 |
+
def model_fn(x, t_continuous):
|
365 |
+
return noise
|
366 |
+
``
|
367 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
368 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
369 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
370 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
371 |
+
|
372 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
373 |
+
"""
|
374 |
+
self.model = model_fn
|
375 |
+
self.noise_schedule = noise_schedule
|
376 |
+
self.predict_x0 = predict_x0
|
377 |
+
self.thresholding = thresholding
|
378 |
+
self.max_val = max_val
|
379 |
+
|
380 |
+
def noise_prediction_fn(self, x, t):
|
381 |
+
"""
|
382 |
+
Return the noise prediction model.
|
383 |
+
"""
|
384 |
+
return self.model(x, t)
|
385 |
+
|
386 |
+
def data_prediction_fn(self, x, t):
|
387 |
+
"""
|
388 |
+
Return the data prediction model (with thresholding).
|
389 |
+
"""
|
390 |
+
noise = self.noise_prediction_fn(x, t)
|
391 |
+
dims = x.dim()
|
392 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
393 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
394 |
+
if self.thresholding:
|
395 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
396 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
397 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
398 |
+
x0 = torch.clamp(x0, -s, s) / s
|
399 |
+
return x0
|
400 |
+
|
401 |
+
def model_fn(self, x, t):
|
402 |
+
"""
|
403 |
+
Convert the model to the noise prediction model or the data prediction model.
|
404 |
+
"""
|
405 |
+
if self.predict_x0:
|
406 |
+
return self.data_prediction_fn(x, t)
|
407 |
+
else:
|
408 |
+
return self.noise_prediction_fn(x, t)
|
409 |
+
|
410 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
411 |
+
"""Compute the intermediate time steps for sampling.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
415 |
+
- 'logSNR': uniform logSNR for the time steps.
|
416 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
417 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
418 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
419 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
420 |
+
N: A `int`. The total number of the spacing of the time steps.
|
421 |
+
device: A torch device.
|
422 |
+
Returns:
|
423 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
424 |
+
"""
|
425 |
+
if skip_type == 'logSNR':
|
426 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
427 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
428 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
429 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
430 |
+
elif skip_type == 'time_uniform':
|
431 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
432 |
+
elif skip_type == 'time_quadratic':
|
433 |
+
t_order = 2
|
434 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
435 |
+
return t
|
436 |
+
else:
|
437 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
438 |
+
|
439 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
440 |
+
"""
|
441 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
442 |
+
|
443 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
444 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
445 |
+
- If order == 1:
|
446 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
447 |
+
- If order == 2:
|
448 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
449 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
450 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
451 |
+
- If order == 3:
|
452 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
453 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
454 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
455 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
456 |
+
|
457 |
+
============================================
|
458 |
+
Args:
|
459 |
+
order: A `int`. The max order for the solver (2 or 3).
|
460 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
461 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
462 |
+
- 'logSNR': uniform logSNR for the time steps.
|
463 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
464 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
465 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
466 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
467 |
+
device: A torch device.
|
468 |
+
Returns:
|
469 |
+
orders: A list of the solver order of each step.
|
470 |
+
"""
|
471 |
+
if order == 3:
|
472 |
+
K = steps // 3 + 1
|
473 |
+
if steps % 3 == 0:
|
474 |
+
orders = [3,] * (K - 2) + [2, 1]
|
475 |
+
elif steps % 3 == 1:
|
476 |
+
orders = [3,] * (K - 1) + [1]
|
477 |
+
else:
|
478 |
+
orders = [3,] * (K - 1) + [2]
|
479 |
+
elif order == 2:
|
480 |
+
if steps % 2 == 0:
|
481 |
+
K = steps // 2
|
482 |
+
orders = [2,] * K
|
483 |
+
else:
|
484 |
+
K = steps // 2 + 1
|
485 |
+
orders = [2,] * (K - 1) + [1]
|
486 |
+
elif order == 1:
|
487 |
+
K = 1
|
488 |
+
orders = [1,] * steps
|
489 |
+
else:
|
490 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
491 |
+
if skip_type == 'logSNR':
|
492 |
+
# To reproduce the results in DPM-Solver paper
|
493 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
494 |
+
else:
|
495 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders)).to(device)]
|
496 |
+
return timesteps_outer, orders
|
497 |
+
|
498 |
+
def denoise_to_zero_fn(self, x, s):
|
499 |
+
"""
|
500 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
501 |
+
"""
|
502 |
+
return self.data_prediction_fn(x, s)
|
503 |
+
|
504 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
505 |
+
"""
|
506 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
x: A pytorch tensor. The initial value at time `s`.
|
510 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
511 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
512 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
513 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
514 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
515 |
+
Returns:
|
516 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
517 |
+
"""
|
518 |
+
ns = self.noise_schedule
|
519 |
+
dims = x.dim()
|
520 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
521 |
+
h = lambda_t - lambda_s
|
522 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
523 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
524 |
+
alpha_t = torch.exp(log_alpha_t)
|
525 |
+
|
526 |
+
if self.predict_x0:
|
527 |
+
phi_1 = torch.expm1(-h)
|
528 |
+
if model_s is None:
|
529 |
+
model_s = self.model_fn(x, s)
|
530 |
+
x_t = (
|
531 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
532 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
533 |
+
)
|
534 |
+
if return_intermediate:
|
535 |
+
return x_t, {'model_s': model_s}
|
536 |
+
else:
|
537 |
+
return x_t
|
538 |
+
else:
|
539 |
+
phi_1 = torch.expm1(h)
|
540 |
+
if model_s is None:
|
541 |
+
model_s = self.model_fn(x, s)
|
542 |
+
x_t = (
|
543 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
544 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
545 |
+
)
|
546 |
+
if return_intermediate:
|
547 |
+
return x_t, {'model_s': model_s}
|
548 |
+
else:
|
549 |
+
return x_t
|
550 |
+
|
551 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
|
552 |
+
"""
|
553 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
554 |
+
|
555 |
+
Args:
|
556 |
+
x: A pytorch tensor. The initial value at time `s`.
|
557 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
558 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
559 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
560 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
561 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
562 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
563 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
564 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
565 |
+
Returns:
|
566 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
567 |
+
"""
|
568 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
569 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
570 |
+
if r1 is None:
|
571 |
+
r1 = 0.5
|
572 |
+
ns = self.noise_schedule
|
573 |
+
dims = x.dim()
|
574 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
575 |
+
h = lambda_t - lambda_s
|
576 |
+
lambda_s1 = lambda_s + r1 * h
|
577 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
578 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
|
579 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
580 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
581 |
+
|
582 |
+
if self.predict_x0:
|
583 |
+
phi_11 = torch.expm1(-r1 * h)
|
584 |
+
phi_1 = torch.expm1(-h)
|
585 |
+
|
586 |
+
if model_s is None:
|
587 |
+
model_s = self.model_fn(x, s)
|
588 |
+
x_s1 = (
|
589 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
590 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
591 |
+
)
|
592 |
+
model_s1 = self.model_fn(x_s1, s1)
|
593 |
+
if solver_type == 'dpm_solver':
|
594 |
+
x_t = (
|
595 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
596 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
597 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
598 |
+
)
|
599 |
+
elif solver_type == 'taylor':
|
600 |
+
x_t = (
|
601 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
602 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
603 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
|
604 |
+
)
|
605 |
+
else:
|
606 |
+
phi_11 = torch.expm1(r1 * h)
|
607 |
+
phi_1 = torch.expm1(h)
|
608 |
+
|
609 |
+
if model_s is None:
|
610 |
+
model_s = self.model_fn(x, s)
|
611 |
+
x_s1 = (
|
612 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
613 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
614 |
+
)
|
615 |
+
model_s1 = self.model_fn(x_s1, s1)
|
616 |
+
if solver_type == 'dpm_solver':
|
617 |
+
x_t = (
|
618 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
619 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
620 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
621 |
+
)
|
622 |
+
elif solver_type == 'taylor':
|
623 |
+
x_t = (
|
624 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
625 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
626 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
627 |
+
)
|
628 |
+
if return_intermediate:
|
629 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
630 |
+
else:
|
631 |
+
return x_t
|
632 |
+
|
633 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
|
634 |
+
"""
|
635 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
x: A pytorch tensor. The initial value at time `s`.
|
639 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
640 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
641 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
642 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
643 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
644 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
645 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
646 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
647 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
648 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
649 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
650 |
+
Returns:
|
651 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
652 |
+
"""
|
653 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
654 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
655 |
+
if r1 is None:
|
656 |
+
r1 = 1. / 3.
|
657 |
+
if r2 is None:
|
658 |
+
r2 = 2. / 3.
|
659 |
+
ns = self.noise_schedule
|
660 |
+
dims = x.dim()
|
661 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
662 |
+
h = lambda_t - lambda_s
|
663 |
+
lambda_s1 = lambda_s + r1 * h
|
664 |
+
lambda_s2 = lambda_s + r2 * h
|
665 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
666 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
667 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
668 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
|
669 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
670 |
+
|
671 |
+
if self.predict_x0:
|
672 |
+
phi_11 = torch.expm1(-r1 * h)
|
673 |
+
phi_12 = torch.expm1(-r2 * h)
|
674 |
+
phi_1 = torch.expm1(-h)
|
675 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
676 |
+
phi_2 = phi_1 / h + 1.
|
677 |
+
phi_3 = phi_2 / h - 0.5
|
678 |
+
|
679 |
+
if model_s is None:
|
680 |
+
model_s = self.model_fn(x, s)
|
681 |
+
if model_s1 is None:
|
682 |
+
x_s1 = (
|
683 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
684 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
685 |
+
)
|
686 |
+
model_s1 = self.model_fn(x_s1, s1)
|
687 |
+
x_s2 = (
|
688 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
689 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
690 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
691 |
+
)
|
692 |
+
model_s2 = self.model_fn(x_s2, s2)
|
693 |
+
if solver_type == 'dpm_solver':
|
694 |
+
x_t = (
|
695 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
696 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
697 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
698 |
+
)
|
699 |
+
elif solver_type == 'taylor':
|
700 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
701 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
702 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
703 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
704 |
+
x_t = (
|
705 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
706 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
707 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
708 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
709 |
+
)
|
710 |
+
else:
|
711 |
+
phi_11 = torch.expm1(r1 * h)
|
712 |
+
phi_12 = torch.expm1(r2 * h)
|
713 |
+
phi_1 = torch.expm1(h)
|
714 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
715 |
+
phi_2 = phi_1 / h - 1.
|
716 |
+
phi_3 = phi_2 / h - 0.5
|
717 |
+
|
718 |
+
if model_s is None:
|
719 |
+
model_s = self.model_fn(x, s)
|
720 |
+
if model_s1 is None:
|
721 |
+
x_s1 = (
|
722 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
723 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
724 |
+
)
|
725 |
+
model_s1 = self.model_fn(x_s1, s1)
|
726 |
+
x_s2 = (
|
727 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
728 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
729 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
730 |
+
)
|
731 |
+
model_s2 = self.model_fn(x_s2, s2)
|
732 |
+
if solver_type == 'dpm_solver':
|
733 |
+
x_t = (
|
734 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
735 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
736 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
737 |
+
)
|
738 |
+
elif solver_type == 'taylor':
|
739 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
740 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
741 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
742 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
743 |
+
x_t = (
|
744 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
745 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
746 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
747 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
748 |
+
)
|
749 |
+
|
750 |
+
if return_intermediate:
|
751 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
752 |
+
else:
|
753 |
+
return x_t
|
754 |
+
|
755 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
756 |
+
"""
|
757 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
758 |
+
|
759 |
+
Args:
|
760 |
+
x: A pytorch tensor. The initial value at time `s`.
|
761 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
762 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
763 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
764 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
765 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
766 |
+
Returns:
|
767 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
768 |
+
"""
|
769 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
770 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
771 |
+
ns = self.noise_schedule
|
772 |
+
dims = x.dim()
|
773 |
+
model_prev_1, model_prev_0 = model_prev_list
|
774 |
+
t_prev_1, t_prev_0 = t_prev_list
|
775 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
776 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
777 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
778 |
+
alpha_t = torch.exp(log_alpha_t)
|
779 |
+
|
780 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
781 |
+
h = lambda_t - lambda_prev_0
|
782 |
+
r0 = h_0 / h
|
783 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
784 |
+
if self.predict_x0:
|
785 |
+
if solver_type == 'dpm_solver':
|
786 |
+
x_t = (
|
787 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
788 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
789 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
790 |
+
)
|
791 |
+
elif solver_type == 'taylor':
|
792 |
+
x_t = (
|
793 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
794 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
795 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
796 |
+
)
|
797 |
+
else:
|
798 |
+
if solver_type == 'dpm_solver':
|
799 |
+
x_t = (
|
800 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
801 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
802 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
803 |
+
)
|
804 |
+
elif solver_type == 'taylor':
|
805 |
+
x_t = (
|
806 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
807 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
808 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
809 |
+
)
|
810 |
+
return x_t
|
811 |
+
|
812 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
813 |
+
"""
|
814 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
815 |
+
|
816 |
+
Args:
|
817 |
+
x: A pytorch tensor. The initial value at time `s`.
|
818 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
819 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
820 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
821 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
822 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
823 |
+
Returns:
|
824 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
825 |
+
"""
|
826 |
+
ns = self.noise_schedule
|
827 |
+
dims = x.dim()
|
828 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
829 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
830 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
831 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
832 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
833 |
+
alpha_t = torch.exp(log_alpha_t)
|
834 |
+
|
835 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
836 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
837 |
+
h = lambda_t - lambda_prev_0
|
838 |
+
r0, r1 = h_0 / h, h_1 / h
|
839 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
840 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
841 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
842 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
843 |
+
if self.predict_x0:
|
844 |
+
x_t = (
|
845 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
846 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
847 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
848 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
|
849 |
+
)
|
850 |
+
else:
|
851 |
+
x_t = (
|
852 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
853 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
854 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
855 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
|
856 |
+
)
|
857 |
+
return x_t
|
858 |
+
|
859 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
|
860 |
+
"""
|
861 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
862 |
+
|
863 |
+
Args:
|
864 |
+
x: A pytorch tensor. The initial value at time `s`.
|
865 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
866 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
867 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
868 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
869 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
870 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
871 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
872 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
873 |
+
Returns:
|
874 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
875 |
+
"""
|
876 |
+
if order == 1:
|
877 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
878 |
+
elif order == 2:
|
879 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
|
880 |
+
elif order == 3:
|
881 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
|
882 |
+
else:
|
883 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
884 |
+
|
885 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
886 |
+
"""
|
887 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
888 |
+
|
889 |
+
Args:
|
890 |
+
x: A pytorch tensor. The initial value at time `s`.
|
891 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
892 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
893 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
894 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
895 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
896 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
897 |
+
Returns:
|
898 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
899 |
+
"""
|
900 |
+
if order == 1:
|
901 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
902 |
+
elif order == 2:
|
903 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
904 |
+
elif order == 3:
|
905 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
906 |
+
else:
|
907 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
908 |
+
|
909 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
|
910 |
+
"""
|
911 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
912 |
+
|
913 |
+
Args:
|
914 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
915 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
916 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
917 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
918 |
+
h_init: A `float`. The initial step size (for logSNR).
|
919 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
920 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
921 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
922 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
923 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
924 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
925 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
926 |
+
Returns:
|
927 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
928 |
+
|
929 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
930 |
+
"""
|
931 |
+
ns = self.noise_schedule
|
932 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
933 |
+
lambda_s = ns.marginal_lambda(s)
|
934 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
935 |
+
h = h_init * torch.ones_like(s).to(x)
|
936 |
+
x_prev = x
|
937 |
+
nfe = 0
|
938 |
+
if order == 2:
|
939 |
+
r1 = 0.5
|
940 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
941 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
|
942 |
+
elif order == 3:
|
943 |
+
r1, r2 = 1. / 3., 2. / 3.
|
944 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
|
945 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
|
946 |
+
else:
|
947 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
948 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
949 |
+
t = ns.inverse_lambda(lambda_s + h)
|
950 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
951 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
952 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
953 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
954 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
955 |
+
if torch.all(E <= 1.):
|
956 |
+
x = x_higher
|
957 |
+
s = t
|
958 |
+
x_prev = x_lower
|
959 |
+
lambda_s = ns.marginal_lambda(s)
|
960 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
961 |
+
nfe += order
|
962 |
+
print('adaptive solver nfe', nfe)
|
963 |
+
return x
|
964 |
+
|
965 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
966 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
967 |
+
atol=0.0078, rtol=0.05,
|
968 |
+
):
|
969 |
+
"""
|
970 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
971 |
+
|
972 |
+
=====================================================
|
973 |
+
|
974 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
975 |
+
- 'singlestep':
|
976 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
977 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
978 |
+
The total number of function evaluations (NFE) == `steps`.
|
979 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
980 |
+
- If `order` == 1:
|
981 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
982 |
+
- If `order` == 2:
|
983 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
984 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
985 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
986 |
+
- If `order` == 3:
|
987 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
988 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
989 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
990 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
991 |
+
- 'multistep':
|
992 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
993 |
+
We initialize the first `order` values by lower order multistep solvers.
|
994 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
995 |
+
Denote K = steps.
|
996 |
+
- If `order` == 1:
|
997 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
998 |
+
- If `order` == 2:
|
999 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
1000 |
+
- If `order` == 3:
|
1001 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
1002 |
+
- 'singlestep_fixed':
|
1003 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
1004 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
1005 |
+
- 'adaptive':
|
1006 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
1007 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
1008 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
1009 |
+
(NFE) and the sample quality.
|
1010 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
1011 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
1012 |
+
|
1013 |
+
=====================================================
|
1014 |
+
|
1015 |
+
Some advices for choosing the algorithm:
|
1016 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1017 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1018 |
+
e.g.
|
1019 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
1020 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1021 |
+
skip_type='time_uniform', method='singlestep')
|
1022 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1023 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
1024 |
+
e.g.
|
1025 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
1026 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1027 |
+
skip_type='time_uniform', method='multistep')
|
1028 |
+
|
1029 |
+
We support three types of `skip_type`:
|
1030 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1031 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1032 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1033 |
+
|
1034 |
+
=====================================================
|
1035 |
+
Args:
|
1036 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1037 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1038 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1039 |
+
t_start: A `float`. The starting time of the sampling.
|
1040 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1041 |
+
t_end: A `float`. The ending time of the sampling.
|
1042 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1043 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1044 |
+
For discrete-time DPMs:
|
1045 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1046 |
+
For continuous-time DPMs:
|
1047 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1048 |
+
order: A `int`. The order of DPM-Solver.
|
1049 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1050 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1051 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1052 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1053 |
+
|
1054 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1055 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1056 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1057 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1058 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1059 |
+
it for high-resolutional images.
|
1060 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1061 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1062 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1063 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1064 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1065 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1066 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1067 |
+
Returns:
|
1068 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1069 |
+
|
1070 |
+
"""
|
1071 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1072 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1073 |
+
device = x.device
|
1074 |
+
if method == 'adaptive':
|
1075 |
+
with torch.no_grad():
|
1076 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
|
1077 |
+
elif method == 'multistep':
|
1078 |
+
assert steps >= order
|
1079 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1080 |
+
assert timesteps.shape[0] - 1 == steps
|
1081 |
+
with torch.no_grad():
|
1082 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
1083 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
1084 |
+
t_prev_list = [vec_t]
|
1085 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1086 |
+
for init_order in range(1, order):
|
1087 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
1088 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type)
|
1089 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
1090 |
+
t_prev_list.append(vec_t)
|
1091 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1092 |
+
for step in range(order, steps + 1):
|
1093 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
1094 |
+
if lower_order_final and steps < 15:
|
1095 |
+
step_order = min(order, steps + 1 - step)
|
1096 |
+
else:
|
1097 |
+
step_order = order
|
1098 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type)
|
1099 |
+
for i in range(order - 1):
|
1100 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1101 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1102 |
+
t_prev_list[-1] = vec_t
|
1103 |
+
# We do not need to evaluate the final model value.
|
1104 |
+
if step < steps:
|
1105 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1106 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1107 |
+
if method == 'singlestep':
|
1108 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
|
1109 |
+
elif method == 'singlestep_fixed':
|
1110 |
+
K = steps // order
|
1111 |
+
orders = [order,] * K
|
1112 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1113 |
+
for i, order in enumerate(orders):
|
1114 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1115 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device)
|
1116 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1117 |
+
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
1118 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1119 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1120 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1121 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1122 |
+
if denoise_to_zero:
|
1123 |
+
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1124 |
+
return x
|
1125 |
+
|
1126 |
+
|
1127 |
+
|
1128 |
+
#############################################################
|
1129 |
+
# other utility functions
|
1130 |
+
#############################################################
|
1131 |
+
|
1132 |
+
def interpolate_fn(x, xp, yp):
|
1133 |
+
"""
|
1134 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1135 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1136 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1137 |
+
|
1138 |
+
Args:
|
1139 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1140 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1141 |
+
yp: PyTorch tensor with shape [C, K].
|
1142 |
+
Returns:
|
1143 |
+
The function values f(x), with shape [N, C].
|
1144 |
+
"""
|
1145 |
+
N, K = x.shape[0], xp.shape[1]
|
1146 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1147 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1148 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1149 |
+
cand_start_idx = x_idx - 1
|
1150 |
+
start_idx = torch.where(
|
1151 |
+
torch.eq(x_idx, 0),
|
1152 |
+
torch.tensor(1, device=x.device),
|
1153 |
+
torch.where(
|
1154 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1155 |
+
),
|
1156 |
+
)
|
1157 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1158 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1159 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1160 |
+
start_idx2 = torch.where(
|
1161 |
+
torch.eq(x_idx, 0),
|
1162 |
+
torch.tensor(0, device=x.device),
|
1163 |
+
torch.where(
|
1164 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1165 |
+
),
|
1166 |
+
)
|
1167 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1168 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1169 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1170 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1171 |
+
return cand
|
1172 |
+
|
1173 |
+
|
1174 |
+
def expand_dims(v, dims):
|
1175 |
+
"""
|
1176 |
+
Expand the tensor `v` to the dim `dims`.
|
1177 |
+
|
1178 |
+
Args:
|
1179 |
+
`v`: a PyTorch tensor with shape [N].
|
1180 |
+
`dim`: a `int`.
|
1181 |
+
Returns:
|
1182 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1183 |
+
"""
|
1184 |
+
return v[(...,) + (None,)*(dims - 1)]
|
3DTopia/ldm/models/diffusion/dpm_solver/sampler.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
6 |
+
|
7 |
+
|
8 |
+
class DPMSolverSampler(object):
|
9 |
+
def __init__(self, model, **kwargs):
|
10 |
+
super().__init__()
|
11 |
+
self.model = model
|
12 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
13 |
+
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
14 |
+
|
15 |
+
def register_buffer(self, name, attr):
|
16 |
+
if type(attr) == torch.Tensor:
|
17 |
+
if attr.device != torch.device("cuda"):
|
18 |
+
attr = attr.to(torch.device("cuda"))
|
19 |
+
setattr(self, name, attr)
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def sample(self,
|
23 |
+
S,
|
24 |
+
batch_size,
|
25 |
+
shape,
|
26 |
+
conditioning=None,
|
27 |
+
callback=None,
|
28 |
+
normals_sequence=None,
|
29 |
+
img_callback=None,
|
30 |
+
quantize_x0=False,
|
31 |
+
eta=0.,
|
32 |
+
mask=None,
|
33 |
+
x0=None,
|
34 |
+
temperature=1.,
|
35 |
+
noise_dropout=0.,
|
36 |
+
score_corrector=None,
|
37 |
+
corrector_kwargs=None,
|
38 |
+
verbose=True,
|
39 |
+
x_T=None,
|
40 |
+
log_every_t=100,
|
41 |
+
unconditional_guidance_scale=1.,
|
42 |
+
unconditional_conditioning=None,
|
43 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
44 |
+
**kwargs
|
45 |
+
):
|
46 |
+
if conditioning is not None:
|
47 |
+
if isinstance(conditioning, dict):
|
48 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
49 |
+
if cbs != batch_size:
|
50 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
51 |
+
else:
|
52 |
+
if conditioning.shape[0] != batch_size:
|
53 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
54 |
+
|
55 |
+
# sampling
|
56 |
+
C, H, W = shape
|
57 |
+
size = (batch_size, C, H, W)
|
58 |
+
|
59 |
+
# print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
60 |
+
|
61 |
+
device = self.model.betas.device
|
62 |
+
if x_T is None:
|
63 |
+
img = torch.randn(size, device=device)
|
64 |
+
else:
|
65 |
+
img = x_T
|
66 |
+
|
67 |
+
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
68 |
+
|
69 |
+
model_fn = model_wrapper(
|
70 |
+
lambda x, t, c: self.model.apply_model(x, t, c),
|
71 |
+
ns,
|
72 |
+
model_type="noise",
|
73 |
+
guidance_type="classifier-free",
|
74 |
+
condition=conditioning,
|
75 |
+
unconditional_condition=unconditional_conditioning,
|
76 |
+
guidance_scale=unconditional_guidance_scale,
|
77 |
+
)
|
78 |
+
|
79 |
+
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
80 |
+
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
81 |
+
|
82 |
+
return x.to(device), None
|
3DTopia/ldm/models/diffusion/plms.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from tqdm import tqdm
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
+
|
10 |
+
|
11 |
+
class PLMSSampler(object):
|
12 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
13 |
+
super().__init__()
|
14 |
+
self.model = model
|
15 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
16 |
+
self.schedule = schedule
|
17 |
+
|
18 |
+
def register_buffer(self, name, attr):
|
19 |
+
if type(attr) == torch.Tensor:
|
20 |
+
if attr.device != torch.device("cuda"):
|
21 |
+
attr = attr.to(torch.device("cuda"))
|
22 |
+
setattr(self, name, attr)
|
23 |
+
|
24 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
25 |
+
if ddim_eta != 0:
|
26 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
27 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
28 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
29 |
+
alphas_cumprod = self.model.alphas_cumprod
|
30 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
31 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
32 |
+
|
33 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
34 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
35 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
36 |
+
|
37 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
38 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
39 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
40 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
41 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
42 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
43 |
+
|
44 |
+
# ddim sampling parameters
|
45 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
46 |
+
ddim_timesteps=self.ddim_timesteps,
|
47 |
+
eta=ddim_eta,verbose=verbose)
|
48 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
49 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
50 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
51 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
52 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
53 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
54 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
55 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def sample(self,
|
59 |
+
S,
|
60 |
+
batch_size,
|
61 |
+
shape,
|
62 |
+
conditioning=None,
|
63 |
+
callback=None,
|
64 |
+
normals_sequence=None,
|
65 |
+
img_callback=None,
|
66 |
+
quantize_x0=False,
|
67 |
+
eta=0.,
|
68 |
+
mask=None,
|
69 |
+
x0=None,
|
70 |
+
temperature=1.,
|
71 |
+
noise_dropout=0.,
|
72 |
+
score_corrector=None,
|
73 |
+
corrector_kwargs=None,
|
74 |
+
verbose=True,
|
75 |
+
x_T=None,
|
76 |
+
log_every_t=100,
|
77 |
+
unconditional_guidance_scale=1.,
|
78 |
+
unconditional_conditioning=None,
|
79 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
80 |
+
**kwargs
|
81 |
+
):
|
82 |
+
if conditioning is not None:
|
83 |
+
if isinstance(conditioning, dict):
|
84 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
85 |
+
if cbs != batch_size:
|
86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
87 |
+
else:
|
88 |
+
if conditioning.shape[0] != batch_size:
|
89 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
90 |
+
|
91 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
92 |
+
# sampling
|
93 |
+
C, H, W = shape
|
94 |
+
size = (batch_size, C, H, W)
|
95 |
+
print(f'Data shape for PLMS sampling is {size}')
|
96 |
+
|
97 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
98 |
+
callback=callback,
|
99 |
+
img_callback=img_callback,
|
100 |
+
quantize_denoised=quantize_x0,
|
101 |
+
mask=mask, x0=x0,
|
102 |
+
ddim_use_original_steps=False,
|
103 |
+
noise_dropout=noise_dropout,
|
104 |
+
temperature=temperature,
|
105 |
+
score_corrector=score_corrector,
|
106 |
+
corrector_kwargs=corrector_kwargs,
|
107 |
+
x_T=x_T,
|
108 |
+
log_every_t=log_every_t,
|
109 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
110 |
+
unconditional_conditioning=unconditional_conditioning,
|
111 |
+
)
|
112 |
+
return samples, intermediates
|
113 |
+
|
114 |
+
@torch.no_grad()
|
115 |
+
def plms_sampling(self, cond, shape,
|
116 |
+
x_T=None, ddim_use_original_steps=False,
|
117 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
118 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
119 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
120 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,):
|
121 |
+
device = self.model.betas.device
|
122 |
+
b = shape[0]
|
123 |
+
if x_T is None:
|
124 |
+
img = torch.randn(shape, device=device)
|
125 |
+
else:
|
126 |
+
img = x_T
|
127 |
+
|
128 |
+
if timesteps is None:
|
129 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
130 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
131 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
132 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
133 |
+
|
134 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
135 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
136 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
137 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
138 |
+
|
139 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
140 |
+
old_eps = []
|
141 |
+
|
142 |
+
for i, step in enumerate(iterator):
|
143 |
+
index = total_steps - i - 1
|
144 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
145 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
146 |
+
|
147 |
+
if mask is not None:
|
148 |
+
assert x0 is not None
|
149 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
150 |
+
img = img_orig * mask + (1. - mask) * img
|
151 |
+
|
152 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
153 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
154 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
155 |
+
corrector_kwargs=corrector_kwargs,
|
156 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
157 |
+
unconditional_conditioning=unconditional_conditioning,
|
158 |
+
old_eps=old_eps, t_next=ts_next)
|
159 |
+
img, pred_x0, e_t = outs
|
160 |
+
old_eps.append(e_t)
|
161 |
+
if len(old_eps) >= 4:
|
162 |
+
old_eps.pop(0)
|
163 |
+
if callback: callback(i)
|
164 |
+
if img_callback: img_callback(pred_x0, i)
|
165 |
+
|
166 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
167 |
+
intermediates['x_inter'].append(img)
|
168 |
+
intermediates['pred_x0'].append(pred_x0)
|
169 |
+
|
170 |
+
return img, intermediates
|
171 |
+
|
172 |
+
@torch.no_grad()
|
173 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
174 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
175 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
176 |
+
b, *_, device = *x.shape, x.device
|
177 |
+
|
178 |
+
def get_model_output(x, t):
|
179 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
180 |
+
e_t = self.model.apply_model(x, t, c)
|
181 |
+
else:
|
182 |
+
x_in = torch.cat([x] * 2)
|
183 |
+
t_in = torch.cat([t] * 2)
|
184 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
185 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
186 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
187 |
+
|
188 |
+
if score_corrector is not None:
|
189 |
+
assert self.model.parameterization == "eps"
|
190 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
191 |
+
|
192 |
+
return e_t
|
193 |
+
|
194 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
195 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
196 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
197 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
198 |
+
|
199 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
200 |
+
# select parameters corresponding to the currently considered timestep
|
201 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
202 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
203 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
204 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
205 |
+
|
206 |
+
# current prediction for x_0
|
207 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
208 |
+
if quantize_denoised:
|
209 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
210 |
+
# direction pointing to x_t
|
211 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
212 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
213 |
+
if noise_dropout > 0.:
|
214 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
215 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
216 |
+
return x_prev, pred_x0
|
217 |
+
|
218 |
+
e_t = get_model_output(x, t)
|
219 |
+
if len(old_eps) == 0:
|
220 |
+
# Pseudo Improved Euler (2nd order)
|
221 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
222 |
+
e_t_next = get_model_output(x_prev, t_next)
|
223 |
+
e_t_prime = (e_t + e_t_next) / 2
|
224 |
+
elif len(old_eps) == 1:
|
225 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
226 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
227 |
+
elif len(old_eps) == 2:
|
228 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
229 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
230 |
+
elif len(old_eps) >= 3:
|
231 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
232 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
233 |
+
|
234 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
235 |
+
|
236 |
+
return x_prev, pred_x0, e_t
|
3DTopia/ldm/modules/attention.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
9 |
+
|
10 |
+
|
11 |
+
def exists(val):
|
12 |
+
return val is not None
|
13 |
+
|
14 |
+
|
15 |
+
def uniq(arr):
|
16 |
+
return{el: True for el in arr}.keys()
|
17 |
+
|
18 |
+
|
19 |
+
def default(val, d):
|
20 |
+
if exists(val):
|
21 |
+
return val
|
22 |
+
return d() if isfunction(d) else d
|
23 |
+
|
24 |
+
|
25 |
+
def max_neg_value(t):
|
26 |
+
return -torch.finfo(t.dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
def init_(tensor):
|
30 |
+
dim = tensor.shape[-1]
|
31 |
+
std = 1 / math.sqrt(dim)
|
32 |
+
tensor.uniform_(-std, std)
|
33 |
+
return tensor
|
34 |
+
|
35 |
+
|
36 |
+
# feedforward
|
37 |
+
class GEGLU(nn.Module):
|
38 |
+
def __init__(self, dim_in, dim_out):
|
39 |
+
super().__init__()
|
40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
+
|
42 |
+
def forward(self, x):
|
43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
+
return x * F.gelu(gate)
|
45 |
+
|
46 |
+
|
47 |
+
class FeedForward(nn.Module):
|
48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
49 |
+
super().__init__()
|
50 |
+
inner_dim = int(dim * mult)
|
51 |
+
dim_out = default(dim_out, dim)
|
52 |
+
project_in = nn.Sequential(
|
53 |
+
nn.Linear(dim, inner_dim),
|
54 |
+
nn.GELU()
|
55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
56 |
+
|
57 |
+
self.net = nn.Sequential(
|
58 |
+
project_in,
|
59 |
+
nn.Dropout(dropout),
|
60 |
+
nn.Linear(inner_dim, dim_out)
|
61 |
+
)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
return self.net(x)
|
65 |
+
|
66 |
+
|
67 |
+
def zero_module(module):
|
68 |
+
"""
|
69 |
+
Zero out the parameters of a module and return it.
|
70 |
+
"""
|
71 |
+
for p in module.parameters():
|
72 |
+
p.detach().zero_()
|
73 |
+
return module
|
74 |
+
|
75 |
+
|
76 |
+
def Normalize(in_channels):
|
77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
+
|
79 |
+
|
80 |
+
class LinearAttention(nn.Module):
|
81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
82 |
+
super().__init__()
|
83 |
+
self.heads = heads
|
84 |
+
hidden_dim = dim_head * heads
|
85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
b, c, h, w = x.shape
|
90 |
+
qkv = self.to_qkv(x)
|
91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
92 |
+
k = k.softmax(dim=-1)
|
93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
96 |
+
return self.to_out(out)
|
97 |
+
|
98 |
+
|
99 |
+
class SpatialSelfAttention(nn.Module):
|
100 |
+
def __init__(self, in_channels):
|
101 |
+
super().__init__()
|
102 |
+
self.in_channels = in_channels
|
103 |
+
|
104 |
+
self.norm = Normalize(in_channels)
|
105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
106 |
+
in_channels,
|
107 |
+
kernel_size=1,
|
108 |
+
stride=1,
|
109 |
+
padding=0)
|
110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
111 |
+
in_channels,
|
112 |
+
kernel_size=1,
|
113 |
+
stride=1,
|
114 |
+
padding=0)
|
115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
116 |
+
in_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
121 |
+
in_channels,
|
122 |
+
kernel_size=1,
|
123 |
+
stride=1,
|
124 |
+
padding=0)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
h_ = x
|
128 |
+
h_ = self.norm(h_)
|
129 |
+
q = self.q(h_)
|
130 |
+
k = self.k(h_)
|
131 |
+
v = self.v(h_)
|
132 |
+
|
133 |
+
# compute attention
|
134 |
+
b,c,h,w = q.shape
|
135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
138 |
+
|
139 |
+
w_ = w_ * (int(c)**(-0.5))
|
140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
141 |
+
|
142 |
+
# attend to values
|
143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
147 |
+
h_ = self.proj_out(h_)
|
148 |
+
|
149 |
+
return x+h_
|
150 |
+
|
151 |
+
|
152 |
+
class CrossAttention(nn.Module):
|
153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
154 |
+
super().__init__()
|
155 |
+
inner_dim = dim_head * heads
|
156 |
+
context_dim = default(context_dim, query_dim)
|
157 |
+
|
158 |
+
self.scale = dim_head ** -0.5
|
159 |
+
self.heads = heads
|
160 |
+
|
161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
+
|
165 |
+
self.to_out = nn.Sequential(
|
166 |
+
nn.Linear(inner_dim, query_dim),
|
167 |
+
nn.Dropout(dropout)
|
168 |
+
)
|
169 |
+
|
170 |
+
def forward(self, x, context=None, mask=None):
|
171 |
+
h = self.heads
|
172 |
+
|
173 |
+
q = self.to_q(x)
|
174 |
+
context = default(context, x)
|
175 |
+
k = self.to_k(context)
|
176 |
+
v = self.to_v(context)
|
177 |
+
|
178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
179 |
+
|
180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
181 |
+
|
182 |
+
if exists(mask):
|
183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
187 |
+
|
188 |
+
# attention, what we cannot get enough of
|
189 |
+
attn = sim.softmax(dim=-1)
|
190 |
+
|
191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
193 |
+
return self.to_out(out)
|
194 |
+
|
195 |
+
|
196 |
+
class BasicTransformerBlock(nn.Module):
|
197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
198 |
+
super().__init__()
|
199 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
200 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
201 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
202 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
203 |
+
self.norm1 = nn.LayerNorm(dim)
|
204 |
+
self.norm2 = nn.LayerNorm(dim)
|
205 |
+
self.norm3 = nn.LayerNorm(dim)
|
206 |
+
self.checkpoint = checkpoint
|
207 |
+
|
208 |
+
def forward(self, x, context=None):
|
209 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
210 |
+
|
211 |
+
def _forward(self, x, context=None):
|
212 |
+
x = self.attn1(self.norm1(x)) + x
|
213 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
214 |
+
x = self.ff(self.norm3(x)) + x
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
class SpatialTransformer(nn.Module):
|
219 |
+
"""
|
220 |
+
Transformer block for image-like data.
|
221 |
+
First, project the input (aka embedding)
|
222 |
+
and reshape to b, t, d.
|
223 |
+
Then apply standard transformer action.
|
224 |
+
Finally, reshape to image
|
225 |
+
"""
|
226 |
+
def __init__(self, in_channels, n_heads, d_head,
|
227 |
+
depth=1, dropout=0., context_dim=None):
|
228 |
+
super().__init__()
|
229 |
+
self.in_channels = in_channels
|
230 |
+
inner_dim = n_heads * d_head
|
231 |
+
self.norm = Normalize(in_channels)
|
232 |
+
|
233 |
+
self.proj_in = nn.Conv2d(in_channels,
|
234 |
+
inner_dim,
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0)
|
238 |
+
|
239 |
+
self.transformer_blocks = nn.ModuleList(
|
240 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
241 |
+
for d in range(depth)]
|
242 |
+
)
|
243 |
+
|
244 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
245 |
+
in_channels,
|
246 |
+
kernel_size=1,
|
247 |
+
stride=1,
|
248 |
+
padding=0))
|
249 |
+
|
250 |
+
def forward(self, x, context=None):
|
251 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
252 |
+
b, c, h, w = x.shape
|
253 |
+
x_in = x
|
254 |
+
x = self.norm(x)
|
255 |
+
x = self.proj_in(x)
|
256 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
257 |
+
for block in self.transformer_blocks:
|
258 |
+
x = block(x, context=context)
|
259 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
260 |
+
x = self.proj_out(x)
|
261 |
+
return x + x_in
|
3DTopia/ldm/modules/diffusionmodules/__init__.py
ADDED
File without changes
|
3DTopia/ldm/modules/diffusionmodules/model.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from ldm.util import instantiate_from_config
|
9 |
+
from ldm.modules.attention import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
+
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == "none":
|
211 |
+
return nn.Identity(in_channels)
|
212 |
+
else:
|
213 |
+
return LinAttnBlock(in_channels)
|
214 |
+
|
215 |
+
|
216 |
+
class Model(nn.Module):
|
217 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
+
super().__init__()
|
221 |
+
if use_linear_attn: attn_type = "linear"
|
222 |
+
self.ch = ch
|
223 |
+
self.temb_ch = self.ch*4
|
224 |
+
self.num_resolutions = len(ch_mult)
|
225 |
+
self.num_res_blocks = num_res_blocks
|
226 |
+
self.resolution = resolution
|
227 |
+
self.in_channels = in_channels
|
228 |
+
|
229 |
+
self.use_timestep = use_timestep
|
230 |
+
if self.use_timestep:
|
231 |
+
# timestep embedding
|
232 |
+
self.temb = nn.Module()
|
233 |
+
self.temb.dense = nn.ModuleList([
|
234 |
+
torch.nn.Linear(self.ch,
|
235 |
+
self.temb_ch),
|
236 |
+
torch.nn.Linear(self.temb_ch,
|
237 |
+
self.temb_ch),
|
238 |
+
])
|
239 |
+
|
240 |
+
# downsampling
|
241 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
+
self.ch,
|
243 |
+
kernel_size=3,
|
244 |
+
stride=1,
|
245 |
+
padding=1)
|
246 |
+
|
247 |
+
curr_res = resolution
|
248 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
+
self.down = nn.ModuleList()
|
250 |
+
for i_level in range(self.num_resolutions):
|
251 |
+
block = nn.ModuleList()
|
252 |
+
attn = nn.ModuleList()
|
253 |
+
block_in = ch*in_ch_mult[i_level]
|
254 |
+
block_out = ch*ch_mult[i_level]
|
255 |
+
for i_block in range(self.num_res_blocks):
|
256 |
+
block.append(ResnetBlock(in_channels=block_in,
|
257 |
+
out_channels=block_out,
|
258 |
+
temb_channels=self.temb_ch,
|
259 |
+
dropout=dropout))
|
260 |
+
block_in = block_out
|
261 |
+
if curr_res in attn_resolutions:
|
262 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
+
down = nn.Module()
|
264 |
+
down.block = block
|
265 |
+
down.attn = attn
|
266 |
+
if i_level != self.num_resolutions-1:
|
267 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
+
curr_res = curr_res // 2
|
269 |
+
self.down.append(down)
|
270 |
+
|
271 |
+
# middle
|
272 |
+
self.mid = nn.Module()
|
273 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
+
out_channels=block_in,
|
275 |
+
temb_channels=self.temb_ch,
|
276 |
+
dropout=dropout)
|
277 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
|
283 |
+
# upsampling
|
284 |
+
self.up = nn.ModuleList()
|
285 |
+
for i_level in reversed(range(self.num_resolutions)):
|
286 |
+
block = nn.ModuleList()
|
287 |
+
attn = nn.ModuleList()
|
288 |
+
block_out = ch*ch_mult[i_level]
|
289 |
+
skip_in = ch*ch_mult[i_level]
|
290 |
+
for i_block in range(self.num_res_blocks+1):
|
291 |
+
if i_block == self.num_res_blocks:
|
292 |
+
skip_in = ch*in_ch_mult[i_level]
|
293 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
+
out_channels=block_out,
|
295 |
+
temb_channels=self.temb_ch,
|
296 |
+
dropout=dropout))
|
297 |
+
block_in = block_out
|
298 |
+
if curr_res in attn_resolutions:
|
299 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
+
up = nn.Module()
|
301 |
+
up.block = block
|
302 |
+
up.attn = attn
|
303 |
+
if i_level != 0:
|
304 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
+
curr_res = curr_res * 2
|
306 |
+
self.up.insert(0, up) # prepend to get consistent order
|
307 |
+
|
308 |
+
# end
|
309 |
+
self.norm_out = Normalize(block_in)
|
310 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
+
out_ch,
|
312 |
+
kernel_size=3,
|
313 |
+
stride=1,
|
314 |
+
padding=1)
|
315 |
+
|
316 |
+
def forward(self, x, t=None, context=None):
|
317 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
+
if context is not None:
|
319 |
+
# assume aligned context, cat along channel axis
|
320 |
+
x = torch.cat((x, context), dim=1)
|
321 |
+
if self.use_timestep:
|
322 |
+
# timestep embedding
|
323 |
+
assert t is not None
|
324 |
+
temb = get_timestep_embedding(t, self.ch)
|
325 |
+
temb = self.temb.dense[0](temb)
|
326 |
+
temb = nonlinearity(temb)
|
327 |
+
temb = self.temb.dense[1](temb)
|
328 |
+
else:
|
329 |
+
temb = None
|
330 |
+
|
331 |
+
# downsampling
|
332 |
+
hs = [self.conv_in(x)]
|
333 |
+
for i_level in range(self.num_resolutions):
|
334 |
+
for i_block in range(self.num_res_blocks):
|
335 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
+
if len(self.down[i_level].attn) > 0:
|
337 |
+
h = self.down[i_level].attn[i_block](h)
|
338 |
+
hs.append(h)
|
339 |
+
if i_level != self.num_resolutions-1:
|
340 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
+
|
342 |
+
# middle
|
343 |
+
h = hs[-1]
|
344 |
+
h = self.mid.block_1(h, temb)
|
345 |
+
h = self.mid.attn_1(h)
|
346 |
+
h = self.mid.block_2(h, temb)
|
347 |
+
|
348 |
+
# upsampling
|
349 |
+
for i_level in reversed(range(self.num_resolutions)):
|
350 |
+
for i_block in range(self.num_res_blocks+1):
|
351 |
+
h = self.up[i_level].block[i_block](
|
352 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
+
if len(self.up[i_level].attn) > 0:
|
354 |
+
h = self.up[i_level].attn[i_block](h)
|
355 |
+
if i_level != 0:
|
356 |
+
h = self.up[i_level].upsample(h)
|
357 |
+
|
358 |
+
# end
|
359 |
+
h = self.norm_out(h)
|
360 |
+
h = nonlinearity(h)
|
361 |
+
h = self.conv_out(h)
|
362 |
+
return h
|
363 |
+
|
364 |
+
def get_last_layer(self):
|
365 |
+
return self.conv_out.weight
|
366 |
+
|
367 |
+
|
368 |
+
class Encoder(nn.Module):
|
369 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
+
**ignore_kwargs):
|
373 |
+
super().__init__()
|
374 |
+
if use_linear_attn: attn_type = "linear"
|
375 |
+
self.ch = ch
|
376 |
+
self.temb_ch = 0
|
377 |
+
self.num_resolutions = len(ch_mult)
|
378 |
+
self.num_res_blocks = num_res_blocks
|
379 |
+
self.resolution = resolution
|
380 |
+
self.in_channels = in_channels
|
381 |
+
|
382 |
+
# downsampling
|
383 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
+
self.ch,
|
385 |
+
kernel_size=3,
|
386 |
+
stride=1,
|
387 |
+
padding=1)
|
388 |
+
|
389 |
+
curr_res = resolution
|
390 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
+
self.in_ch_mult = in_ch_mult
|
392 |
+
self.down = nn.ModuleList()
|
393 |
+
for i_level in range(self.num_resolutions):
|
394 |
+
block = nn.ModuleList()
|
395 |
+
attn = nn.ModuleList()
|
396 |
+
block_in = ch*in_ch_mult[i_level]
|
397 |
+
block_out = ch*ch_mult[i_level]
|
398 |
+
for i_block in range(self.num_res_blocks):
|
399 |
+
block.append(ResnetBlock(in_channels=block_in,
|
400 |
+
out_channels=block_out,
|
401 |
+
temb_channels=self.temb_ch,
|
402 |
+
dropout=dropout))
|
403 |
+
block_in = block_out
|
404 |
+
if curr_res in attn_resolutions:
|
405 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
406 |
+
down = nn.Module()
|
407 |
+
down.block = block
|
408 |
+
down.attn = attn
|
409 |
+
if i_level != self.num_resolutions-1:
|
410 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
+
curr_res = curr_res // 2
|
412 |
+
self.down.append(down)
|
413 |
+
|
414 |
+
# middle
|
415 |
+
self.mid = nn.Module()
|
416 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
+
out_channels=block_in,
|
418 |
+
temb_channels=self.temb_ch,
|
419 |
+
dropout=dropout)
|
420 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
|
426 |
+
# end
|
427 |
+
self.norm_out = Normalize(block_in)
|
428 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
+
2*z_channels if double_z else z_channels,
|
430 |
+
kernel_size=3,
|
431 |
+
stride=1,
|
432 |
+
padding=1)
|
433 |
+
|
434 |
+
def forward(self, x):
|
435 |
+
# timestep embedding
|
436 |
+
temb = None
|
437 |
+
|
438 |
+
# downsampling
|
439 |
+
hs = [self.conv_in(x)]
|
440 |
+
for i_level in range(self.num_resolutions):
|
441 |
+
for i_block in range(self.num_res_blocks):
|
442 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
+
if len(self.down[i_level].attn) > 0:
|
444 |
+
h = self.down[i_level].attn[i_block](h)
|
445 |
+
hs.append(h)
|
446 |
+
if i_level != self.num_resolutions-1:
|
447 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
+
|
449 |
+
# middle
|
450 |
+
h = hs[-1]
|
451 |
+
h = self.mid.block_1(h, temb)
|
452 |
+
h = self.mid.attn_1(h)
|
453 |
+
h = self.mid.block_2(h, temb)
|
454 |
+
|
455 |
+
# end
|
456 |
+
h = self.norm_out(h)
|
457 |
+
h = nonlinearity(h)
|
458 |
+
h = self.conv_out(h)
|
459 |
+
return h
|
460 |
+
|
461 |
+
|
462 |
+
class Decoder(nn.Module):
|
463 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
+
attn_type="vanilla", **ignorekwargs):
|
467 |
+
super().__init__()
|
468 |
+
if use_linear_attn: attn_type = "linear"
|
469 |
+
self.ch = ch
|
470 |
+
self.temb_ch = 0
|
471 |
+
self.num_resolutions = len(ch_mult)
|
472 |
+
self.num_res_blocks = num_res_blocks
|
473 |
+
self.resolution = resolution
|
474 |
+
self.in_channels = in_channels
|
475 |
+
self.give_pre_end = give_pre_end
|
476 |
+
self.tanh_out = tanh_out
|
477 |
+
|
478 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
+
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
+
self.z_shape, np.prod(self.z_shape)))
|
485 |
+
|
486 |
+
# z to block_in
|
487 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
+
block_in,
|
489 |
+
kernel_size=3,
|
490 |
+
stride=1,
|
491 |
+
padding=1)
|
492 |
+
|
493 |
+
# middle
|
494 |
+
self.mid = nn.Module()
|
495 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
+
out_channels=block_in,
|
497 |
+
temb_channels=self.temb_ch,
|
498 |
+
dropout=dropout)
|
499 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
self.up = nn.ModuleList()
|
507 |
+
for i_level in reversed(range(self.num_resolutions)):
|
508 |
+
block = nn.ModuleList()
|
509 |
+
attn = nn.ModuleList()
|
510 |
+
block_out = ch*ch_mult[i_level]
|
511 |
+
for i_block in range(self.num_res_blocks+1):
|
512 |
+
block.append(ResnetBlock(in_channels=block_in,
|
513 |
+
out_channels=block_out,
|
514 |
+
temb_channels=self.temb_ch,
|
515 |
+
dropout=dropout))
|
516 |
+
block_in = block_out
|
517 |
+
if curr_res in attn_resolutions:
|
518 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
+
up = nn.Module()
|
520 |
+
up.block = block
|
521 |
+
up.attn = attn
|
522 |
+
if i_level != 0:
|
523 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
+
curr_res = curr_res * 2
|
525 |
+
self.up.insert(0, up) # prepend to get consistent order
|
526 |
+
|
527 |
+
# end
|
528 |
+
self.norm_out = Normalize(block_in)
|
529 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
+
out_ch,
|
531 |
+
kernel_size=3,
|
532 |
+
stride=1,
|
533 |
+
padding=1)
|
534 |
+
|
535 |
+
def forward(self, z):
|
536 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
+
self.last_z_shape = z.shape
|
538 |
+
|
539 |
+
# timestep embedding
|
540 |
+
temb = None
|
541 |
+
|
542 |
+
# z to block_in
|
543 |
+
h = self.conv_in(z)
|
544 |
+
|
545 |
+
# middle
|
546 |
+
h = self.mid.block_1(h, temb)
|
547 |
+
h = self.mid.attn_1(h)
|
548 |
+
h = self.mid.block_2(h, temb)
|
549 |
+
|
550 |
+
# upsampling
|
551 |
+
for i_level in reversed(range(self.num_resolutions)):
|
552 |
+
for i_block in range(self.num_res_blocks+1):
|
553 |
+
h = self.up[i_level].block[i_block](h, temb)
|
554 |
+
if len(self.up[i_level].attn) > 0:
|
555 |
+
h = self.up[i_level].attn[i_block](h)
|
556 |
+
if i_level != 0:
|
557 |
+
h = self.up[i_level].upsample(h)
|
558 |
+
|
559 |
+
# end
|
560 |
+
if self.give_pre_end:
|
561 |
+
return h
|
562 |
+
|
563 |
+
h = self.norm_out(h)
|
564 |
+
h = nonlinearity(h)
|
565 |
+
h = self.conv_out(h)
|
566 |
+
if self.tanh_out:
|
567 |
+
h = torch.tanh(h)
|
568 |
+
return h
|
569 |
+
|
570 |
+
|
571 |
+
class SimpleDecoder(nn.Module):
|
572 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
+
super().__init__()
|
574 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
+
ResnetBlock(in_channels=in_channels,
|
576 |
+
out_channels=2 * in_channels,
|
577 |
+
temb_channels=0, dropout=0.0),
|
578 |
+
ResnetBlock(in_channels=2 * in_channels,
|
579 |
+
out_channels=4 * in_channels,
|
580 |
+
temb_channels=0, dropout=0.0),
|
581 |
+
ResnetBlock(in_channels=4 * in_channels,
|
582 |
+
out_channels=2 * in_channels,
|
583 |
+
temb_channels=0, dropout=0.0),
|
584 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
+
Upsample(in_channels, with_conv=True)])
|
586 |
+
# end
|
587 |
+
self.norm_out = Normalize(in_channels)
|
588 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
+
out_channels,
|
590 |
+
kernel_size=3,
|
591 |
+
stride=1,
|
592 |
+
padding=1)
|
593 |
+
|
594 |
+
def forward(self, x):
|
595 |
+
for i, layer in enumerate(self.model):
|
596 |
+
if i in [1,2,3]:
|
597 |
+
x = layer(x, None)
|
598 |
+
else:
|
599 |
+
x = layer(x)
|
600 |
+
|
601 |
+
h = self.norm_out(x)
|
602 |
+
h = nonlinearity(h)
|
603 |
+
x = self.conv_out(h)
|
604 |
+
return x
|
605 |
+
|
606 |
+
|
607 |
+
class UpsampleDecoder(nn.Module):
|
608 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
+
ch_mult=(2,2), dropout=0.0):
|
610 |
+
super().__init__()
|
611 |
+
# upsampling
|
612 |
+
self.temb_ch = 0
|
613 |
+
self.num_resolutions = len(ch_mult)
|
614 |
+
self.num_res_blocks = num_res_blocks
|
615 |
+
block_in = in_channels
|
616 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
+
self.res_blocks = nn.ModuleList()
|
618 |
+
self.upsample_blocks = nn.ModuleList()
|
619 |
+
for i_level in range(self.num_resolutions):
|
620 |
+
res_block = []
|
621 |
+
block_out = ch * ch_mult[i_level]
|
622 |
+
for i_block in range(self.num_res_blocks + 1):
|
623 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
+
out_channels=block_out,
|
625 |
+
temb_channels=self.temb_ch,
|
626 |
+
dropout=dropout))
|
627 |
+
block_in = block_out
|
628 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
+
if i_level != self.num_resolutions - 1:
|
630 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
+
curr_res = curr_res * 2
|
632 |
+
|
633 |
+
# end
|
634 |
+
self.norm_out = Normalize(block_in)
|
635 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
+
out_channels,
|
637 |
+
kernel_size=3,
|
638 |
+
stride=1,
|
639 |
+
padding=1)
|
640 |
+
|
641 |
+
def forward(self, x):
|
642 |
+
# upsampling
|
643 |
+
h = x
|
644 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
+
for i_block in range(self.num_res_blocks + 1):
|
646 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
+
if i_level != self.num_resolutions - 1:
|
648 |
+
h = self.upsample_blocks[k](h)
|
649 |
+
h = self.norm_out(h)
|
650 |
+
h = nonlinearity(h)
|
651 |
+
h = self.conv_out(h)
|
652 |
+
return h
|
653 |
+
|
654 |
+
|
655 |
+
class LatentRescaler(nn.Module):
|
656 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
+
super().__init__()
|
658 |
+
# residual block, interpolate, residual block
|
659 |
+
self.factor = factor
|
660 |
+
self.conv_in = nn.Conv2d(in_channels,
|
661 |
+
mid_channels,
|
662 |
+
kernel_size=3,
|
663 |
+
stride=1,
|
664 |
+
padding=1)
|
665 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
+
out_channels=mid_channels,
|
667 |
+
temb_channels=0,
|
668 |
+
dropout=0.0) for _ in range(depth)])
|
669 |
+
self.attn = AttnBlock(mid_channels)
|
670 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
|
675 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
+
out_channels,
|
677 |
+
kernel_size=1,
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, x):
|
681 |
+
x = self.conv_in(x)
|
682 |
+
for block in self.res_block1:
|
683 |
+
x = block(x, None)
|
684 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
+
x = self.attn(x)
|
686 |
+
for block in self.res_block2:
|
687 |
+
x = block(x, None)
|
688 |
+
x = self.conv_out(x)
|
689 |
+
return x
|
690 |
+
|
691 |
+
|
692 |
+
class MergedRescaleEncoder(nn.Module):
|
693 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
+
super().__init__()
|
697 |
+
intermediate_chn = ch * ch_mult[-1]
|
698 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
+
out_ch=None)
|
702 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.encoder(x)
|
707 |
+
x = self.rescaler(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
|
711 |
+
class MergedRescaleDecoder(nn.Module):
|
712 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
+
super().__init__()
|
715 |
+
tmp_chn = z_channels*ch_mult[-1]
|
716 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
+
|
722 |
+
def forward(self, x):
|
723 |
+
x = self.rescaler(x)
|
724 |
+
x = self.decoder(x)
|
725 |
+
return x
|
726 |
+
|
727 |
+
|
728 |
+
class Upsampler(nn.Module):
|
729 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
+
super().__init__()
|
731 |
+
assert out_size >= in_size
|
732 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
+
factor_up = 1.+ (out_size % in_size)
|
734 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
+
out_channels=in_channels)
|
737 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
+
|
741 |
+
def forward(self, x):
|
742 |
+
x = self.rescaler(x)
|
743 |
+
x = self.decoder(x)
|
744 |
+
return x
|
745 |
+
|
746 |
+
|
747 |
+
class Resize(nn.Module):
|
748 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
+
super().__init__()
|
750 |
+
self.with_conv = learned
|
751 |
+
self.mode = mode
|
752 |
+
if self.with_conv:
|
753 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
+
raise NotImplementedError()
|
755 |
+
assert in_channels is not None
|
756 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
+
in_channels,
|
759 |
+
kernel_size=4,
|
760 |
+
stride=2,
|
761 |
+
padding=1)
|
762 |
+
|
763 |
+
def forward(self, x, scale_factor=1.0):
|
764 |
+
if scale_factor==1.0:
|
765 |
+
return x
|
766 |
+
else:
|
767 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
+
return x
|
769 |
+
|
770 |
+
class FirstStagePostProcessor(nn.Module):
|
771 |
+
|
772 |
+
def __init__(self, ch_mult:list, in_channels,
|
773 |
+
pretrained_model:nn.Module=None,
|
774 |
+
reshape=False,
|
775 |
+
n_channels=None,
|
776 |
+
dropout=0.,
|
777 |
+
pretrained_config=None):
|
778 |
+
super().__init__()
|
779 |
+
if pretrained_config is None:
|
780 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
+
self.pretrained_model = pretrained_model
|
782 |
+
else:
|
783 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
+
self.instantiate_pretrained(pretrained_config)
|
785 |
+
|
786 |
+
self.do_reshape = reshape
|
787 |
+
|
788 |
+
if n_channels is None:
|
789 |
+
n_channels = self.pretrained_model.encoder.ch
|
790 |
+
|
791 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
+
stride=1,padding=1)
|
794 |
+
|
795 |
+
blocks = []
|
796 |
+
downs = []
|
797 |
+
ch_in = n_channels
|
798 |
+
for m in ch_mult:
|
799 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
+
ch_in = m * n_channels
|
801 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
+
|
803 |
+
self.model = nn.ModuleList(blocks)
|
804 |
+
self.downsampler = nn.ModuleList(downs)
|
805 |
+
|
806 |
+
|
807 |
+
def instantiate_pretrained(self, config):
|
808 |
+
model = instantiate_from_config(config)
|
809 |
+
self.pretrained_model = model.eval()
|
810 |
+
# self.pretrained_model.train = False
|
811 |
+
for param in self.pretrained_model.parameters():
|
812 |
+
param.requires_grad = False
|
813 |
+
|
814 |
+
|
815 |
+
@torch.no_grad()
|
816 |
+
def encode_with_pretrained(self,x):
|
817 |
+
c = self.pretrained_model.encode(x)
|
818 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
+
c = c.mode()
|
820 |
+
return c
|
821 |
+
|
822 |
+
def forward(self,x):
|
823 |
+
z_fs = self.encode_with_pretrained(x)
|
824 |
+
z = self.proj_norm(z_fs)
|
825 |
+
z = self.proj(z)
|
826 |
+
z = nonlinearity(z)
|
827 |
+
|
828 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
+
z = submodel(z,temb=None)
|
830 |
+
z = downmodel(z)
|
831 |
+
|
832 |
+
if self.do_reshape:
|
833 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
+
return z
|
835 |
+
|
3DTopia/ldm/modules/diffusionmodules/openaimodel.py
ADDED
@@ -0,0 +1,965 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
checkpoint,
|
13 |
+
conv_nd,
|
14 |
+
linear,
|
15 |
+
avg_pool_nd,
|
16 |
+
zero_module,
|
17 |
+
normalization,
|
18 |
+
timestep_embedding,
|
19 |
+
)
|
20 |
+
from ldm.modules.attention import SpatialTransformer
|
21 |
+
|
22 |
+
|
23 |
+
# dummy replace
|
24 |
+
def convert_module_to_f16(x):
|
25 |
+
pass
|
26 |
+
|
27 |
+
def convert_module_to_f32(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
## go
|
32 |
+
class AttentionPool2d(nn.Module):
|
33 |
+
"""
|
34 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
spacial_dim: int,
|
40 |
+
embed_dim: int,
|
41 |
+
num_heads_channels: int,
|
42 |
+
output_dim: int = None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
46 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
47 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
48 |
+
self.num_heads = embed_dim // num_heads_channels
|
49 |
+
self.attention = QKVAttention(self.num_heads)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
b, c, *_spatial = x.shape
|
53 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
54 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
55 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
56 |
+
x = self.qkv_proj(x)
|
57 |
+
x = self.attention(x)
|
58 |
+
x = self.c_proj(x)
|
59 |
+
return x[:, :, 0]
|
60 |
+
|
61 |
+
|
62 |
+
class TimestepBlock(nn.Module):
|
63 |
+
"""
|
64 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
65 |
+
"""
|
66 |
+
|
67 |
+
@abstractmethod
|
68 |
+
def forward(self, x, emb):
|
69 |
+
"""
|
70 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
75 |
+
"""
|
76 |
+
A sequential module that passes timestep embeddings to the children that
|
77 |
+
support it as an extra input.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def forward(self, x, emb, context=None):
|
81 |
+
for layer in self:
|
82 |
+
if isinstance(layer, TimestepBlock):
|
83 |
+
x = layer(x, emb)
|
84 |
+
elif isinstance(layer, SpatialTransformer):
|
85 |
+
x = layer(x, context)
|
86 |
+
else:
|
87 |
+
x = layer(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class Upsample(nn.Module):
|
92 |
+
"""
|
93 |
+
An upsampling layer with an optional convolution.
|
94 |
+
:param channels: channels in the inputs and outputs.
|
95 |
+
:param use_conv: a bool determining if a convolution is applied.
|
96 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
97 |
+
upsampling occurs in the inner-two dimensions.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
101 |
+
super().__init__()
|
102 |
+
self.channels = channels
|
103 |
+
self.out_channels = out_channels or channels
|
104 |
+
self.use_conv = use_conv
|
105 |
+
self.dims = dims
|
106 |
+
if use_conv:
|
107 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
assert x.shape[1] == self.channels
|
111 |
+
if self.dims == 3:
|
112 |
+
x = F.interpolate(
|
113 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
117 |
+
if self.use_conv:
|
118 |
+
x = self.conv(x)
|
119 |
+
return x
|
120 |
+
|
121 |
+
class TransposedUpsample(nn.Module):
|
122 |
+
'Learned 2x upsampling without padding'
|
123 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
124 |
+
super().__init__()
|
125 |
+
self.channels = channels
|
126 |
+
self.out_channels = out_channels or channels
|
127 |
+
|
128 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
129 |
+
|
130 |
+
def forward(self,x):
|
131 |
+
return self.up(x)
|
132 |
+
|
133 |
+
|
134 |
+
class Downsample(nn.Module):
|
135 |
+
"""
|
136 |
+
A downsampling layer with an optional convolution.
|
137 |
+
:param channels: channels in the inputs and outputs.
|
138 |
+
:param use_conv: a bool determining if a convolution is applied.
|
139 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
140 |
+
downsampling occurs in the inner-two dimensions.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
144 |
+
super().__init__()
|
145 |
+
self.channels = channels
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.dims = dims
|
149 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
150 |
+
if use_conv:
|
151 |
+
self.op = conv_nd(
|
152 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
assert self.channels == self.out_channels
|
156 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
assert x.shape[1] == self.channels
|
160 |
+
return self.op(x)
|
161 |
+
|
162 |
+
|
163 |
+
class ResBlock(TimestepBlock):
|
164 |
+
"""
|
165 |
+
A residual block that can optionally change the number of channels.
|
166 |
+
:param channels: the number of input channels.
|
167 |
+
:param emb_channels: the number of timestep embedding channels.
|
168 |
+
:param dropout: the rate of dropout.
|
169 |
+
:param out_channels: if specified, the number of out channels.
|
170 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
171 |
+
convolution instead of a smaller 1x1 convolution to change the
|
172 |
+
channels in the skip connection.
|
173 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
174 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
175 |
+
:param up: if True, use this block for upsampling.
|
176 |
+
:param down: if True, use this block for downsampling.
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
channels,
|
182 |
+
emb_channels,
|
183 |
+
dropout,
|
184 |
+
out_channels=None,
|
185 |
+
use_conv=False,
|
186 |
+
use_scale_shift_norm=False,
|
187 |
+
dims=2,
|
188 |
+
use_checkpoint=False,
|
189 |
+
up=False,
|
190 |
+
down=False,
|
191 |
+
):
|
192 |
+
super().__init__()
|
193 |
+
self.channels = channels
|
194 |
+
self.emb_channels = emb_channels
|
195 |
+
self.dropout = dropout
|
196 |
+
self.out_channels = out_channels or channels
|
197 |
+
self.use_conv = use_conv
|
198 |
+
self.use_checkpoint = use_checkpoint
|
199 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
200 |
+
|
201 |
+
self.in_layers = nn.Sequential(
|
202 |
+
normalization(channels),
|
203 |
+
nn.SiLU(),
|
204 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
205 |
+
)
|
206 |
+
|
207 |
+
self.updown = up or down
|
208 |
+
|
209 |
+
if up:
|
210 |
+
self.h_upd = Upsample(channels, False, dims)
|
211 |
+
self.x_upd = Upsample(channels, False, dims)
|
212 |
+
elif down:
|
213 |
+
self.h_upd = Downsample(channels, False, dims)
|
214 |
+
self.x_upd = Downsample(channels, False, dims)
|
215 |
+
else:
|
216 |
+
self.h_upd = self.x_upd = nn.Identity()
|
217 |
+
|
218 |
+
self.emb_layers = nn.Sequential(
|
219 |
+
nn.SiLU(),
|
220 |
+
linear(
|
221 |
+
emb_channels,
|
222 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
223 |
+
),
|
224 |
+
)
|
225 |
+
self.out_layers = nn.Sequential(
|
226 |
+
normalization(self.out_channels),
|
227 |
+
nn.SiLU(),
|
228 |
+
nn.Dropout(p=dropout),
|
229 |
+
zero_module(
|
230 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
231 |
+
),
|
232 |
+
)
|
233 |
+
|
234 |
+
if self.out_channels == channels:
|
235 |
+
self.skip_connection = nn.Identity()
|
236 |
+
elif use_conv:
|
237 |
+
self.skip_connection = conv_nd(
|
238 |
+
dims, channels, self.out_channels, 3, padding=1
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
242 |
+
|
243 |
+
def forward(self, x, emb):
|
244 |
+
"""
|
245 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
246 |
+
:param x: an [N x C x ...] Tensor of features.
|
247 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
248 |
+
:return: an [N x C x ...] Tensor of outputs.
|
249 |
+
"""
|
250 |
+
return checkpoint(
|
251 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
252 |
+
)
|
253 |
+
|
254 |
+
|
255 |
+
def _forward(self, x, emb):
|
256 |
+
if self.updown:
|
257 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
258 |
+
h = in_rest(x)
|
259 |
+
h = self.h_upd(h)
|
260 |
+
x = self.x_upd(x)
|
261 |
+
h = in_conv(h)
|
262 |
+
else:
|
263 |
+
h = self.in_layers(x)
|
264 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
265 |
+
while len(emb_out.shape) < len(h.shape):
|
266 |
+
emb_out = emb_out[..., None]
|
267 |
+
if self.use_scale_shift_norm:
|
268 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
269 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
270 |
+
h = out_norm(h) * (1 + scale) + shift
|
271 |
+
h = out_rest(h)
|
272 |
+
else:
|
273 |
+
h = h + emb_out
|
274 |
+
h = self.out_layers(h)
|
275 |
+
return self.skip_connection(x) + h
|
276 |
+
|
277 |
+
|
278 |
+
class AttentionBlock(nn.Module):
|
279 |
+
"""
|
280 |
+
An attention block that allows spatial positions to attend to each other.
|
281 |
+
Originally ported from here, but adapted to the N-d case.
|
282 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(
|
286 |
+
self,
|
287 |
+
channels,
|
288 |
+
num_heads=1,
|
289 |
+
num_head_channels=-1,
|
290 |
+
use_checkpoint=False,
|
291 |
+
use_new_attention_order=False,
|
292 |
+
):
|
293 |
+
super().__init__()
|
294 |
+
self.channels = channels
|
295 |
+
if num_head_channels == -1:
|
296 |
+
self.num_heads = num_heads
|
297 |
+
else:
|
298 |
+
assert (
|
299 |
+
channels % num_head_channels == 0
|
300 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
301 |
+
self.num_heads = channels // num_head_channels
|
302 |
+
self.use_checkpoint = use_checkpoint
|
303 |
+
self.norm = normalization(channels)
|
304 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
305 |
+
if use_new_attention_order:
|
306 |
+
# split qkv before split heads
|
307 |
+
self.attention = QKVAttention(self.num_heads)
|
308 |
+
else:
|
309 |
+
# split heads before split qkv
|
310 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
311 |
+
|
312 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
313 |
+
|
314 |
+
def forward(self, x):
|
315 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
316 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
317 |
+
|
318 |
+
def _forward(self, x):
|
319 |
+
b, c, *spatial = x.shape
|
320 |
+
x = x.reshape(b, c, -1)
|
321 |
+
qkv = self.qkv(self.norm(x))
|
322 |
+
h = self.attention(qkv)
|
323 |
+
h = self.proj_out(h)
|
324 |
+
return (x + h).reshape(b, c, *spatial)
|
325 |
+
|
326 |
+
|
327 |
+
def count_flops_attn(model, _x, y):
|
328 |
+
"""
|
329 |
+
A counter for the `thop` package to count the operations in an
|
330 |
+
attention operation.
|
331 |
+
Meant to be used like:
|
332 |
+
macs, params = thop.profile(
|
333 |
+
model,
|
334 |
+
inputs=(inputs, timestamps),
|
335 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
336 |
+
)
|
337 |
+
"""
|
338 |
+
b, c, *spatial = y[0].shape
|
339 |
+
num_spatial = int(np.prod(spatial))
|
340 |
+
# We perform two matmuls with the same number of ops.
|
341 |
+
# The first computes the weight matrix, the second computes
|
342 |
+
# the combination of the value vectors.
|
343 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
344 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
345 |
+
|
346 |
+
|
347 |
+
class QKVAttentionLegacy(nn.Module):
|
348 |
+
"""
|
349 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
350 |
+
"""
|
351 |
+
|
352 |
+
def __init__(self, n_heads):
|
353 |
+
super().__init__()
|
354 |
+
self.n_heads = n_heads
|
355 |
+
|
356 |
+
def forward(self, qkv):
|
357 |
+
"""
|
358 |
+
Apply QKV attention.
|
359 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
360 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
361 |
+
"""
|
362 |
+
bs, width, length = qkv.shape
|
363 |
+
assert width % (3 * self.n_heads) == 0
|
364 |
+
ch = width // (3 * self.n_heads)
|
365 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
366 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
367 |
+
weight = th.einsum(
|
368 |
+
"bct,bcs->bts", q * scale, k * scale
|
369 |
+
) # More stable with f16 than dividing afterwards
|
370 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
371 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
372 |
+
return a.reshape(bs, -1, length)
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def count_flops(model, _x, y):
|
376 |
+
return count_flops_attn(model, _x, y)
|
377 |
+
|
378 |
+
|
379 |
+
class QKVAttention(nn.Module):
|
380 |
+
"""
|
381 |
+
A module which performs QKV attention and splits in a different order.
|
382 |
+
"""
|
383 |
+
|
384 |
+
def __init__(self, n_heads):
|
385 |
+
super().__init__()
|
386 |
+
self.n_heads = n_heads
|
387 |
+
|
388 |
+
def forward(self, qkv):
|
389 |
+
"""
|
390 |
+
Apply QKV attention.
|
391 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
392 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
393 |
+
"""
|
394 |
+
bs, width, length = qkv.shape
|
395 |
+
assert width % (3 * self.n_heads) == 0
|
396 |
+
ch = width // (3 * self.n_heads)
|
397 |
+
q, k, v = qkv.chunk(3, dim=1)
|
398 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
399 |
+
weight = th.einsum(
|
400 |
+
"bct,bcs->bts",
|
401 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
402 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
403 |
+
) # More stable with f16 than dividing afterwards
|
404 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
405 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
406 |
+
return a.reshape(bs, -1, length)
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def count_flops(model, _x, y):
|
410 |
+
return count_flops_attn(model, _x, y)
|
411 |
+
|
412 |
+
|
413 |
+
class UNetModel(nn.Module):
|
414 |
+
"""
|
415 |
+
The full UNet model with attention and timestep embedding.
|
416 |
+
:param in_channels: channels in the input Tensor.
|
417 |
+
:param model_channels: base channel count for the model.
|
418 |
+
:param out_channels: channels in the output Tensor.
|
419 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
420 |
+
:param attention_resolutions: a collection of downsample rates at which
|
421 |
+
attention will take place. May be a set, list, or tuple.
|
422 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
423 |
+
will be used.
|
424 |
+
:param dropout: the dropout probability.
|
425 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
426 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
427 |
+
downsampling.
|
428 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
429 |
+
:param num_classes: if specified (as an int), then this model will be
|
430 |
+
class-conditional with `num_classes` classes.
|
431 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
432 |
+
:param num_heads: the number of attention heads in each attention layer.
|
433 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
434 |
+
a fixed channel width per attention head.
|
435 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
436 |
+
of heads for upsampling. Deprecated.
|
437 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
438 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
439 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
440 |
+
increased efficiency.
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(
|
444 |
+
self,
|
445 |
+
image_size,
|
446 |
+
in_channels,
|
447 |
+
model_channels,
|
448 |
+
out_channels,
|
449 |
+
num_res_blocks,
|
450 |
+
attention_resolutions,
|
451 |
+
dropout=0,
|
452 |
+
channel_mult=(1, 2, 4, 8),
|
453 |
+
conv_resample=True,
|
454 |
+
dims=2,
|
455 |
+
num_classes=None,
|
456 |
+
use_checkpoint=False,
|
457 |
+
use_fp16=False,
|
458 |
+
num_heads=-1,
|
459 |
+
num_head_channels=-1,
|
460 |
+
num_heads_upsample=-1,
|
461 |
+
use_scale_shift_norm=False,
|
462 |
+
resblock_updown=False,
|
463 |
+
use_new_attention_order=False,
|
464 |
+
use_spatial_transformer=False, # custom transformer support
|
465 |
+
transformer_depth=1, # custom transformer support
|
466 |
+
context_dim=None, # custom transformer support
|
467 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
468 |
+
legacy=True,
|
469 |
+
):
|
470 |
+
super().__init__()
|
471 |
+
if use_spatial_transformer:
|
472 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
473 |
+
|
474 |
+
if context_dim is not None:
|
475 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
476 |
+
from omegaconf.listconfig import ListConfig
|
477 |
+
if type(context_dim) == ListConfig:
|
478 |
+
context_dim = list(context_dim)
|
479 |
+
|
480 |
+
if num_heads_upsample == -1:
|
481 |
+
num_heads_upsample = num_heads
|
482 |
+
|
483 |
+
if num_heads == -1:
|
484 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
485 |
+
|
486 |
+
if num_head_channels == -1:
|
487 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
488 |
+
|
489 |
+
self.image_size = image_size
|
490 |
+
self.in_channels = in_channels
|
491 |
+
self.model_channels = model_channels
|
492 |
+
self.out_channels = out_channels
|
493 |
+
self.num_res_blocks = num_res_blocks
|
494 |
+
self.attention_resolutions = attention_resolutions
|
495 |
+
self.dropout = dropout
|
496 |
+
self.channel_mult = channel_mult
|
497 |
+
self.conv_resample = conv_resample
|
498 |
+
self.num_classes = num_classes
|
499 |
+
self.use_checkpoint = use_checkpoint
|
500 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
501 |
+
self.num_heads = num_heads
|
502 |
+
self.num_head_channels = num_head_channels
|
503 |
+
self.num_heads_upsample = num_heads_upsample
|
504 |
+
self.predict_codebook_ids = n_embed is not None
|
505 |
+
|
506 |
+
time_embed_dim = model_channels * 4
|
507 |
+
self.time_embed = nn.Sequential(
|
508 |
+
linear(model_channels, time_embed_dim),
|
509 |
+
nn.SiLU(),
|
510 |
+
linear(time_embed_dim, time_embed_dim),
|
511 |
+
)
|
512 |
+
|
513 |
+
if self.num_classes is not None:
|
514 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
515 |
+
|
516 |
+
self.input_blocks = nn.ModuleList(
|
517 |
+
[
|
518 |
+
TimestepEmbedSequential(
|
519 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
520 |
+
)
|
521 |
+
]
|
522 |
+
)
|
523 |
+
self._feature_size = model_channels
|
524 |
+
input_block_chans = [model_channels]
|
525 |
+
ch = model_channels
|
526 |
+
ds = 1
|
527 |
+
for level, mult in enumerate(channel_mult):
|
528 |
+
for _ in range(num_res_blocks):
|
529 |
+
layers = [
|
530 |
+
ResBlock(
|
531 |
+
ch,
|
532 |
+
time_embed_dim,
|
533 |
+
dropout,
|
534 |
+
out_channels=mult * model_channels,
|
535 |
+
dims=dims,
|
536 |
+
use_checkpoint=use_checkpoint,
|
537 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
538 |
+
)
|
539 |
+
]
|
540 |
+
ch = mult * model_channels
|
541 |
+
if ds in attention_resolutions:
|
542 |
+
if num_head_channels == -1:
|
543 |
+
dim_head = ch // num_heads
|
544 |
+
else:
|
545 |
+
num_heads = ch // num_head_channels
|
546 |
+
dim_head = num_head_channels
|
547 |
+
if legacy:
|
548 |
+
#num_heads = 1
|
549 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
550 |
+
layers.append(
|
551 |
+
AttentionBlock(
|
552 |
+
ch,
|
553 |
+
use_checkpoint=use_checkpoint,
|
554 |
+
num_heads=num_heads,
|
555 |
+
num_head_channels=dim_head,
|
556 |
+
use_new_attention_order=use_new_attention_order,
|
557 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
558 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
559 |
+
)
|
560 |
+
)
|
561 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
562 |
+
self._feature_size += ch
|
563 |
+
input_block_chans.append(ch)
|
564 |
+
if level != len(channel_mult) - 1:
|
565 |
+
out_ch = ch
|
566 |
+
self.input_blocks.append(
|
567 |
+
TimestepEmbedSequential(
|
568 |
+
ResBlock(
|
569 |
+
ch,
|
570 |
+
time_embed_dim,
|
571 |
+
dropout,
|
572 |
+
out_channels=out_ch,
|
573 |
+
dims=dims,
|
574 |
+
use_checkpoint=use_checkpoint,
|
575 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
576 |
+
down=True,
|
577 |
+
)
|
578 |
+
if resblock_updown
|
579 |
+
else Downsample(
|
580 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
581 |
+
)
|
582 |
+
)
|
583 |
+
)
|
584 |
+
ch = out_ch
|
585 |
+
input_block_chans.append(ch)
|
586 |
+
ds *= 2
|
587 |
+
self._feature_size += ch
|
588 |
+
|
589 |
+
if num_head_channels == -1:
|
590 |
+
dim_head = ch // num_heads
|
591 |
+
else:
|
592 |
+
num_heads = ch // num_head_channels
|
593 |
+
dim_head = num_head_channels
|
594 |
+
if legacy:
|
595 |
+
#num_heads = 1
|
596 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
597 |
+
self.middle_block = TimestepEmbedSequential(
|
598 |
+
ResBlock(
|
599 |
+
ch,
|
600 |
+
time_embed_dim,
|
601 |
+
dropout,
|
602 |
+
dims=dims,
|
603 |
+
use_checkpoint=use_checkpoint,
|
604 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
605 |
+
),
|
606 |
+
AttentionBlock(
|
607 |
+
ch,
|
608 |
+
use_checkpoint=use_checkpoint,
|
609 |
+
num_heads=num_heads,
|
610 |
+
num_head_channels=dim_head,
|
611 |
+
use_new_attention_order=use_new_attention_order,
|
612 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
613 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
614 |
+
),
|
615 |
+
ResBlock(
|
616 |
+
ch,
|
617 |
+
time_embed_dim,
|
618 |
+
dropout,
|
619 |
+
dims=dims,
|
620 |
+
use_checkpoint=use_checkpoint,
|
621 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
622 |
+
),
|
623 |
+
)
|
624 |
+
self._feature_size += ch
|
625 |
+
|
626 |
+
self.output_blocks = nn.ModuleList([])
|
627 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
628 |
+
for i in range(num_res_blocks + 1):
|
629 |
+
ich = input_block_chans.pop()
|
630 |
+
layers = [
|
631 |
+
ResBlock(
|
632 |
+
ch + ich,
|
633 |
+
time_embed_dim,
|
634 |
+
dropout,
|
635 |
+
out_channels=model_channels * mult,
|
636 |
+
dims=dims,
|
637 |
+
use_checkpoint=use_checkpoint,
|
638 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
639 |
+
)
|
640 |
+
]
|
641 |
+
ch = model_channels * mult
|
642 |
+
if ds in attention_resolutions:
|
643 |
+
if num_head_channels == -1:
|
644 |
+
dim_head = ch // num_heads
|
645 |
+
else:
|
646 |
+
num_heads = ch // num_head_channels
|
647 |
+
dim_head = num_head_channels
|
648 |
+
if legacy:
|
649 |
+
#num_heads = 1
|
650 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
651 |
+
layers.append(
|
652 |
+
AttentionBlock(
|
653 |
+
ch,
|
654 |
+
use_checkpoint=use_checkpoint,
|
655 |
+
num_heads=num_heads_upsample,
|
656 |
+
num_head_channels=dim_head,
|
657 |
+
use_new_attention_order=use_new_attention_order,
|
658 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
659 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
660 |
+
)
|
661 |
+
)
|
662 |
+
if level and i == num_res_blocks:
|
663 |
+
out_ch = ch
|
664 |
+
layers.append(
|
665 |
+
ResBlock(
|
666 |
+
ch,
|
667 |
+
time_embed_dim,
|
668 |
+
dropout,
|
669 |
+
out_channels=out_ch,
|
670 |
+
dims=dims,
|
671 |
+
use_checkpoint=use_checkpoint,
|
672 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
673 |
+
up=True,
|
674 |
+
)
|
675 |
+
if resblock_updown
|
676 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
677 |
+
)
|
678 |
+
ds //= 2
|
679 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
680 |
+
self._feature_size += ch
|
681 |
+
|
682 |
+
self.out = nn.Sequential(
|
683 |
+
normalization(ch),
|
684 |
+
nn.SiLU(),
|
685 |
+
zero_module(conv_nd(dims, ch, out_channels, 3, padding=1)),
|
686 |
+
)
|
687 |
+
if self.predict_codebook_ids:
|
688 |
+
self.id_predictor = nn.Sequential(
|
689 |
+
normalization(ch),
|
690 |
+
conv_nd(dims, ch, n_embed, 1),
|
691 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
692 |
+
)
|
693 |
+
|
694 |
+
def convert_to_fp16(self):
|
695 |
+
"""
|
696 |
+
Convert the torso of the model to float16.
|
697 |
+
"""
|
698 |
+
self.input_blocks.apply(convert_module_to_f16)
|
699 |
+
self.middle_block.apply(convert_module_to_f16)
|
700 |
+
self.output_blocks.apply(convert_module_to_f16)
|
701 |
+
|
702 |
+
def convert_to_fp32(self):
|
703 |
+
"""
|
704 |
+
Convert the torso of the model to float32.
|
705 |
+
"""
|
706 |
+
self.input_blocks.apply(convert_module_to_f32)
|
707 |
+
self.middle_block.apply(convert_module_to_f32)
|
708 |
+
self.output_blocks.apply(convert_module_to_f32)
|
709 |
+
|
710 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
711 |
+
"""
|
712 |
+
Apply the model to an input batch.
|
713 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
714 |
+
:param timesteps: a 1-D batch of timesteps.
|
715 |
+
:param context: conditioning plugged in via crossattn
|
716 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
717 |
+
:return: an [N x C x ...] Tensor of outputs.
|
718 |
+
"""
|
719 |
+
assert (y is not None) == (
|
720 |
+
self.num_classes is not None
|
721 |
+
), "must specify y if and only if the model is class-conditional"
|
722 |
+
hs = []
|
723 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
724 |
+
emb = self.time_embed(t_emb)
|
725 |
+
|
726 |
+
if self.num_classes is not None:
|
727 |
+
assert y.shape == (x.shape[0],)
|
728 |
+
emb = emb + self.label_emb(y)
|
729 |
+
|
730 |
+
h = x.type(self.dtype)
|
731 |
+
for module in self.input_blocks:
|
732 |
+
h = module(h, emb, context)
|
733 |
+
hs.append(h)
|
734 |
+
h = self.middle_block(h, emb, context)
|
735 |
+
for module in self.output_blocks:
|
736 |
+
# if h.shape[1] == 640:
|
737 |
+
# # h[:, :320] = h[:, :320] * 1.4
|
738 |
+
# # print("here")
|
739 |
+
# h = h * 1.2
|
740 |
+
h = th.cat([h, hs.pop()], dim=1)
|
741 |
+
h = module(h, emb, context)
|
742 |
+
h = h.type(x.dtype)
|
743 |
+
if self.predict_codebook_ids:
|
744 |
+
return self.id_predictor(h)
|
745 |
+
else:
|
746 |
+
return self.out(h)
|
747 |
+
|
748 |
+
|
749 |
+
class EncoderUNetModel(nn.Module):
|
750 |
+
"""
|
751 |
+
The half UNet model with attention and timestep embedding.
|
752 |
+
For usage, see UNet.
|
753 |
+
"""
|
754 |
+
|
755 |
+
def __init__(
|
756 |
+
self,
|
757 |
+
image_size,
|
758 |
+
in_channels,
|
759 |
+
model_channels,
|
760 |
+
out_channels,
|
761 |
+
num_res_blocks,
|
762 |
+
attention_resolutions,
|
763 |
+
dropout=0,
|
764 |
+
channel_mult=(1, 2, 4, 8),
|
765 |
+
conv_resample=True,
|
766 |
+
dims=2,
|
767 |
+
use_checkpoint=False,
|
768 |
+
use_fp16=False,
|
769 |
+
num_heads=1,
|
770 |
+
num_head_channels=-1,
|
771 |
+
num_heads_upsample=-1,
|
772 |
+
use_scale_shift_norm=False,
|
773 |
+
resblock_updown=False,
|
774 |
+
use_new_attention_order=False,
|
775 |
+
pool="adaptive",
|
776 |
+
*args,
|
777 |
+
**kwargs
|
778 |
+
):
|
779 |
+
super().__init__()
|
780 |
+
|
781 |
+
if num_heads_upsample == -1:
|
782 |
+
num_heads_upsample = num_heads
|
783 |
+
|
784 |
+
self.in_channels = in_channels
|
785 |
+
self.model_channels = model_channels
|
786 |
+
self.out_channels = out_channels
|
787 |
+
self.num_res_blocks = num_res_blocks
|
788 |
+
self.attention_resolutions = attention_resolutions
|
789 |
+
self.dropout = dropout
|
790 |
+
self.channel_mult = channel_mult
|
791 |
+
self.conv_resample = conv_resample
|
792 |
+
self.use_checkpoint = use_checkpoint
|
793 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
794 |
+
self.num_heads = num_heads
|
795 |
+
self.num_head_channels = num_head_channels
|
796 |
+
self.num_heads_upsample = num_heads_upsample
|
797 |
+
|
798 |
+
time_embed_dim = model_channels * 4
|
799 |
+
self.time_embed = nn.Sequential(
|
800 |
+
linear(model_channels, time_embed_dim),
|
801 |
+
nn.SiLU(),
|
802 |
+
linear(time_embed_dim, time_embed_dim),
|
803 |
+
)
|
804 |
+
|
805 |
+
self.input_blocks = nn.ModuleList(
|
806 |
+
[
|
807 |
+
TimestepEmbedSequential(
|
808 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
809 |
+
)
|
810 |
+
]
|
811 |
+
)
|
812 |
+
self._feature_size = model_channels
|
813 |
+
input_block_chans = [model_channels]
|
814 |
+
ch = model_channels
|
815 |
+
ds = 1
|
816 |
+
for level, mult in enumerate(channel_mult):
|
817 |
+
for _ in range(num_res_blocks):
|
818 |
+
layers = [
|
819 |
+
ResBlock(
|
820 |
+
ch,
|
821 |
+
time_embed_dim,
|
822 |
+
dropout,
|
823 |
+
out_channels=mult * model_channels,
|
824 |
+
dims=dims,
|
825 |
+
use_checkpoint=use_checkpoint,
|
826 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
827 |
+
)
|
828 |
+
]
|
829 |
+
ch = mult * model_channels
|
830 |
+
if ds in attention_resolutions:
|
831 |
+
layers.append(
|
832 |
+
AttentionBlock(
|
833 |
+
ch,
|
834 |
+
use_checkpoint=use_checkpoint,
|
835 |
+
num_heads=num_heads,
|
836 |
+
num_head_channels=num_head_channels,
|
837 |
+
use_new_attention_order=use_new_attention_order,
|
838 |
+
)
|
839 |
+
)
|
840 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
841 |
+
self._feature_size += ch
|
842 |
+
input_block_chans.append(ch)
|
843 |
+
if level != len(channel_mult) - 1:
|
844 |
+
out_ch = ch
|
845 |
+
self.input_blocks.append(
|
846 |
+
TimestepEmbedSequential(
|
847 |
+
ResBlock(
|
848 |
+
ch,
|
849 |
+
time_embed_dim,
|
850 |
+
dropout,
|
851 |
+
out_channels=out_ch,
|
852 |
+
dims=dims,
|
853 |
+
use_checkpoint=use_checkpoint,
|
854 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
855 |
+
down=True,
|
856 |
+
)
|
857 |
+
if resblock_updown
|
858 |
+
else Downsample(
|
859 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
860 |
+
)
|
861 |
+
)
|
862 |
+
)
|
863 |
+
ch = out_ch
|
864 |
+
input_block_chans.append(ch)
|
865 |
+
ds *= 2
|
866 |
+
self._feature_size += ch
|
867 |
+
|
868 |
+
self.middle_block = TimestepEmbedSequential(
|
869 |
+
ResBlock(
|
870 |
+
ch,
|
871 |
+
time_embed_dim,
|
872 |
+
dropout,
|
873 |
+
dims=dims,
|
874 |
+
use_checkpoint=use_checkpoint,
|
875 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
876 |
+
),
|
877 |
+
AttentionBlock(
|
878 |
+
ch,
|
879 |
+
use_checkpoint=use_checkpoint,
|
880 |
+
num_heads=num_heads,
|
881 |
+
num_head_channels=num_head_channels,
|
882 |
+
use_new_attention_order=use_new_attention_order,
|
883 |
+
),
|
884 |
+
ResBlock(
|
885 |
+
ch,
|
886 |
+
time_embed_dim,
|
887 |
+
dropout,
|
888 |
+
dims=dims,
|
889 |
+
use_checkpoint=use_checkpoint,
|
890 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
+
),
|
892 |
+
)
|
893 |
+
self._feature_size += ch
|
894 |
+
self.pool = pool
|
895 |
+
if pool == "adaptive":
|
896 |
+
self.out = nn.Sequential(
|
897 |
+
normalization(ch),
|
898 |
+
nn.SiLU(),
|
899 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
900 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
901 |
+
nn.Flatten(),
|
902 |
+
)
|
903 |
+
elif pool == "attention":
|
904 |
+
assert num_head_channels != -1
|
905 |
+
self.out = nn.Sequential(
|
906 |
+
normalization(ch),
|
907 |
+
nn.SiLU(),
|
908 |
+
AttentionPool2d(
|
909 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
910 |
+
),
|
911 |
+
)
|
912 |
+
elif pool == "spatial":
|
913 |
+
self.out = nn.Sequential(
|
914 |
+
nn.Linear(self._feature_size, 2048),
|
915 |
+
nn.ReLU(),
|
916 |
+
nn.Linear(2048, self.out_channels),
|
917 |
+
)
|
918 |
+
elif pool == "spatial_v2":
|
919 |
+
self.out = nn.Sequential(
|
920 |
+
nn.Linear(self._feature_size, 2048),
|
921 |
+
normalization(2048),
|
922 |
+
nn.SiLU(),
|
923 |
+
nn.Linear(2048, self.out_channels),
|
924 |
+
)
|
925 |
+
else:
|
926 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
927 |
+
|
928 |
+
def convert_to_fp16(self):
|
929 |
+
"""
|
930 |
+
Convert the torso of the model to float16.
|
931 |
+
"""
|
932 |
+
self.input_blocks.apply(convert_module_to_f16)
|
933 |
+
self.middle_block.apply(convert_module_to_f16)
|
934 |
+
|
935 |
+
def convert_to_fp32(self):
|
936 |
+
"""
|
937 |
+
Convert the torso of the model to float32.
|
938 |
+
"""
|
939 |
+
self.input_blocks.apply(convert_module_to_f32)
|
940 |
+
self.middle_block.apply(convert_module_to_f32)
|
941 |
+
|
942 |
+
def forward(self, x, timesteps):
|
943 |
+
"""
|
944 |
+
Apply the model to an input batch.
|
945 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
946 |
+
:param timesteps: a 1-D batch of timesteps.
|
947 |
+
:return: an [N x K] Tensor of outputs.
|
948 |
+
"""
|
949 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
950 |
+
|
951 |
+
results = []
|
952 |
+
h = x.type(self.dtype)
|
953 |
+
for module in self.input_blocks:
|
954 |
+
h = module(h, emb)
|
955 |
+
if self.pool.startswith("spatial"):
|
956 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
957 |
+
h = self.middle_block(h, emb)
|
958 |
+
if self.pool.startswith("spatial"):
|
959 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
960 |
+
h = th.cat(results, axis=-1)
|
961 |
+
return self.out(h)
|
962 |
+
else:
|
963 |
+
h = h.type(x.dtype)
|
964 |
+
return self.out(h)
|
965 |
+
|
3DTopia/ldm/modules/diffusionmodules/triplane_3daware_unet.py
ADDED
@@ -0,0 +1,991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from ldm.modules.diffusionmodules.util import (
|
12 |
+
checkpoint,
|
13 |
+
conv_nd,
|
14 |
+
linear,
|
15 |
+
avg_pool_nd,
|
16 |
+
zero_module,
|
17 |
+
normalization,
|
18 |
+
timestep_embedding,
|
19 |
+
)
|
20 |
+
from ldm.modules.attention import SpatialTransformer
|
21 |
+
|
22 |
+
|
23 |
+
# dummy replace
|
24 |
+
def convert_module_to_f16(x):
|
25 |
+
pass
|
26 |
+
|
27 |
+
def convert_module_to_f32(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
## go
|
32 |
+
class AttentionPool2d(nn.Module):
|
33 |
+
"""
|
34 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
spacial_dim: int,
|
40 |
+
embed_dim: int,
|
41 |
+
num_heads_channels: int,
|
42 |
+
output_dim: int = None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
46 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
47 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
48 |
+
self.num_heads = embed_dim // num_heads_channels
|
49 |
+
self.attention = QKVAttention(self.num_heads)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
b, c, *_spatial = x.shape
|
53 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
54 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
55 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
56 |
+
x = self.qkv_proj(x)
|
57 |
+
x = self.attention(x)
|
58 |
+
x = self.c_proj(x)
|
59 |
+
return x[:, :, 0]
|
60 |
+
|
61 |
+
|
62 |
+
class TimestepBlock(nn.Module):
|
63 |
+
"""
|
64 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
65 |
+
"""
|
66 |
+
|
67 |
+
@abstractmethod
|
68 |
+
def forward(self, x, emb):
|
69 |
+
"""
|
70 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
75 |
+
"""
|
76 |
+
A sequential module that passes timestep embeddings to the children that
|
77 |
+
support it as an extra input.
|
78 |
+
"""
|
79 |
+
|
80 |
+
def forward(self, x, emb, context=None):
|
81 |
+
for layer in self:
|
82 |
+
if isinstance(layer, TimestepBlock):
|
83 |
+
x = layer(x, emb)
|
84 |
+
elif isinstance(layer, SpatialTransformer):
|
85 |
+
x = layer(x, context)
|
86 |
+
else:
|
87 |
+
x = layer(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class Upsample(nn.Module):
|
92 |
+
"""
|
93 |
+
An upsampling layer with an optional convolution.
|
94 |
+
:param channels: channels in the inputs and outputs.
|
95 |
+
:param use_conv: a bool determining if a convolution is applied.
|
96 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
97 |
+
upsampling occurs in the inner-two dimensions.
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
101 |
+
super().__init__()
|
102 |
+
self.channels = channels
|
103 |
+
self.out_channels = out_channels or channels
|
104 |
+
self.use_conv = use_conv
|
105 |
+
self.dims = dims
|
106 |
+
if use_conv:
|
107 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
assert x.shape[1] == self.channels
|
111 |
+
if self.dims == 3:
|
112 |
+
x = F.interpolate(
|
113 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
117 |
+
if self.use_conv:
|
118 |
+
x = self.conv(x)
|
119 |
+
return x
|
120 |
+
|
121 |
+
class TransposedUpsample(nn.Module):
|
122 |
+
'Learned 2x upsampling without padding'
|
123 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
124 |
+
super().__init__()
|
125 |
+
self.channels = channels
|
126 |
+
self.out_channels = out_channels or channels
|
127 |
+
|
128 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
129 |
+
|
130 |
+
def forward(self,x):
|
131 |
+
return self.up(x)
|
132 |
+
|
133 |
+
|
134 |
+
class Downsample(nn.Module):
|
135 |
+
"""
|
136 |
+
A downsampling layer with an optional convolution.
|
137 |
+
:param channels: channels in the inputs and outputs.
|
138 |
+
:param use_conv: a bool determining if a convolution is applied.
|
139 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
140 |
+
downsampling occurs in the inner-two dimensions.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
144 |
+
super().__init__()
|
145 |
+
self.channels = channels
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.dims = dims
|
149 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
150 |
+
if use_conv:
|
151 |
+
self.op = conv_nd(
|
152 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
assert self.channels == self.out_channels
|
156 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
assert x.shape[1] == self.channels
|
160 |
+
return self.op(x)
|
161 |
+
|
162 |
+
|
163 |
+
class ResBlock(TimestepBlock):
|
164 |
+
"""
|
165 |
+
A residual block that can optionally change the number of channels.
|
166 |
+
:param channels: the number of input channels.
|
167 |
+
:param emb_channels: the number of timestep embedding channels.
|
168 |
+
:param dropout: the rate of dropout.
|
169 |
+
:param out_channels: if specified, the number of out channels.
|
170 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
171 |
+
convolution instead of a smaller 1x1 convolution to change the
|
172 |
+
channels in the skip connection.
|
173 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
174 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
175 |
+
:param up: if True, use this block for upsampling.
|
176 |
+
:param down: if True, use this block for downsampling.
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
channels,
|
182 |
+
emb_channels,
|
183 |
+
dropout,
|
184 |
+
out_channels=None,
|
185 |
+
use_conv=False,
|
186 |
+
use_scale_shift_norm=False,
|
187 |
+
dims=2,
|
188 |
+
use_checkpoint=False,
|
189 |
+
up=False,
|
190 |
+
down=False,
|
191 |
+
):
|
192 |
+
# print("Using 3d aware resblock!")
|
193 |
+
|
194 |
+
super().__init__()
|
195 |
+
self.channels = channels
|
196 |
+
self.emb_channels = emb_channels
|
197 |
+
self.dropout = dropout
|
198 |
+
self.out_channels = out_channels or channels
|
199 |
+
self.use_conv = use_conv
|
200 |
+
self.use_checkpoint = use_checkpoint
|
201 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
202 |
+
|
203 |
+
self.in_layers = nn.Sequential(
|
204 |
+
normalization(channels),
|
205 |
+
nn.SiLU(),
|
206 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
207 |
+
)
|
208 |
+
|
209 |
+
self.updown = up or down
|
210 |
+
|
211 |
+
if up:
|
212 |
+
self.h_upd = Upsample(channels, False, dims)
|
213 |
+
self.x_upd = Upsample(channels, False, dims)
|
214 |
+
elif down:
|
215 |
+
self.h_upd = Downsample(channels, False, dims)
|
216 |
+
self.x_upd = Downsample(channels, False, dims)
|
217 |
+
else:
|
218 |
+
self.h_upd = self.x_upd = nn.Identity()
|
219 |
+
|
220 |
+
self.emb_layers = nn.Sequential(
|
221 |
+
nn.SiLU(),
|
222 |
+
linear(
|
223 |
+
emb_channels,
|
224 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
225 |
+
),
|
226 |
+
)
|
227 |
+
self.out_layers = nn.Sequential(
|
228 |
+
normalization(self.out_channels),
|
229 |
+
nn.SiLU(),
|
230 |
+
nn.Dropout(p=dropout),
|
231 |
+
zero_module(
|
232 |
+
conv_nd(dims, self.out_channels * 3, self.out_channels, 3, padding=1)
|
233 |
+
),
|
234 |
+
)
|
235 |
+
|
236 |
+
if self.out_channels == channels:
|
237 |
+
self.skip_connection = nn.Identity()
|
238 |
+
elif use_conv:
|
239 |
+
self.skip_connection = conv_nd(
|
240 |
+
dims, channels, self.out_channels, 3, padding=1
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
244 |
+
|
245 |
+
def forward(self, x, emb):
|
246 |
+
"""
|
247 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
248 |
+
:param x: an [N x C x ...] Tensor of features.
|
249 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
250 |
+
:return: an [N x C x ...] Tensor of outputs.
|
251 |
+
"""
|
252 |
+
return checkpoint(
|
253 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
254 |
+
)
|
255 |
+
|
256 |
+
def to3daware(self, triplane):
|
257 |
+
res = triplane.shape[-2]
|
258 |
+
plane1 = triplane[..., :res]
|
259 |
+
plane2 = triplane[..., res:2*res]
|
260 |
+
plane3 = triplane[..., 2*res:3*res]
|
261 |
+
|
262 |
+
x_mp = th.nn.AvgPool2d((res, 1))
|
263 |
+
y_mp = th.nn.AvgPool2d((1, res))
|
264 |
+
x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2)
|
265 |
+
y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2)
|
266 |
+
# for plane1
|
267 |
+
plane21 = x_mp_rep(plane2)
|
268 |
+
plane31 = th.flip(y_mp_rep(plane3), (3,))
|
269 |
+
new_plane1 = th.cat([plane1, plane21, plane31], 1)
|
270 |
+
# for plane2
|
271 |
+
plane12 = y_mp_rep(plane1)
|
272 |
+
plane32 = x_mp_rep(plane3)
|
273 |
+
new_plane2 = th.cat([plane2, plane12, plane32], 1)
|
274 |
+
# for plane3
|
275 |
+
plane13 = th.flip(x_mp_rep(plane1), (2,))
|
276 |
+
plane23 = y_mp_rep(plane2)
|
277 |
+
new_plane3 = th.cat([plane3, plane13, plane23], 1)
|
278 |
+
|
279 |
+
new_plane = th.cat([new_plane1, new_plane2, new_plane3], -1).contiguous()
|
280 |
+
return new_plane
|
281 |
+
|
282 |
+
def _forward(self, x, emb):
|
283 |
+
if self.updown:
|
284 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
285 |
+
h = in_rest(x)
|
286 |
+
h = self.h_upd(h)
|
287 |
+
x = self.x_upd(x)
|
288 |
+
h = in_conv(h)
|
289 |
+
else:
|
290 |
+
h = self.in_layers(x)
|
291 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
292 |
+
while len(emb_out.shape) < len(h.shape):
|
293 |
+
emb_out = emb_out[..., None]
|
294 |
+
if self.use_scale_shift_norm:
|
295 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
296 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
297 |
+
h = out_norm(h) * (1 + scale) + shift
|
298 |
+
h = self.to3daware(h)
|
299 |
+
h = out_rest(h)
|
300 |
+
else:
|
301 |
+
h = h + emb_out
|
302 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
303 |
+
h = self.to3daware(out_norm(h))
|
304 |
+
h = out_rest(h)
|
305 |
+
return self.skip_connection(x) + h
|
306 |
+
|
307 |
+
|
308 |
+
class AttentionBlock(nn.Module):
|
309 |
+
"""
|
310 |
+
An attention block that allows spatial positions to attend to each other.
|
311 |
+
Originally ported from here, but adapted to the N-d case.
|
312 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
channels,
|
318 |
+
num_heads=1,
|
319 |
+
num_head_channels=-1,
|
320 |
+
use_checkpoint=False,
|
321 |
+
use_new_attention_order=False,
|
322 |
+
):
|
323 |
+
super().__init__()
|
324 |
+
self.channels = channels
|
325 |
+
if num_head_channels == -1:
|
326 |
+
self.num_heads = num_heads
|
327 |
+
else:
|
328 |
+
assert (
|
329 |
+
channels % num_head_channels == 0
|
330 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
331 |
+
self.num_heads = channels // num_head_channels
|
332 |
+
self.use_checkpoint = use_checkpoint
|
333 |
+
self.norm = normalization(channels)
|
334 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
335 |
+
if use_new_attention_order:
|
336 |
+
# split qkv before split heads
|
337 |
+
self.attention = QKVAttention(self.num_heads)
|
338 |
+
else:
|
339 |
+
# split heads before split qkv
|
340 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
341 |
+
|
342 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
343 |
+
|
344 |
+
def forward(self, x):
|
345 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
346 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
347 |
+
|
348 |
+
def _forward(self, x):
|
349 |
+
b, c, *spatial = x.shape
|
350 |
+
x = x.reshape(b, c, -1)
|
351 |
+
qkv = self.qkv(self.norm(x))
|
352 |
+
h = self.attention(qkv)
|
353 |
+
h = self.proj_out(h)
|
354 |
+
return (x + h).reshape(b, c, *spatial)
|
355 |
+
|
356 |
+
|
357 |
+
def count_flops_attn(model, _x, y):
|
358 |
+
"""
|
359 |
+
A counter for the `thop` package to count the operations in an
|
360 |
+
attention operation.
|
361 |
+
Meant to be used like:
|
362 |
+
macs, params = thop.profile(
|
363 |
+
model,
|
364 |
+
inputs=(inputs, timestamps),
|
365 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
366 |
+
)
|
367 |
+
"""
|
368 |
+
b, c, *spatial = y[0].shape
|
369 |
+
num_spatial = int(np.prod(spatial))
|
370 |
+
# We perform two matmuls with the same number of ops.
|
371 |
+
# The first computes the weight matrix, the second computes
|
372 |
+
# the combination of the value vectors.
|
373 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
374 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
375 |
+
|
376 |
+
|
377 |
+
class QKVAttentionLegacy(nn.Module):
|
378 |
+
"""
|
379 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, n_heads):
|
383 |
+
super().__init__()
|
384 |
+
self.n_heads = n_heads
|
385 |
+
|
386 |
+
def forward(self, qkv):
|
387 |
+
"""
|
388 |
+
Apply QKV attention.
|
389 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
390 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
391 |
+
"""
|
392 |
+
bs, width, length = qkv.shape
|
393 |
+
assert width % (3 * self.n_heads) == 0
|
394 |
+
ch = width // (3 * self.n_heads)
|
395 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
396 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
397 |
+
weight = th.einsum(
|
398 |
+
"bct,bcs->bts", q * scale, k * scale
|
399 |
+
) # More stable with f16 than dividing afterwards
|
400 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
401 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
402 |
+
return a.reshape(bs, -1, length)
|
403 |
+
|
404 |
+
@staticmethod
|
405 |
+
def count_flops(model, _x, y):
|
406 |
+
return count_flops_attn(model, _x, y)
|
407 |
+
|
408 |
+
|
409 |
+
class QKVAttention(nn.Module):
|
410 |
+
"""
|
411 |
+
A module which performs QKV attention and splits in a different order.
|
412 |
+
"""
|
413 |
+
|
414 |
+
def __init__(self, n_heads):
|
415 |
+
super().__init__()
|
416 |
+
self.n_heads = n_heads
|
417 |
+
|
418 |
+
def forward(self, qkv):
|
419 |
+
"""
|
420 |
+
Apply QKV attention.
|
421 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
422 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
423 |
+
"""
|
424 |
+
bs, width, length = qkv.shape
|
425 |
+
assert width % (3 * self.n_heads) == 0
|
426 |
+
ch = width // (3 * self.n_heads)
|
427 |
+
q, k, v = qkv.chunk(3, dim=1)
|
428 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
429 |
+
weight = th.einsum(
|
430 |
+
"bct,bcs->bts",
|
431 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
432 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
433 |
+
) # More stable with f16 than dividing afterwards
|
434 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
435 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
436 |
+
return a.reshape(bs, -1, length)
|
437 |
+
|
438 |
+
@staticmethod
|
439 |
+
def count_flops(model, _x, y):
|
440 |
+
return count_flops_attn(model, _x, y)
|
441 |
+
|
442 |
+
|
443 |
+
class UNetModel(nn.Module):
|
444 |
+
"""
|
445 |
+
The full UNet model with attention and timestep embedding.
|
446 |
+
:param in_channels: channels in the input Tensor.
|
447 |
+
:param model_channels: base channel count for the model.
|
448 |
+
:param out_channels: channels in the output Tensor.
|
449 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
450 |
+
:param attention_resolutions: a collection of downsample rates at which
|
451 |
+
attention will take place. May be a set, list, or tuple.
|
452 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
453 |
+
will be used.
|
454 |
+
:param dropout: the dropout probability.
|
455 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
456 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
457 |
+
downsampling.
|
458 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
459 |
+
:param num_classes: if specified (as an int), then this model will be
|
460 |
+
class-conditional with `num_classes` classes.
|
461 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
462 |
+
:param num_heads: the number of attention heads in each attention layer.
|
463 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
464 |
+
a fixed channel width per attention head.
|
465 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
466 |
+
of heads for upsampling. Deprecated.
|
467 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
468 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
469 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
470 |
+
increased efficiency.
|
471 |
+
"""
|
472 |
+
|
473 |
+
def __init__(
|
474 |
+
self,
|
475 |
+
image_size,
|
476 |
+
in_channels,
|
477 |
+
model_channels,
|
478 |
+
out_channels,
|
479 |
+
num_res_blocks,
|
480 |
+
attention_resolutions,
|
481 |
+
dropout=0,
|
482 |
+
channel_mult=(1, 2, 4, 8),
|
483 |
+
conv_resample=True,
|
484 |
+
dims=2,
|
485 |
+
num_classes=None,
|
486 |
+
use_checkpoint=False,
|
487 |
+
use_fp16=False,
|
488 |
+
num_heads=-1,
|
489 |
+
num_head_channels=-1,
|
490 |
+
num_heads_upsample=-1,
|
491 |
+
use_scale_shift_norm=False,
|
492 |
+
resblock_updown=False,
|
493 |
+
use_new_attention_order=False,
|
494 |
+
use_spatial_transformer=False, # custom transformer support
|
495 |
+
transformer_depth=1, # custom transformer support
|
496 |
+
context_dim=None, # custom transformer support
|
497 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
498 |
+
legacy=True,
|
499 |
+
):
|
500 |
+
super().__init__()
|
501 |
+
if use_spatial_transformer:
|
502 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
503 |
+
|
504 |
+
if context_dim is not None:
|
505 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
506 |
+
from omegaconf.listconfig import ListConfig
|
507 |
+
if type(context_dim) == ListConfig:
|
508 |
+
context_dim = list(context_dim)
|
509 |
+
|
510 |
+
if num_heads_upsample == -1:
|
511 |
+
num_heads_upsample = num_heads
|
512 |
+
|
513 |
+
if num_heads == -1:
|
514 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
515 |
+
|
516 |
+
if num_head_channels == -1:
|
517 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
518 |
+
|
519 |
+
self.image_size = image_size
|
520 |
+
self.in_channels = in_channels
|
521 |
+
self.model_channels = model_channels
|
522 |
+
self.out_channels = out_channels
|
523 |
+
self.num_res_blocks = num_res_blocks
|
524 |
+
self.attention_resolutions = attention_resolutions
|
525 |
+
self.dropout = dropout
|
526 |
+
self.channel_mult = channel_mult
|
527 |
+
self.conv_resample = conv_resample
|
528 |
+
self.num_classes = num_classes
|
529 |
+
self.use_checkpoint = use_checkpoint
|
530 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
531 |
+
self.num_heads = num_heads
|
532 |
+
self.num_head_channels = num_head_channels
|
533 |
+
self.num_heads_upsample = num_heads_upsample
|
534 |
+
self.predict_codebook_ids = n_embed is not None
|
535 |
+
|
536 |
+
time_embed_dim = model_channels * 4
|
537 |
+
self.time_embed = nn.Sequential(
|
538 |
+
linear(model_channels, time_embed_dim),
|
539 |
+
nn.SiLU(),
|
540 |
+
linear(time_embed_dim, time_embed_dim),
|
541 |
+
)
|
542 |
+
|
543 |
+
if self.num_classes is not None:
|
544 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
545 |
+
|
546 |
+
self.input_blocks = nn.ModuleList(
|
547 |
+
[
|
548 |
+
TimestepEmbedSequential(
|
549 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
550 |
+
)
|
551 |
+
]
|
552 |
+
)
|
553 |
+
self._feature_size = model_channels
|
554 |
+
input_block_chans = [model_channels]
|
555 |
+
ch = model_channels
|
556 |
+
ds = 1
|
557 |
+
for level, mult in enumerate(channel_mult):
|
558 |
+
for _ in range(num_res_blocks):
|
559 |
+
layers = [
|
560 |
+
ResBlock(
|
561 |
+
ch,
|
562 |
+
time_embed_dim,
|
563 |
+
dropout,
|
564 |
+
out_channels=mult * model_channels,
|
565 |
+
dims=dims,
|
566 |
+
use_checkpoint=use_checkpoint,
|
567 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
568 |
+
)
|
569 |
+
]
|
570 |
+
ch = mult * model_channels
|
571 |
+
if ds in attention_resolutions:
|
572 |
+
if num_head_channels == -1:
|
573 |
+
dim_head = ch // num_heads
|
574 |
+
else:
|
575 |
+
num_heads = ch // num_head_channels
|
576 |
+
dim_head = num_head_channels
|
577 |
+
if legacy:
|
578 |
+
#num_heads = 1
|
579 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
580 |
+
layers.append(
|
581 |
+
AttentionBlock(
|
582 |
+
ch,
|
583 |
+
use_checkpoint=use_checkpoint,
|
584 |
+
num_heads=num_heads,
|
585 |
+
num_head_channels=dim_head,
|
586 |
+
use_new_attention_order=use_new_attention_order,
|
587 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
588 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
589 |
+
)
|
590 |
+
)
|
591 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
592 |
+
self._feature_size += ch
|
593 |
+
input_block_chans.append(ch)
|
594 |
+
if level != len(channel_mult) - 1:
|
595 |
+
out_ch = ch
|
596 |
+
self.input_blocks.append(
|
597 |
+
TimestepEmbedSequential(
|
598 |
+
ResBlock(
|
599 |
+
ch,
|
600 |
+
time_embed_dim,
|
601 |
+
dropout,
|
602 |
+
out_channels=out_ch,
|
603 |
+
dims=dims,
|
604 |
+
use_checkpoint=use_checkpoint,
|
605 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
606 |
+
down=True,
|
607 |
+
)
|
608 |
+
if resblock_updown
|
609 |
+
else Downsample(
|
610 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
611 |
+
)
|
612 |
+
)
|
613 |
+
)
|
614 |
+
ch = out_ch
|
615 |
+
input_block_chans.append(ch)
|
616 |
+
ds *= 2
|
617 |
+
self._feature_size += ch
|
618 |
+
|
619 |
+
if num_head_channels == -1:
|
620 |
+
dim_head = ch // num_heads
|
621 |
+
else:
|
622 |
+
num_heads = ch // num_head_channels
|
623 |
+
dim_head = num_head_channels
|
624 |
+
if legacy:
|
625 |
+
#num_heads = 1
|
626 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
627 |
+
self.middle_block = TimestepEmbedSequential(
|
628 |
+
ResBlock(
|
629 |
+
ch,
|
630 |
+
time_embed_dim,
|
631 |
+
dropout,
|
632 |
+
dims=dims,
|
633 |
+
use_checkpoint=use_checkpoint,
|
634 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
635 |
+
),
|
636 |
+
AttentionBlock(
|
637 |
+
ch,
|
638 |
+
use_checkpoint=use_checkpoint,
|
639 |
+
num_heads=num_heads,
|
640 |
+
num_head_channels=dim_head,
|
641 |
+
use_new_attention_order=use_new_attention_order,
|
642 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
643 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
644 |
+
),
|
645 |
+
ResBlock(
|
646 |
+
ch,
|
647 |
+
time_embed_dim,
|
648 |
+
dropout,
|
649 |
+
dims=dims,
|
650 |
+
use_checkpoint=use_checkpoint,
|
651 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
652 |
+
),
|
653 |
+
)
|
654 |
+
self._feature_size += ch
|
655 |
+
|
656 |
+
self.output_blocks = nn.ModuleList([])
|
657 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
658 |
+
for i in range(num_res_blocks + 1):
|
659 |
+
ich = input_block_chans.pop()
|
660 |
+
layers = [
|
661 |
+
ResBlock(
|
662 |
+
ch + ich,
|
663 |
+
time_embed_dim,
|
664 |
+
dropout,
|
665 |
+
out_channels=model_channels * mult,
|
666 |
+
dims=dims,
|
667 |
+
use_checkpoint=use_checkpoint,
|
668 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
669 |
+
)
|
670 |
+
]
|
671 |
+
ch = model_channels * mult
|
672 |
+
if ds in attention_resolutions:
|
673 |
+
if num_head_channels == -1:
|
674 |
+
dim_head = ch // num_heads
|
675 |
+
else:
|
676 |
+
num_heads = ch // num_head_channels
|
677 |
+
dim_head = num_head_channels
|
678 |
+
if legacy:
|
679 |
+
#num_heads = 1
|
680 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
681 |
+
layers.append(
|
682 |
+
AttentionBlock(
|
683 |
+
ch,
|
684 |
+
use_checkpoint=use_checkpoint,
|
685 |
+
num_heads=num_heads_upsample,
|
686 |
+
num_head_channels=dim_head,
|
687 |
+
use_new_attention_order=use_new_attention_order,
|
688 |
+
) if not use_spatial_transformer else SpatialTransformer(
|
689 |
+
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
690 |
+
)
|
691 |
+
)
|
692 |
+
if level and i == num_res_blocks:
|
693 |
+
out_ch = ch
|
694 |
+
layers.append(
|
695 |
+
ResBlock(
|
696 |
+
ch,
|
697 |
+
time_embed_dim,
|
698 |
+
dropout,
|
699 |
+
out_channels=out_ch,
|
700 |
+
dims=dims,
|
701 |
+
use_checkpoint=use_checkpoint,
|
702 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
703 |
+
up=True,
|
704 |
+
)
|
705 |
+
if resblock_updown
|
706 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
707 |
+
)
|
708 |
+
ds //= 2
|
709 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
710 |
+
self._feature_size += ch
|
711 |
+
|
712 |
+
self.out = nn.Sequential(
|
713 |
+
normalization(ch),
|
714 |
+
nn.SiLU(),
|
715 |
+
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
716 |
+
)
|
717 |
+
if self.predict_codebook_ids:
|
718 |
+
self.id_predictor = nn.Sequential(
|
719 |
+
normalization(ch),
|
720 |
+
conv_nd(dims, model_channels, n_embed, 1),
|
721 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
722 |
+
)
|
723 |
+
|
724 |
+
def convert_to_fp16(self):
|
725 |
+
"""
|
726 |
+
Convert the torso of the model to float16.
|
727 |
+
"""
|
728 |
+
self.input_blocks.apply(convert_module_to_f16)
|
729 |
+
self.middle_block.apply(convert_module_to_f16)
|
730 |
+
self.output_blocks.apply(convert_module_to_f16)
|
731 |
+
|
732 |
+
def convert_to_fp32(self):
|
733 |
+
"""
|
734 |
+
Convert the torso of the model to float32.
|
735 |
+
"""
|
736 |
+
self.input_blocks.apply(convert_module_to_f32)
|
737 |
+
self.middle_block.apply(convert_module_to_f32)
|
738 |
+
self.output_blocks.apply(convert_module_to_f32)
|
739 |
+
|
740 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
741 |
+
"""
|
742 |
+
Apply the model to an input batch.
|
743 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
744 |
+
:param timesteps: a 1-D batch of timesteps.
|
745 |
+
:param context: conditioning plugged in via crossattn
|
746 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
747 |
+
:return: an [N x C x ...] Tensor of outputs.
|
748 |
+
"""
|
749 |
+
assert (y is not None) == (
|
750 |
+
self.num_classes is not None
|
751 |
+
), "must specify y if and only if the model is class-conditional"
|
752 |
+
hs = []
|
753 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
754 |
+
emb = self.time_embed(t_emb)
|
755 |
+
|
756 |
+
if self.num_classes is not None:
|
757 |
+
assert y.shape == (x.shape[0],)
|
758 |
+
emb = emb + self.label_emb(y)
|
759 |
+
|
760 |
+
h = x.type(self.dtype)
|
761 |
+
for module in self.input_blocks:
|
762 |
+
h = module(h, emb, context)
|
763 |
+
hs.append(h)
|
764 |
+
h = self.middle_block(h, emb, context)
|
765 |
+
for module in self.output_blocks:
|
766 |
+
h = th.cat([h, hs.pop()], dim=1)
|
767 |
+
h = module(h, emb, context)
|
768 |
+
h = h.type(x.dtype)
|
769 |
+
if self.predict_codebook_ids:
|
770 |
+
return self.id_predictor(h)
|
771 |
+
else:
|
772 |
+
return self.out(h)
|
773 |
+
|
774 |
+
|
775 |
+
class EncoderUNetModel(nn.Module):
|
776 |
+
"""
|
777 |
+
The half UNet model with attention and timestep embedding.
|
778 |
+
For usage, see UNet.
|
779 |
+
"""
|
780 |
+
|
781 |
+
def __init__(
|
782 |
+
self,
|
783 |
+
image_size,
|
784 |
+
in_channels,
|
785 |
+
model_channels,
|
786 |
+
out_channels,
|
787 |
+
num_res_blocks,
|
788 |
+
attention_resolutions,
|
789 |
+
dropout=0,
|
790 |
+
channel_mult=(1, 2, 4, 8),
|
791 |
+
conv_resample=True,
|
792 |
+
dims=2,
|
793 |
+
use_checkpoint=False,
|
794 |
+
use_fp16=False,
|
795 |
+
num_heads=1,
|
796 |
+
num_head_channels=-1,
|
797 |
+
num_heads_upsample=-1,
|
798 |
+
use_scale_shift_norm=False,
|
799 |
+
resblock_updown=False,
|
800 |
+
use_new_attention_order=False,
|
801 |
+
pool="adaptive",
|
802 |
+
*args,
|
803 |
+
**kwargs
|
804 |
+
):
|
805 |
+
super().__init__()
|
806 |
+
|
807 |
+
if num_heads_upsample == -1:
|
808 |
+
num_heads_upsample = num_heads
|
809 |
+
|
810 |
+
self.in_channels = in_channels
|
811 |
+
self.model_channels = model_channels
|
812 |
+
self.out_channels = out_channels
|
813 |
+
self.num_res_blocks = num_res_blocks
|
814 |
+
self.attention_resolutions = attention_resolutions
|
815 |
+
self.dropout = dropout
|
816 |
+
self.channel_mult = channel_mult
|
817 |
+
self.conv_resample = conv_resample
|
818 |
+
self.use_checkpoint = use_checkpoint
|
819 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
820 |
+
self.num_heads = num_heads
|
821 |
+
self.num_head_channels = num_head_channels
|
822 |
+
self.num_heads_upsample = num_heads_upsample
|
823 |
+
|
824 |
+
time_embed_dim = model_channels * 4
|
825 |
+
self.time_embed = nn.Sequential(
|
826 |
+
linear(model_channels, time_embed_dim),
|
827 |
+
nn.SiLU(),
|
828 |
+
linear(time_embed_dim, time_embed_dim),
|
829 |
+
)
|
830 |
+
|
831 |
+
self.input_blocks = nn.ModuleList(
|
832 |
+
[
|
833 |
+
TimestepEmbedSequential(
|
834 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
835 |
+
)
|
836 |
+
]
|
837 |
+
)
|
838 |
+
self._feature_size = model_channels
|
839 |
+
input_block_chans = [model_channels]
|
840 |
+
ch = model_channels
|
841 |
+
ds = 1
|
842 |
+
for level, mult in enumerate(channel_mult):
|
843 |
+
for _ in range(num_res_blocks):
|
844 |
+
layers = [
|
845 |
+
ResBlock(
|
846 |
+
ch,
|
847 |
+
time_embed_dim,
|
848 |
+
dropout,
|
849 |
+
out_channels=mult * model_channels,
|
850 |
+
dims=dims,
|
851 |
+
use_checkpoint=use_checkpoint,
|
852 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
853 |
+
)
|
854 |
+
]
|
855 |
+
ch = mult * model_channels
|
856 |
+
if ds in attention_resolutions:
|
857 |
+
layers.append(
|
858 |
+
AttentionBlock(
|
859 |
+
ch,
|
860 |
+
use_checkpoint=use_checkpoint,
|
861 |
+
num_heads=num_heads,
|
862 |
+
num_head_channels=num_head_channels,
|
863 |
+
use_new_attention_order=use_new_attention_order,
|
864 |
+
)
|
865 |
+
)
|
866 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
867 |
+
self._feature_size += ch
|
868 |
+
input_block_chans.append(ch)
|
869 |
+
if level != len(channel_mult) - 1:
|
870 |
+
out_ch = ch
|
871 |
+
self.input_blocks.append(
|
872 |
+
TimestepEmbedSequential(
|
873 |
+
ResBlock(
|
874 |
+
ch,
|
875 |
+
time_embed_dim,
|
876 |
+
dropout,
|
877 |
+
out_channels=out_ch,
|
878 |
+
dims=dims,
|
879 |
+
use_checkpoint=use_checkpoint,
|
880 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
881 |
+
down=True,
|
882 |
+
)
|
883 |
+
if resblock_updown
|
884 |
+
else Downsample(
|
885 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
886 |
+
)
|
887 |
+
)
|
888 |
+
)
|
889 |
+
ch = out_ch
|
890 |
+
input_block_chans.append(ch)
|
891 |
+
ds *= 2
|
892 |
+
self._feature_size += ch
|
893 |
+
|
894 |
+
self.middle_block = TimestepEmbedSequential(
|
895 |
+
ResBlock(
|
896 |
+
ch,
|
897 |
+
time_embed_dim,
|
898 |
+
dropout,
|
899 |
+
dims=dims,
|
900 |
+
use_checkpoint=use_checkpoint,
|
901 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
902 |
+
),
|
903 |
+
AttentionBlock(
|
904 |
+
ch,
|
905 |
+
use_checkpoint=use_checkpoint,
|
906 |
+
num_heads=num_heads,
|
907 |
+
num_head_channels=num_head_channels,
|
908 |
+
use_new_attention_order=use_new_attention_order,
|
909 |
+
),
|
910 |
+
ResBlock(
|
911 |
+
ch,
|
912 |
+
time_embed_dim,
|
913 |
+
dropout,
|
914 |
+
dims=dims,
|
915 |
+
use_checkpoint=use_checkpoint,
|
916 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
917 |
+
),
|
918 |
+
)
|
919 |
+
self._feature_size += ch
|
920 |
+
self.pool = pool
|
921 |
+
if pool == "adaptive":
|
922 |
+
self.out = nn.Sequential(
|
923 |
+
normalization(ch),
|
924 |
+
nn.SiLU(),
|
925 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
926 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
927 |
+
nn.Flatten(),
|
928 |
+
)
|
929 |
+
elif pool == "attention":
|
930 |
+
assert num_head_channels != -1
|
931 |
+
self.out = nn.Sequential(
|
932 |
+
normalization(ch),
|
933 |
+
nn.SiLU(),
|
934 |
+
AttentionPool2d(
|
935 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
936 |
+
),
|
937 |
+
)
|
938 |
+
elif pool == "spatial":
|
939 |
+
self.out = nn.Sequential(
|
940 |
+
nn.Linear(self._feature_size, 2048),
|
941 |
+
nn.ReLU(),
|
942 |
+
nn.Linear(2048, self.out_channels),
|
943 |
+
)
|
944 |
+
elif pool == "spatial_v2":
|
945 |
+
self.out = nn.Sequential(
|
946 |
+
nn.Linear(self._feature_size, 2048),
|
947 |
+
normalization(2048),
|
948 |
+
nn.SiLU(),
|
949 |
+
nn.Linear(2048, self.out_channels),
|
950 |
+
)
|
951 |
+
else:
|
952 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
953 |
+
|
954 |
+
def convert_to_fp16(self):
|
955 |
+
"""
|
956 |
+
Convert the torso of the model to float16.
|
957 |
+
"""
|
958 |
+
self.input_blocks.apply(convert_module_to_f16)
|
959 |
+
self.middle_block.apply(convert_module_to_f16)
|
960 |
+
|
961 |
+
def convert_to_fp32(self):
|
962 |
+
"""
|
963 |
+
Convert the torso of the model to float32.
|
964 |
+
"""
|
965 |
+
self.input_blocks.apply(convert_module_to_f32)
|
966 |
+
self.middle_block.apply(convert_module_to_f32)
|
967 |
+
|
968 |
+
def forward(self, x, timesteps):
|
969 |
+
"""
|
970 |
+
Apply the model to an input batch.
|
971 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
972 |
+
:param timesteps: a 1-D batch of timesteps.
|
973 |
+
:return: an [N x K] Tensor of outputs.
|
974 |
+
"""
|
975 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
976 |
+
|
977 |
+
results = []
|
978 |
+
h = x.type(self.dtype)
|
979 |
+
for module in self.input_blocks:
|
980 |
+
h = module(h, emb)
|
981 |
+
if self.pool.startswith("spatial"):
|
982 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
983 |
+
h = self.middle_block(h, emb)
|
984 |
+
if self.pool.startswith("spatial"):
|
985 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
986 |
+
h = th.cat(results, axis=-1)
|
987 |
+
return self.out(h)
|
988 |
+
else:
|
989 |
+
h = h.type(x.dtype)
|
990 |
+
return self.out(h)
|
991 |
+
|
3DTopia/ldm/modules/diffusionmodules/triplane_context_crossattention_unet.py
ADDED
@@ -0,0 +1,1126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn, einsum
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from inspect import isfunction
|
13 |
+
|
14 |
+
from ldm.modules.diffusionmodules.util import (
|
15 |
+
checkpoint,
|
16 |
+
conv_nd,
|
17 |
+
linear,
|
18 |
+
avg_pool_nd,
|
19 |
+
zero_module,
|
20 |
+
normalization,
|
21 |
+
timestep_embedding,
|
22 |
+
)
|
23 |
+
from ldm.modules.attention import SpatialTransformer
|
24 |
+
|
25 |
+
|
26 |
+
# dummy replace
|
27 |
+
def convert_module_to_f16(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
def convert_module_to_f32(x):
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
## go
|
35 |
+
class AttentionPool2d(nn.Module):
|
36 |
+
"""
|
37 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
spacial_dim: int,
|
43 |
+
embed_dim: int,
|
44 |
+
num_heads_channels: int,
|
45 |
+
output_dim: int = None,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
49 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
50 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
51 |
+
self.num_heads = embed_dim // num_heads_channels
|
52 |
+
self.attention = QKVAttention(self.num_heads)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
b, c, *_spatial = x.shape
|
56 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
57 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
58 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
59 |
+
x = self.qkv_proj(x)
|
60 |
+
x = self.attention(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x[:, :, 0]
|
63 |
+
|
64 |
+
|
65 |
+
class TimestepBlock(nn.Module):
|
66 |
+
"""
|
67 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
68 |
+
"""
|
69 |
+
|
70 |
+
@abstractmethod
|
71 |
+
def forward(self, x, emb):
|
72 |
+
"""
|
73 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
78 |
+
"""
|
79 |
+
A sequential module that passes timestep embeddings to the children that
|
80 |
+
support it as an extra input.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def forward(self, x, emb, context=None):
|
84 |
+
for layer in self:
|
85 |
+
if isinstance(layer, TimestepBlock):
|
86 |
+
x = layer(x, emb)
|
87 |
+
elif isinstance(layer, TriplaneAttentionBlock):
|
88 |
+
x = layer(x, context)
|
89 |
+
else:
|
90 |
+
x = layer(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
class Upsample(nn.Module):
|
95 |
+
"""
|
96 |
+
An upsampling layer with an optional convolution.
|
97 |
+
:param channels: channels in the inputs and outputs.
|
98 |
+
:param use_conv: a bool determining if a convolution is applied.
|
99 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
100 |
+
upsampling occurs in the inner-two dimensions.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
104 |
+
super().__init__()
|
105 |
+
self.channels = channels
|
106 |
+
self.out_channels = out_channels or channels
|
107 |
+
self.use_conv = use_conv
|
108 |
+
self.dims = dims
|
109 |
+
if use_conv:
|
110 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
assert x.shape[1] == self.channels
|
114 |
+
if self.dims == 3:
|
115 |
+
x = F.interpolate(
|
116 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
120 |
+
if self.use_conv:
|
121 |
+
x = self.conv(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
class TransposedUpsample(nn.Module):
|
125 |
+
'Learned 2x upsampling without padding'
|
126 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
127 |
+
super().__init__()
|
128 |
+
self.channels = channels
|
129 |
+
self.out_channels = out_channels or channels
|
130 |
+
|
131 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
132 |
+
|
133 |
+
def forward(self,x):
|
134 |
+
return self.up(x)
|
135 |
+
|
136 |
+
|
137 |
+
class Downsample(nn.Module):
|
138 |
+
"""
|
139 |
+
A downsampling layer with an optional convolution.
|
140 |
+
:param channels: channels in the inputs and outputs.
|
141 |
+
:param use_conv: a bool determining if a convolution is applied.
|
142 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
143 |
+
downsampling occurs in the inner-two dimensions.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
147 |
+
super().__init__()
|
148 |
+
self.channels = channels
|
149 |
+
self.out_channels = out_channels or channels
|
150 |
+
self.use_conv = use_conv
|
151 |
+
self.dims = dims
|
152 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
153 |
+
if use_conv:
|
154 |
+
self.op = conv_nd(
|
155 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
assert self.channels == self.out_channels
|
159 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
160 |
+
|
161 |
+
def forward(self, x):
|
162 |
+
assert x.shape[1] == self.channels
|
163 |
+
return self.op(x)
|
164 |
+
|
165 |
+
|
166 |
+
class ResBlock(TimestepBlock):
|
167 |
+
"""
|
168 |
+
A residual block that can optionally change the number of channels.
|
169 |
+
:param channels: the number of input channels.
|
170 |
+
:param emb_channels: the number of timestep embedding channels.
|
171 |
+
:param dropout: the rate of dropout.
|
172 |
+
:param out_channels: if specified, the number of out channels.
|
173 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
174 |
+
convolution instead of a smaller 1x1 convolution to change the
|
175 |
+
channels in the skip connection.
|
176 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
177 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
178 |
+
:param up: if True, use this block for upsampling.
|
179 |
+
:param down: if True, use this block for downsampling.
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
channels,
|
185 |
+
emb_channels,
|
186 |
+
dropout,
|
187 |
+
out_channels=None,
|
188 |
+
use_conv=False,
|
189 |
+
use_scale_shift_norm=False,
|
190 |
+
dims=2,
|
191 |
+
use_checkpoint=False,
|
192 |
+
up=False,
|
193 |
+
down=False,
|
194 |
+
):
|
195 |
+
super().__init__()
|
196 |
+
self.channels = channels
|
197 |
+
self.emb_channels = emb_channels
|
198 |
+
self.dropout = dropout
|
199 |
+
self.out_channels = out_channels or channels
|
200 |
+
self.use_conv = use_conv
|
201 |
+
self.use_checkpoint = use_checkpoint
|
202 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
203 |
+
|
204 |
+
self.in_layers = nn.Sequential(
|
205 |
+
normalization(channels),
|
206 |
+
nn.SiLU(),
|
207 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
208 |
+
)
|
209 |
+
|
210 |
+
self.updown = up or down
|
211 |
+
|
212 |
+
if up:
|
213 |
+
self.h_upd = Upsample(channels, False, dims)
|
214 |
+
self.x_upd = Upsample(channels, False, dims)
|
215 |
+
elif down:
|
216 |
+
self.h_upd = Downsample(channels, False, dims)
|
217 |
+
self.x_upd = Downsample(channels, False, dims)
|
218 |
+
else:
|
219 |
+
self.h_upd = self.x_upd = nn.Identity()
|
220 |
+
|
221 |
+
self.emb_layers = nn.Sequential(
|
222 |
+
nn.SiLU(),
|
223 |
+
linear(
|
224 |
+
emb_channels,
|
225 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
226 |
+
),
|
227 |
+
)
|
228 |
+
self.out_layers = nn.Sequential(
|
229 |
+
normalization(self.out_channels),
|
230 |
+
nn.SiLU(),
|
231 |
+
nn.Dropout(p=dropout),
|
232 |
+
zero_module(
|
233 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
234 |
+
),
|
235 |
+
)
|
236 |
+
|
237 |
+
if self.out_channels == channels:
|
238 |
+
self.skip_connection = nn.Identity()
|
239 |
+
elif use_conv:
|
240 |
+
self.skip_connection = conv_nd(
|
241 |
+
dims, channels, self.out_channels, 3, padding=1
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
245 |
+
|
246 |
+
def forward(self, x, emb):
|
247 |
+
"""
|
248 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
249 |
+
:param x: an [N x C x ...] Tensor of features.
|
250 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
251 |
+
:return: an [N x C x ...] Tensor of outputs.
|
252 |
+
"""
|
253 |
+
return checkpoint(
|
254 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def _forward(self, x, emb):
|
259 |
+
if self.updown:
|
260 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
261 |
+
h = in_rest(x)
|
262 |
+
h = self.h_upd(h)
|
263 |
+
x = self.x_upd(x)
|
264 |
+
h = in_conv(h)
|
265 |
+
else:
|
266 |
+
h = self.in_layers(x)
|
267 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
268 |
+
while len(emb_out.shape) < len(h.shape):
|
269 |
+
emb_out = emb_out[..., None]
|
270 |
+
if self.use_scale_shift_norm:
|
271 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
272 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
273 |
+
h = out_norm(h) * (1 + scale) + shift
|
274 |
+
h = out_rest(h)
|
275 |
+
else:
|
276 |
+
h = h + emb_out
|
277 |
+
h = self.out_layers(h)
|
278 |
+
return self.skip_connection(x) + h
|
279 |
+
|
280 |
+
def exists(val):
|
281 |
+
return val is not None
|
282 |
+
|
283 |
+
def default(val, d):
|
284 |
+
if exists(val):
|
285 |
+
return val
|
286 |
+
return d() if isfunction(d) else d
|
287 |
+
|
288 |
+
class CrossAttention(nn.Module):
|
289 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
290 |
+
super().__init__()
|
291 |
+
inner_dim = dim_head * heads
|
292 |
+
context_dim = default(context_dim, query_dim)
|
293 |
+
|
294 |
+
self.scale = dim_head ** -0.5
|
295 |
+
self.heads = heads
|
296 |
+
|
297 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
298 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
299 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
300 |
+
|
301 |
+
self.to_out = nn.Sequential(
|
302 |
+
nn.Linear(inner_dim, query_dim),
|
303 |
+
nn.Dropout(dropout)
|
304 |
+
)
|
305 |
+
|
306 |
+
def forward(self, x, context=None, mask=None):
|
307 |
+
h = self.heads
|
308 |
+
|
309 |
+
x = x.permute(0, 2, 1)
|
310 |
+
context = context.permute(0, 2, 1)
|
311 |
+
|
312 |
+
q = self.to_q(x)
|
313 |
+
context = default(context, x)
|
314 |
+
k = self.to_k(context)
|
315 |
+
v = self.to_v(context)
|
316 |
+
|
317 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
318 |
+
|
319 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
320 |
+
|
321 |
+
if exists(mask):
|
322 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
323 |
+
max_neg_value = -th.finfo(sim.dtype).max
|
324 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
325 |
+
sim.masked_fill_(~mask, max_neg_value)
|
326 |
+
|
327 |
+
# attention, what we cannot get enough of
|
328 |
+
attn = sim.softmax(dim=-1)
|
329 |
+
|
330 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
331 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
332 |
+
return self.to_out(out).permute(0, 2, 1)
|
333 |
+
|
334 |
+
class CrossAttentionContext(nn.Module):
|
335 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
336 |
+
super().__init__()
|
337 |
+
inner_dim = dim_head * heads
|
338 |
+
context_dim = default(context_dim, query_dim)
|
339 |
+
|
340 |
+
self.scale = dim_head ** -0.5
|
341 |
+
self.heads = heads
|
342 |
+
|
343 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
344 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
345 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
346 |
+
|
347 |
+
self.to_out = nn.Sequential(
|
348 |
+
nn.Linear(inner_dim, query_dim),
|
349 |
+
nn.Dropout(dropout)
|
350 |
+
)
|
351 |
+
|
352 |
+
def forward(self, x, context=None, mask=None):
|
353 |
+
|
354 |
+
# import pdb; pdb.set_trace()
|
355 |
+
|
356 |
+
h = self.heads
|
357 |
+
|
358 |
+
x = x.permute(0, 2, 1)
|
359 |
+
|
360 |
+
q = self.to_q(x)
|
361 |
+
context = default(context, x)
|
362 |
+
k = self.to_k(context)
|
363 |
+
v = self.to_v(context)
|
364 |
+
|
365 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
366 |
+
|
367 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
368 |
+
|
369 |
+
if exists(mask):
|
370 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
371 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
372 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
373 |
+
sim.masked_fill_(~mask, max_neg_value)
|
374 |
+
|
375 |
+
# attention, what we cannot get enough of
|
376 |
+
attn = sim.softmax(dim=-1)
|
377 |
+
|
378 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
379 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
380 |
+
return self.to_out(out).permute(0, 2, 1)
|
381 |
+
|
382 |
+
|
383 |
+
class TriplaneAttentionBlock(nn.Module):
|
384 |
+
def __init__(
|
385 |
+
self,
|
386 |
+
channels,
|
387 |
+
context_channels,
|
388 |
+
num_heads=1,
|
389 |
+
num_head_channels=-1,
|
390 |
+
use_checkpoint=False,
|
391 |
+
use_new_attention_order=False,
|
392 |
+
):
|
393 |
+
super().__init__()
|
394 |
+
self.channels = channels
|
395 |
+
if num_head_channels == -1:
|
396 |
+
self.num_heads = num_heads
|
397 |
+
else:
|
398 |
+
assert (
|
399 |
+
channels % num_head_channels == 0
|
400 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
401 |
+
self.num_heads = channels // num_head_channels
|
402 |
+
self.use_checkpoint = use_checkpoint
|
403 |
+
# self.norm = normalization(channels)
|
404 |
+
self.norm1 = normalization(channels)
|
405 |
+
self.norm2 = normalization(channels)
|
406 |
+
self.norm3 = normalization(channels)
|
407 |
+
self.norm4 = normalization(channels)
|
408 |
+
self.norm5 = normalization(channels)
|
409 |
+
# self.norm6 = normalization(context_channels)
|
410 |
+
# self.norm1 = nn.LayerNorm(channels)
|
411 |
+
# self.norm2 = nn.LayerNorm(channels)
|
412 |
+
# self.norm3 = nn.LayerNorm(channels)
|
413 |
+
# self.norm4 = nn.LayerNorm(channels)
|
414 |
+
# self.norm5 = nn.LayerNorm(channels)
|
415 |
+
# self.norm6 = nn.LayerNorm(context_channels)
|
416 |
+
|
417 |
+
self.plane1_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
418 |
+
self.plane2_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
419 |
+
self.plane3_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
420 |
+
|
421 |
+
self.context_ca = CrossAttentionContext(channels, context_channels, self.num_heads, num_head_channels)
|
422 |
+
|
423 |
+
def forward(self, x, context):
|
424 |
+
return checkpoint(self._forward, (x, context), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
425 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
426 |
+
|
427 |
+
def _forward(self, x, context):
|
428 |
+
b, c, *spatial = x.shape
|
429 |
+
res = x.shape[-2]
|
430 |
+
plane1 = x[..., :res].reshape(b, c, -1)
|
431 |
+
plane2 = x[..., res:res*2].reshape(b, c, -1)
|
432 |
+
plane3 = x[..., 2*res:3*res].reshape(b, c, -1)
|
433 |
+
x = x.reshape(b, c, -1)
|
434 |
+
|
435 |
+
plane1_output = self.plane1_ca(self.norm1(plane1), self.norm4(x))
|
436 |
+
plane2_output = self.plane2_ca(self.norm2(plane2), self.norm4(x))
|
437 |
+
plane3_output = self.plane3_ca(self.norm3(plane3), self.norm4(x))
|
438 |
+
|
439 |
+
h = th.cat([plane1_output, plane2_output, plane3_output], -1)
|
440 |
+
|
441 |
+
h = self.context_ca(self.norm5(h), context=context)
|
442 |
+
|
443 |
+
return (x + h).reshape(b, c, *spatial)
|
444 |
+
|
445 |
+
|
446 |
+
class AttentionBlock(nn.Module):
|
447 |
+
"""
|
448 |
+
An attention block that allows spatial positions to attend to each other.
|
449 |
+
Originally ported from here, but adapted to the N-d case.
|
450 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
451 |
+
"""
|
452 |
+
|
453 |
+
def __init__(
|
454 |
+
self,
|
455 |
+
channels,
|
456 |
+
num_heads=1,
|
457 |
+
num_head_channels=-1,
|
458 |
+
use_checkpoint=False,
|
459 |
+
use_new_attention_order=False,
|
460 |
+
):
|
461 |
+
super().__init__()
|
462 |
+
self.channels = channels
|
463 |
+
if num_head_channels == -1:
|
464 |
+
self.num_heads = num_heads
|
465 |
+
else:
|
466 |
+
assert (
|
467 |
+
channels % num_head_channels == 0
|
468 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
469 |
+
self.num_heads = channels // num_head_channels
|
470 |
+
self.use_checkpoint = use_checkpoint
|
471 |
+
self.norm = normalization(channels)
|
472 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
473 |
+
if use_new_attention_order:
|
474 |
+
# split qkv before split heads
|
475 |
+
self.attention = QKVAttention(self.num_heads)
|
476 |
+
else:
|
477 |
+
# split heads before split qkv
|
478 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
479 |
+
|
480 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
481 |
+
|
482 |
+
def forward(self, x):
|
483 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
484 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
485 |
+
|
486 |
+
def _forward(self, x):
|
487 |
+
b, c, *spatial = x.shape
|
488 |
+
x = x.reshape(b, c, -1)
|
489 |
+
qkv = self.qkv(self.norm(x))
|
490 |
+
h = self.attention(qkv)
|
491 |
+
h = self.proj_out(h)
|
492 |
+
return (x + h).reshape(b, c, *spatial)
|
493 |
+
|
494 |
+
|
495 |
+
def count_flops_attn(model, _x, y):
|
496 |
+
"""
|
497 |
+
A counter for the `thop` package to count the operations in an
|
498 |
+
attention operation.
|
499 |
+
Meant to be used like:
|
500 |
+
macs, params = thop.profile(
|
501 |
+
model,
|
502 |
+
inputs=(inputs, timestamps),
|
503 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
504 |
+
)
|
505 |
+
"""
|
506 |
+
b, c, *spatial = y[0].shape
|
507 |
+
num_spatial = int(np.prod(spatial))
|
508 |
+
# We perform two matmuls with the same number of ops.
|
509 |
+
# The first computes the weight matrix, the second computes
|
510 |
+
# the combination of the value vectors.
|
511 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
512 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
513 |
+
|
514 |
+
|
515 |
+
class QKVAttentionLegacy(nn.Module):
|
516 |
+
"""
|
517 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
518 |
+
"""
|
519 |
+
|
520 |
+
def __init__(self, n_heads):
|
521 |
+
super().__init__()
|
522 |
+
self.n_heads = n_heads
|
523 |
+
|
524 |
+
def forward(self, qkv):
|
525 |
+
"""
|
526 |
+
Apply QKV attention.
|
527 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
528 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
529 |
+
"""
|
530 |
+
bs, width, length = qkv.shape
|
531 |
+
assert width % (3 * self.n_heads) == 0
|
532 |
+
ch = width // (3 * self.n_heads)
|
533 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
534 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
535 |
+
weight = th.einsum(
|
536 |
+
"bct,bcs->bts", q * scale, k * scale
|
537 |
+
) # More stable with f16 than dividing afterwards
|
538 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
539 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
540 |
+
return a.reshape(bs, -1, length)
|
541 |
+
|
542 |
+
@staticmethod
|
543 |
+
def count_flops(model, _x, y):
|
544 |
+
return count_flops_attn(model, _x, y)
|
545 |
+
|
546 |
+
|
547 |
+
class QKVAttention(nn.Module):
|
548 |
+
"""
|
549 |
+
A module which performs QKV attention and splits in a different order.
|
550 |
+
"""
|
551 |
+
|
552 |
+
def __init__(self, n_heads):
|
553 |
+
super().__init__()
|
554 |
+
self.n_heads = n_heads
|
555 |
+
|
556 |
+
def forward(self, qkv):
|
557 |
+
"""
|
558 |
+
Apply QKV attention.
|
559 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
560 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
561 |
+
"""
|
562 |
+
bs, width, length = qkv.shape
|
563 |
+
assert width % (3 * self.n_heads) == 0
|
564 |
+
ch = width // (3 * self.n_heads)
|
565 |
+
q, k, v = qkv.chunk(3, dim=1)
|
566 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
567 |
+
weight = th.einsum(
|
568 |
+
"bct,bcs->bts",
|
569 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
570 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
571 |
+
) # More stable with f16 than dividing afterwards
|
572 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
573 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
574 |
+
return a.reshape(bs, -1, length)
|
575 |
+
|
576 |
+
@staticmethod
|
577 |
+
def count_flops(model, _x, y):
|
578 |
+
return count_flops_attn(model, _x, y)
|
579 |
+
|
580 |
+
|
581 |
+
class UNetModel(nn.Module):
|
582 |
+
"""
|
583 |
+
The full UNet model with attention and timestep embedding.
|
584 |
+
:param in_channels: channels in the input Tensor.
|
585 |
+
:param model_channels: base channel count for the model.
|
586 |
+
:param out_channels: channels in the output Tensor.
|
587 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
588 |
+
:param attention_resolutions: a collection of downsample rates at which
|
589 |
+
attention will take place. May be a set, list, or tuple.
|
590 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
591 |
+
will be used.
|
592 |
+
:param dropout: the dropout probability.
|
593 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
594 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
595 |
+
downsampling.
|
596 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
597 |
+
:param num_classes: if specified (as an int), then this model will be
|
598 |
+
class-conditional with `num_classes` classes.
|
599 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
600 |
+
:param num_heads: the number of attention heads in each attention layer.
|
601 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
602 |
+
a fixed channel width per attention head.
|
603 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
604 |
+
of heads for upsampling. Deprecated.
|
605 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
606 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
607 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
608 |
+
increased efficiency.
|
609 |
+
"""
|
610 |
+
|
611 |
+
def __init__(
|
612 |
+
self,
|
613 |
+
image_size,
|
614 |
+
in_channels,
|
615 |
+
model_channels,
|
616 |
+
out_channels,
|
617 |
+
num_res_blocks,
|
618 |
+
attention_resolutions,
|
619 |
+
dropout=0,
|
620 |
+
channel_mult=(1, 2, 4, 8),
|
621 |
+
conv_resample=True,
|
622 |
+
dims=2,
|
623 |
+
num_classes=None,
|
624 |
+
use_checkpoint=False,
|
625 |
+
use_fp16=False,
|
626 |
+
num_heads=-1,
|
627 |
+
num_head_channels=-1,
|
628 |
+
num_heads_upsample=-1,
|
629 |
+
use_scale_shift_norm=False,
|
630 |
+
resblock_updown=False,
|
631 |
+
use_new_attention_order=False,
|
632 |
+
use_spatial_transformer=False, # custom transformer support
|
633 |
+
transformer_depth=1, # custom transformer support
|
634 |
+
context_dim=None, # custom transformer support
|
635 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
636 |
+
legacy=True,
|
637 |
+
):
|
638 |
+
super().__init__()
|
639 |
+
if use_spatial_transformer:
|
640 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
641 |
+
|
642 |
+
if context_dim is not None:
|
643 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
644 |
+
from omegaconf.listconfig import ListConfig
|
645 |
+
if type(context_dim) == ListConfig:
|
646 |
+
context_dim = list(context_dim)
|
647 |
+
|
648 |
+
if num_heads_upsample == -1:
|
649 |
+
num_heads_upsample = num_heads
|
650 |
+
|
651 |
+
if num_heads == -1:
|
652 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
653 |
+
|
654 |
+
if num_head_channels == -1:
|
655 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
656 |
+
|
657 |
+
self.image_size = image_size
|
658 |
+
self.in_channels = in_channels
|
659 |
+
self.model_channels = model_channels
|
660 |
+
self.out_channels = out_channels
|
661 |
+
self.num_res_blocks = num_res_blocks
|
662 |
+
self.attention_resolutions = attention_resolutions
|
663 |
+
self.dropout = dropout
|
664 |
+
self.channel_mult = channel_mult
|
665 |
+
self.conv_resample = conv_resample
|
666 |
+
self.num_classes = num_classes
|
667 |
+
self.use_checkpoint = use_checkpoint
|
668 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
669 |
+
self.num_heads = num_heads
|
670 |
+
self.num_head_channels = num_head_channels
|
671 |
+
self.num_heads_upsample = num_heads_upsample
|
672 |
+
self.predict_codebook_ids = n_embed is not None
|
673 |
+
|
674 |
+
time_embed_dim = model_channels * 4
|
675 |
+
self.time_embed = nn.Sequential(
|
676 |
+
linear(model_channels, time_embed_dim),
|
677 |
+
nn.SiLU(),
|
678 |
+
linear(time_embed_dim, time_embed_dim),
|
679 |
+
)
|
680 |
+
|
681 |
+
if self.num_classes is not None:
|
682 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
683 |
+
|
684 |
+
self.input_blocks = nn.ModuleList(
|
685 |
+
[
|
686 |
+
TimestepEmbedSequential(
|
687 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
688 |
+
)
|
689 |
+
]
|
690 |
+
)
|
691 |
+
self._feature_size = model_channels
|
692 |
+
input_block_chans = [model_channels]
|
693 |
+
ch = model_channels
|
694 |
+
ds = 1
|
695 |
+
for level, mult in enumerate(channel_mult):
|
696 |
+
for _ in range(num_res_blocks):
|
697 |
+
layers = [
|
698 |
+
ResBlock(
|
699 |
+
ch,
|
700 |
+
time_embed_dim,
|
701 |
+
dropout,
|
702 |
+
out_channels=mult * model_channels,
|
703 |
+
dims=dims,
|
704 |
+
use_checkpoint=use_checkpoint,
|
705 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
706 |
+
)
|
707 |
+
]
|
708 |
+
ch = mult * model_channels
|
709 |
+
if ds in attention_resolutions:
|
710 |
+
if num_head_channels == -1:
|
711 |
+
dim_head = ch // num_heads
|
712 |
+
else:
|
713 |
+
num_heads = ch // num_head_channels
|
714 |
+
dim_head = num_head_channels
|
715 |
+
if legacy:
|
716 |
+
#num_heads = 1
|
717 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
718 |
+
layers.append(
|
719 |
+
TriplaneAttentionBlock(
|
720 |
+
ch,
|
721 |
+
context_dim,
|
722 |
+
use_checkpoint=use_checkpoint,
|
723 |
+
num_heads=num_heads,
|
724 |
+
num_head_channels=dim_head,
|
725 |
+
use_new_attention_order=use_new_attention_order,
|
726 |
+
)
|
727 |
+
)
|
728 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
729 |
+
self._feature_size += ch
|
730 |
+
input_block_chans.append(ch)
|
731 |
+
if level != len(channel_mult) - 1:
|
732 |
+
out_ch = ch
|
733 |
+
self.input_blocks.append(
|
734 |
+
TimestepEmbedSequential(
|
735 |
+
ResBlock(
|
736 |
+
ch,
|
737 |
+
time_embed_dim,
|
738 |
+
dropout,
|
739 |
+
out_channels=out_ch,
|
740 |
+
dims=dims,
|
741 |
+
use_checkpoint=use_checkpoint,
|
742 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
743 |
+
down=True,
|
744 |
+
)
|
745 |
+
if resblock_updown
|
746 |
+
else Downsample(
|
747 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
748 |
+
)
|
749 |
+
)
|
750 |
+
)
|
751 |
+
ch = out_ch
|
752 |
+
input_block_chans.append(ch)
|
753 |
+
ds *= 2
|
754 |
+
self._feature_size += ch
|
755 |
+
|
756 |
+
if num_head_channels == -1:
|
757 |
+
dim_head = ch // num_heads
|
758 |
+
else:
|
759 |
+
num_heads = ch // num_head_channels
|
760 |
+
dim_head = num_head_channels
|
761 |
+
if legacy:
|
762 |
+
#num_heads = 1
|
763 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
764 |
+
self.middle_block = TimestepEmbedSequential(
|
765 |
+
ResBlock(
|
766 |
+
ch,
|
767 |
+
time_embed_dim,
|
768 |
+
dropout,
|
769 |
+
dims=dims,
|
770 |
+
use_checkpoint=use_checkpoint,
|
771 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
772 |
+
),
|
773 |
+
TriplaneAttentionBlock(
|
774 |
+
ch,
|
775 |
+
context_dim,
|
776 |
+
use_checkpoint=use_checkpoint,
|
777 |
+
num_heads=num_heads,
|
778 |
+
num_head_channels=dim_head,
|
779 |
+
use_new_attention_order=use_new_attention_order,
|
780 |
+
),
|
781 |
+
ResBlock(
|
782 |
+
ch,
|
783 |
+
time_embed_dim,
|
784 |
+
dropout,
|
785 |
+
dims=dims,
|
786 |
+
use_checkpoint=use_checkpoint,
|
787 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
788 |
+
),
|
789 |
+
)
|
790 |
+
self._feature_size += ch
|
791 |
+
|
792 |
+
self.output_blocks = nn.ModuleList([])
|
793 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
794 |
+
for i in range(num_res_blocks + 1):
|
795 |
+
ich = input_block_chans.pop()
|
796 |
+
layers = [
|
797 |
+
ResBlock(
|
798 |
+
ch + ich,
|
799 |
+
time_embed_dim,
|
800 |
+
dropout,
|
801 |
+
out_channels=model_channels * mult,
|
802 |
+
dims=dims,
|
803 |
+
use_checkpoint=use_checkpoint,
|
804 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
805 |
+
)
|
806 |
+
]
|
807 |
+
ch = model_channels * mult
|
808 |
+
if ds in attention_resolutions:
|
809 |
+
if num_head_channels == -1:
|
810 |
+
dim_head = ch // num_heads
|
811 |
+
else:
|
812 |
+
num_heads = ch // num_head_channels
|
813 |
+
dim_head = num_head_channels
|
814 |
+
if legacy:
|
815 |
+
#num_heads = 1
|
816 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
817 |
+
layers.append(
|
818 |
+
TriplaneAttentionBlock(
|
819 |
+
ch,
|
820 |
+
context_dim,
|
821 |
+
use_checkpoint=use_checkpoint,
|
822 |
+
num_heads=num_heads_upsample,
|
823 |
+
num_head_channels=dim_head,
|
824 |
+
use_new_attention_order=use_new_attention_order,
|
825 |
+
)
|
826 |
+
)
|
827 |
+
if level and i == num_res_blocks:
|
828 |
+
out_ch = ch
|
829 |
+
layers.append(
|
830 |
+
ResBlock(
|
831 |
+
ch,
|
832 |
+
time_embed_dim,
|
833 |
+
dropout,
|
834 |
+
out_channels=out_ch,
|
835 |
+
dims=dims,
|
836 |
+
use_checkpoint=use_checkpoint,
|
837 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
838 |
+
up=True,
|
839 |
+
)
|
840 |
+
if resblock_updown
|
841 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
842 |
+
)
|
843 |
+
ds //= 2
|
844 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
845 |
+
self._feature_size += ch
|
846 |
+
|
847 |
+
self.out = nn.Sequential(
|
848 |
+
normalization(ch),
|
849 |
+
nn.SiLU(),
|
850 |
+
zero_module(conv_nd(dims, ch, out_channels, 3, padding=1)),
|
851 |
+
)
|
852 |
+
if self.predict_codebook_ids:
|
853 |
+
self.id_predictor = nn.Sequential(
|
854 |
+
normalization(ch),
|
855 |
+
conv_nd(dims, ch, n_embed, 1),
|
856 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
857 |
+
)
|
858 |
+
|
859 |
+
def convert_to_fp16(self):
|
860 |
+
"""
|
861 |
+
Convert the torso of the model to float16.
|
862 |
+
"""
|
863 |
+
self.input_blocks.apply(convert_module_to_f16)
|
864 |
+
self.middle_block.apply(convert_module_to_f16)
|
865 |
+
self.output_blocks.apply(convert_module_to_f16)
|
866 |
+
|
867 |
+
def convert_to_fp32(self):
|
868 |
+
"""
|
869 |
+
Convert the torso of the model to float32.
|
870 |
+
"""
|
871 |
+
self.input_blocks.apply(convert_module_to_f32)
|
872 |
+
self.middle_block.apply(convert_module_to_f32)
|
873 |
+
self.output_blocks.apply(convert_module_to_f32)
|
874 |
+
|
875 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
876 |
+
"""
|
877 |
+
Apply the model to an input batch.
|
878 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
879 |
+
:param timesteps: a 1-D batch of timesteps.
|
880 |
+
:param context: conditioning plugged in via crossattn
|
881 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
882 |
+
:return: an [N x C x ...] Tensor of outputs.
|
883 |
+
"""
|
884 |
+
assert (y is not None) == (
|
885 |
+
self.num_classes is not None
|
886 |
+
), "must specify y if and only if the model is class-conditional"
|
887 |
+
hs = []
|
888 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
889 |
+
emb = self.time_embed(t_emb)
|
890 |
+
|
891 |
+
if self.num_classes is not None:
|
892 |
+
assert y.shape == (x.shape[0],)
|
893 |
+
emb = emb + self.label_emb(y)
|
894 |
+
|
895 |
+
h = x.type(self.dtype)
|
896 |
+
for module in self.input_blocks:
|
897 |
+
h = module(h, emb, context)
|
898 |
+
hs.append(h)
|
899 |
+
h = self.middle_block(h, emb, context)
|
900 |
+
for module in self.output_blocks:
|
901 |
+
h = th.cat([h, hs.pop()], dim=1)
|
902 |
+
h = module(h, emb, context)
|
903 |
+
h = h.type(x.dtype)
|
904 |
+
if self.predict_codebook_ids:
|
905 |
+
return self.id_predictor(h)
|
906 |
+
else:
|
907 |
+
return self.out(h)
|
908 |
+
|
909 |
+
|
910 |
+
class EncoderUNetModel(nn.Module):
|
911 |
+
"""
|
912 |
+
The half UNet model with attention and timestep embedding.
|
913 |
+
For usage, see UNet.
|
914 |
+
"""
|
915 |
+
|
916 |
+
def __init__(
|
917 |
+
self,
|
918 |
+
image_size,
|
919 |
+
in_channels,
|
920 |
+
model_channels,
|
921 |
+
out_channels,
|
922 |
+
num_res_blocks,
|
923 |
+
attention_resolutions,
|
924 |
+
dropout=0,
|
925 |
+
channel_mult=(1, 2, 4, 8),
|
926 |
+
conv_resample=True,
|
927 |
+
dims=2,
|
928 |
+
use_checkpoint=False,
|
929 |
+
use_fp16=False,
|
930 |
+
num_heads=1,
|
931 |
+
num_head_channels=-1,
|
932 |
+
num_heads_upsample=-1,
|
933 |
+
use_scale_shift_norm=False,
|
934 |
+
resblock_updown=False,
|
935 |
+
use_new_attention_order=False,
|
936 |
+
pool="adaptive",
|
937 |
+
*args,
|
938 |
+
**kwargs
|
939 |
+
):
|
940 |
+
super().__init__()
|
941 |
+
|
942 |
+
if num_heads_upsample == -1:
|
943 |
+
num_heads_upsample = num_heads
|
944 |
+
|
945 |
+
self.in_channels = in_channels
|
946 |
+
self.model_channels = model_channels
|
947 |
+
self.out_channels = out_channels
|
948 |
+
self.num_res_blocks = num_res_blocks
|
949 |
+
self.attention_resolutions = attention_resolutions
|
950 |
+
self.dropout = dropout
|
951 |
+
self.channel_mult = channel_mult
|
952 |
+
self.conv_resample = conv_resample
|
953 |
+
self.use_checkpoint = use_checkpoint
|
954 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
955 |
+
self.num_heads = num_heads
|
956 |
+
self.num_head_channels = num_head_channels
|
957 |
+
self.num_heads_upsample = num_heads_upsample
|
958 |
+
|
959 |
+
time_embed_dim = model_channels * 4
|
960 |
+
self.time_embed = nn.Sequential(
|
961 |
+
linear(model_channels, time_embed_dim),
|
962 |
+
nn.SiLU(),
|
963 |
+
linear(time_embed_dim, time_embed_dim),
|
964 |
+
)
|
965 |
+
|
966 |
+
self.input_blocks = nn.ModuleList(
|
967 |
+
[
|
968 |
+
TimestepEmbedSequential(
|
969 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
970 |
+
)
|
971 |
+
]
|
972 |
+
)
|
973 |
+
self._feature_size = model_channels
|
974 |
+
input_block_chans = [model_channels]
|
975 |
+
ch = model_channels
|
976 |
+
ds = 1
|
977 |
+
for level, mult in enumerate(channel_mult):
|
978 |
+
for _ in range(num_res_blocks):
|
979 |
+
layers = [
|
980 |
+
ResBlock(
|
981 |
+
ch,
|
982 |
+
time_embed_dim,
|
983 |
+
dropout,
|
984 |
+
out_channels=mult * model_channels,
|
985 |
+
dims=dims,
|
986 |
+
use_checkpoint=use_checkpoint,
|
987 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
988 |
+
)
|
989 |
+
]
|
990 |
+
ch = mult * model_channels
|
991 |
+
if ds in attention_resolutions:
|
992 |
+
layers.append(
|
993 |
+
AttentionBlock(
|
994 |
+
ch,
|
995 |
+
use_checkpoint=use_checkpoint,
|
996 |
+
num_heads=num_heads,
|
997 |
+
num_head_channels=num_head_channels,
|
998 |
+
use_new_attention_order=use_new_attention_order,
|
999 |
+
)
|
1000 |
+
)
|
1001 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
1002 |
+
self._feature_size += ch
|
1003 |
+
input_block_chans.append(ch)
|
1004 |
+
if level != len(channel_mult) - 1:
|
1005 |
+
out_ch = ch
|
1006 |
+
self.input_blocks.append(
|
1007 |
+
TimestepEmbedSequential(
|
1008 |
+
ResBlock(
|
1009 |
+
ch,
|
1010 |
+
time_embed_dim,
|
1011 |
+
dropout,
|
1012 |
+
out_channels=out_ch,
|
1013 |
+
dims=dims,
|
1014 |
+
use_checkpoint=use_checkpoint,
|
1015 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1016 |
+
down=True,
|
1017 |
+
)
|
1018 |
+
if resblock_updown
|
1019 |
+
else Downsample(
|
1020 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
1021 |
+
)
|
1022 |
+
)
|
1023 |
+
)
|
1024 |
+
ch = out_ch
|
1025 |
+
input_block_chans.append(ch)
|
1026 |
+
ds *= 2
|
1027 |
+
self._feature_size += ch
|
1028 |
+
|
1029 |
+
self.middle_block = TimestepEmbedSequential(
|
1030 |
+
ResBlock(
|
1031 |
+
ch,
|
1032 |
+
time_embed_dim,
|
1033 |
+
dropout,
|
1034 |
+
dims=dims,
|
1035 |
+
use_checkpoint=use_checkpoint,
|
1036 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1037 |
+
),
|
1038 |
+
AttentionBlock(
|
1039 |
+
ch,
|
1040 |
+
use_checkpoint=use_checkpoint,
|
1041 |
+
num_heads=num_heads,
|
1042 |
+
num_head_channels=num_head_channels,
|
1043 |
+
use_new_attention_order=use_new_attention_order,
|
1044 |
+
),
|
1045 |
+
ResBlock(
|
1046 |
+
ch,
|
1047 |
+
time_embed_dim,
|
1048 |
+
dropout,
|
1049 |
+
dims=dims,
|
1050 |
+
use_checkpoint=use_checkpoint,
|
1051 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
1052 |
+
),
|
1053 |
+
)
|
1054 |
+
self._feature_size += ch
|
1055 |
+
self.pool = pool
|
1056 |
+
if pool == "adaptive":
|
1057 |
+
self.out = nn.Sequential(
|
1058 |
+
normalization(ch),
|
1059 |
+
nn.SiLU(),
|
1060 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
1061 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
1062 |
+
nn.Flatten(),
|
1063 |
+
)
|
1064 |
+
elif pool == "attention":
|
1065 |
+
assert num_head_channels != -1
|
1066 |
+
self.out = nn.Sequential(
|
1067 |
+
normalization(ch),
|
1068 |
+
nn.SiLU(),
|
1069 |
+
AttentionPool2d(
|
1070 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
1071 |
+
),
|
1072 |
+
)
|
1073 |
+
elif pool == "spatial":
|
1074 |
+
self.out = nn.Sequential(
|
1075 |
+
nn.Linear(self._feature_size, 2048),
|
1076 |
+
nn.ReLU(),
|
1077 |
+
nn.Linear(2048, self.out_channels),
|
1078 |
+
)
|
1079 |
+
elif pool == "spatial_v2":
|
1080 |
+
self.out = nn.Sequential(
|
1081 |
+
nn.Linear(self._feature_size, 2048),
|
1082 |
+
normalization(2048),
|
1083 |
+
nn.SiLU(),
|
1084 |
+
nn.Linear(2048, self.out_channels),
|
1085 |
+
)
|
1086 |
+
else:
|
1087 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
1088 |
+
|
1089 |
+
def convert_to_fp16(self):
|
1090 |
+
"""
|
1091 |
+
Convert the torso of the model to float16.
|
1092 |
+
"""
|
1093 |
+
self.input_blocks.apply(convert_module_to_f16)
|
1094 |
+
self.middle_block.apply(convert_module_to_f16)
|
1095 |
+
|
1096 |
+
def convert_to_fp32(self):
|
1097 |
+
"""
|
1098 |
+
Convert the torso of the model to float32.
|
1099 |
+
"""
|
1100 |
+
self.input_blocks.apply(convert_module_to_f32)
|
1101 |
+
self.middle_block.apply(convert_module_to_f32)
|
1102 |
+
|
1103 |
+
def forward(self, x, timesteps):
|
1104 |
+
"""
|
1105 |
+
Apply the model to an input batch.
|
1106 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
1107 |
+
:param timesteps: a 1-D batch of timesteps.
|
1108 |
+
:return: an [N x K] Tensor of outputs.
|
1109 |
+
"""
|
1110 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
1111 |
+
|
1112 |
+
results = []
|
1113 |
+
h = x.type(self.dtype)
|
1114 |
+
for module in self.input_blocks:
|
1115 |
+
h = module(h, emb)
|
1116 |
+
if self.pool.startswith("spatial"):
|
1117 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
1118 |
+
h = self.middle_block(h, emb)
|
1119 |
+
if self.pool.startswith("spatial"):
|
1120 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
1121 |
+
h = th.cat(results, axis=-1)
|
1122 |
+
return self.out(h)
|
1123 |
+
else:
|
1124 |
+
h = h.type(x.dtype)
|
1125 |
+
return self.out(h)
|
1126 |
+
|
3DTopia/ldm/modules/diffusionmodules/triplane_crossattention_unet.py
ADDED
@@ -0,0 +1,1058 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from functools import partial
|
3 |
+
import math
|
4 |
+
from typing import Iterable
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn, einsum
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from inspect import isfunction
|
13 |
+
|
14 |
+
from ldm.modules.diffusionmodules.util import (
|
15 |
+
checkpoint,
|
16 |
+
conv_nd,
|
17 |
+
linear,
|
18 |
+
avg_pool_nd,
|
19 |
+
zero_module,
|
20 |
+
normalization,
|
21 |
+
timestep_embedding,
|
22 |
+
)
|
23 |
+
from ldm.modules.attention import SpatialTransformer
|
24 |
+
|
25 |
+
|
26 |
+
# dummy replace
|
27 |
+
def convert_module_to_f16(x):
|
28 |
+
pass
|
29 |
+
|
30 |
+
def convert_module_to_f32(x):
|
31 |
+
pass
|
32 |
+
|
33 |
+
|
34 |
+
## go
|
35 |
+
class AttentionPool2d(nn.Module):
|
36 |
+
"""
|
37 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
spacial_dim: int,
|
43 |
+
embed_dim: int,
|
44 |
+
num_heads_channels: int,
|
45 |
+
output_dim: int = None,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
49 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
50 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
51 |
+
self.num_heads = embed_dim // num_heads_channels
|
52 |
+
self.attention = QKVAttention(self.num_heads)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
b, c, *_spatial = x.shape
|
56 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
57 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
58 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
59 |
+
x = self.qkv_proj(x)
|
60 |
+
x = self.attention(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x[:, :, 0]
|
63 |
+
|
64 |
+
|
65 |
+
class TimestepBlock(nn.Module):
|
66 |
+
"""
|
67 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
68 |
+
"""
|
69 |
+
|
70 |
+
@abstractmethod
|
71 |
+
def forward(self, x, emb):
|
72 |
+
"""
|
73 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
78 |
+
"""
|
79 |
+
A sequential module that passes timestep embeddings to the children that
|
80 |
+
support it as an extra input.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def forward(self, x, emb, context=None):
|
84 |
+
for layer in self:
|
85 |
+
if isinstance(layer, TimestepBlock):
|
86 |
+
x = layer(x, emb)
|
87 |
+
elif isinstance(layer, SpatialTransformer):
|
88 |
+
x = layer(x, context)
|
89 |
+
else:
|
90 |
+
x = layer(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
class Upsample(nn.Module):
|
95 |
+
"""
|
96 |
+
An upsampling layer with an optional convolution.
|
97 |
+
:param channels: channels in the inputs and outputs.
|
98 |
+
:param use_conv: a bool determining if a convolution is applied.
|
99 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
100 |
+
upsampling occurs in the inner-two dimensions.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
104 |
+
super().__init__()
|
105 |
+
self.channels = channels
|
106 |
+
self.out_channels = out_channels or channels
|
107 |
+
self.use_conv = use_conv
|
108 |
+
self.dims = dims
|
109 |
+
if use_conv:
|
110 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
assert x.shape[1] == self.channels
|
114 |
+
if self.dims == 3:
|
115 |
+
x = F.interpolate(
|
116 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
120 |
+
if self.use_conv:
|
121 |
+
x = self.conv(x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
class TransposedUpsample(nn.Module):
|
125 |
+
'Learned 2x upsampling without padding'
|
126 |
+
def __init__(self, channels, out_channels=None, ks=5):
|
127 |
+
super().__init__()
|
128 |
+
self.channels = channels
|
129 |
+
self.out_channels = out_channels or channels
|
130 |
+
|
131 |
+
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
132 |
+
|
133 |
+
def forward(self,x):
|
134 |
+
return self.up(x)
|
135 |
+
|
136 |
+
|
137 |
+
class Downsample(nn.Module):
|
138 |
+
"""
|
139 |
+
A downsampling layer with an optional convolution.
|
140 |
+
:param channels: channels in the inputs and outputs.
|
141 |
+
:param use_conv: a bool determining if a convolution is applied.
|
142 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
143 |
+
downsampling occurs in the inner-two dimensions.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
147 |
+
super().__init__()
|
148 |
+
self.channels = channels
|
149 |
+
self.out_channels = out_channels or channels
|
150 |
+
self.use_conv = use_conv
|
151 |
+
self.dims = dims
|
152 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
153 |
+
if use_conv:
|
154 |
+
self.op = conv_nd(
|
155 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
assert self.channels == self.out_channels
|
159 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
160 |
+
|
161 |
+
def forward(self, x):
|
162 |
+
assert x.shape[1] == self.channels
|
163 |
+
return self.op(x)
|
164 |
+
|
165 |
+
|
166 |
+
class ResBlock(TimestepBlock):
|
167 |
+
"""
|
168 |
+
A residual block that can optionally change the number of channels.
|
169 |
+
:param channels: the number of input channels.
|
170 |
+
:param emb_channels: the number of timestep embedding channels.
|
171 |
+
:param dropout: the rate of dropout.
|
172 |
+
:param out_channels: if specified, the number of out channels.
|
173 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
174 |
+
convolution instead of a smaller 1x1 convolution to change the
|
175 |
+
channels in the skip connection.
|
176 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
177 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
178 |
+
:param up: if True, use this block for upsampling.
|
179 |
+
:param down: if True, use this block for downsampling.
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
channels,
|
185 |
+
emb_channels,
|
186 |
+
dropout,
|
187 |
+
out_channels=None,
|
188 |
+
use_conv=False,
|
189 |
+
use_scale_shift_norm=False,
|
190 |
+
dims=2,
|
191 |
+
use_checkpoint=False,
|
192 |
+
up=False,
|
193 |
+
down=False,
|
194 |
+
):
|
195 |
+
super().__init__()
|
196 |
+
self.channels = channels
|
197 |
+
self.emb_channels = emb_channels
|
198 |
+
self.dropout = dropout
|
199 |
+
self.out_channels = out_channels or channels
|
200 |
+
self.use_conv = use_conv
|
201 |
+
self.use_checkpoint = use_checkpoint
|
202 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
203 |
+
|
204 |
+
self.in_layers = nn.Sequential(
|
205 |
+
normalization(channels),
|
206 |
+
nn.SiLU(),
|
207 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
208 |
+
)
|
209 |
+
|
210 |
+
self.updown = up or down
|
211 |
+
|
212 |
+
if up:
|
213 |
+
self.h_upd = Upsample(channels, False, dims)
|
214 |
+
self.x_upd = Upsample(channels, False, dims)
|
215 |
+
elif down:
|
216 |
+
self.h_upd = Downsample(channels, False, dims)
|
217 |
+
self.x_upd = Downsample(channels, False, dims)
|
218 |
+
else:
|
219 |
+
self.h_upd = self.x_upd = nn.Identity()
|
220 |
+
|
221 |
+
self.emb_layers = nn.Sequential(
|
222 |
+
nn.SiLU(),
|
223 |
+
linear(
|
224 |
+
emb_channels,
|
225 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
226 |
+
),
|
227 |
+
)
|
228 |
+
self.out_layers = nn.Sequential(
|
229 |
+
normalization(self.out_channels),
|
230 |
+
nn.SiLU(),
|
231 |
+
nn.Dropout(p=dropout),
|
232 |
+
zero_module(
|
233 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
234 |
+
),
|
235 |
+
)
|
236 |
+
|
237 |
+
if self.out_channels == channels:
|
238 |
+
self.skip_connection = nn.Identity()
|
239 |
+
elif use_conv:
|
240 |
+
self.skip_connection = conv_nd(
|
241 |
+
dims, channels, self.out_channels, 3, padding=1
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
245 |
+
|
246 |
+
def forward(self, x, emb):
|
247 |
+
"""
|
248 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
249 |
+
:param x: an [N x C x ...] Tensor of features.
|
250 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
251 |
+
:return: an [N x C x ...] Tensor of outputs.
|
252 |
+
"""
|
253 |
+
return checkpoint(
|
254 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
def _forward(self, x, emb):
|
259 |
+
if self.updown:
|
260 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
261 |
+
h = in_rest(x)
|
262 |
+
h = self.h_upd(h)
|
263 |
+
x = self.x_upd(x)
|
264 |
+
h = in_conv(h)
|
265 |
+
else:
|
266 |
+
h = self.in_layers(x)
|
267 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
268 |
+
while len(emb_out.shape) < len(h.shape):
|
269 |
+
emb_out = emb_out[..., None]
|
270 |
+
if self.use_scale_shift_norm:
|
271 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
272 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
273 |
+
h = out_norm(h) * (1 + scale) + shift
|
274 |
+
h = out_rest(h)
|
275 |
+
else:
|
276 |
+
h = h + emb_out
|
277 |
+
h = self.out_layers(h)
|
278 |
+
return self.skip_connection(x) + h
|
279 |
+
|
280 |
+
def exists(val):
|
281 |
+
return val is not None
|
282 |
+
|
283 |
+
def default(val, d):
|
284 |
+
if exists(val):
|
285 |
+
return val
|
286 |
+
return d() if isfunction(d) else d
|
287 |
+
|
288 |
+
class CrossAttention(nn.Module):
|
289 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
290 |
+
super().__init__()
|
291 |
+
inner_dim = dim_head * heads
|
292 |
+
context_dim = default(context_dim, query_dim)
|
293 |
+
|
294 |
+
self.scale = dim_head ** -0.5
|
295 |
+
self.heads = heads
|
296 |
+
|
297 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
298 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
299 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
300 |
+
|
301 |
+
self.to_out = nn.Sequential(
|
302 |
+
nn.Linear(inner_dim, query_dim),
|
303 |
+
nn.Dropout(dropout)
|
304 |
+
)
|
305 |
+
|
306 |
+
def forward(self, x, context=None, mask=None):
|
307 |
+
h = self.heads
|
308 |
+
|
309 |
+
x = x.permute(0, 2, 1)
|
310 |
+
context = context.permute(0, 2, 1)
|
311 |
+
|
312 |
+
q = self.to_q(x)
|
313 |
+
context = default(context, x)
|
314 |
+
k = self.to_k(context)
|
315 |
+
v = self.to_v(context)
|
316 |
+
|
317 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
318 |
+
|
319 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
320 |
+
|
321 |
+
if exists(mask):
|
322 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
323 |
+
max_neg_value = -th.finfo(sim.dtype).max
|
324 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
325 |
+
sim.masked_fill_(~mask, max_neg_value)
|
326 |
+
|
327 |
+
# attention, what we cannot get enough of
|
328 |
+
attn = sim.softmax(dim=-1)
|
329 |
+
|
330 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
331 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
332 |
+
return self.to_out(out).permute(0, 2, 1)
|
333 |
+
|
334 |
+
|
335 |
+
class TriplaneAttentionBlock(nn.Module):
|
336 |
+
def __init__(
|
337 |
+
self,
|
338 |
+
channels,
|
339 |
+
num_heads=1,
|
340 |
+
num_head_channels=-1,
|
341 |
+
use_checkpoint=False,
|
342 |
+
use_new_attention_order=False,
|
343 |
+
):
|
344 |
+
super().__init__()
|
345 |
+
self.channels = channels
|
346 |
+
if num_head_channels == -1:
|
347 |
+
self.num_heads = num_heads
|
348 |
+
else:
|
349 |
+
assert (
|
350 |
+
channels % num_head_channels == 0
|
351 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
352 |
+
self.num_heads = channels // num_head_channels
|
353 |
+
self.use_checkpoint = use_checkpoint
|
354 |
+
self.norm = normalization(channels)
|
355 |
+
|
356 |
+
self.plane1_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
357 |
+
self.plane2_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
358 |
+
self.plane3_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
359 |
+
|
360 |
+
def forward(self, x):
|
361 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
362 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
363 |
+
|
364 |
+
def _forward(self, x):
|
365 |
+
b, c, *spatial = x.shape
|
366 |
+
res = x.shape[-2]
|
367 |
+
plane1 = x[..., :res].reshape(b, c, -1)
|
368 |
+
plane2 = x[..., res:res*2].reshape(b, c, -1)
|
369 |
+
plane3 = x[..., 2*res:3*res].reshape(b, c, -1)
|
370 |
+
x = x.reshape(b, c, -1)
|
371 |
+
|
372 |
+
plane1_output = self.plane1_ca(self.norm(plane1), self.norm(x))
|
373 |
+
plane2_output = self.plane2_ca(self.norm(plane2), self.norm(x))
|
374 |
+
plane3_output = self.plane3_ca(self.norm(plane3), self.norm(x))
|
375 |
+
|
376 |
+
h = th.cat([plane1_output, plane2_output, plane3_output], -1)
|
377 |
+
|
378 |
+
return (x + h).reshape(b, c, *spatial)
|
379 |
+
|
380 |
+
|
381 |
+
class AttentionBlock(nn.Module):
|
382 |
+
"""
|
383 |
+
An attention block that allows spatial positions to attend to each other.
|
384 |
+
Originally ported from here, but adapted to the N-d case.
|
385 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
386 |
+
"""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
channels,
|
391 |
+
num_heads=1,
|
392 |
+
num_head_channels=-1,
|
393 |
+
use_checkpoint=False,
|
394 |
+
use_new_attention_order=False,
|
395 |
+
):
|
396 |
+
super().__init__()
|
397 |
+
self.channels = channels
|
398 |
+
if num_head_channels == -1:
|
399 |
+
self.num_heads = num_heads
|
400 |
+
else:
|
401 |
+
assert (
|
402 |
+
channels % num_head_channels == 0
|
403 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
404 |
+
self.num_heads = channels // num_head_channels
|
405 |
+
self.use_checkpoint = use_checkpoint
|
406 |
+
self.norm = normalization(channels)
|
407 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
408 |
+
if use_new_attention_order:
|
409 |
+
# split qkv before split heads
|
410 |
+
self.attention = QKVAttention(self.num_heads)
|
411 |
+
else:
|
412 |
+
# split heads before split qkv
|
413 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
414 |
+
|
415 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
416 |
+
|
417 |
+
def forward(self, x):
|
418 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
419 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
420 |
+
|
421 |
+
def _forward(self, x):
|
422 |
+
b, c, *spatial = x.shape
|
423 |
+
x = x.reshape(b, c, -1)
|
424 |
+
qkv = self.qkv(self.norm(x))
|
425 |
+
h = self.attention(qkv)
|
426 |
+
h = self.proj_out(h)
|
427 |
+
return (x + h).reshape(b, c, *spatial)
|
428 |
+
|
429 |
+
|
430 |
+
def count_flops_attn(model, _x, y):
|
431 |
+
"""
|
432 |
+
A counter for the `thop` package to count the operations in an
|
433 |
+
attention operation.
|
434 |
+
Meant to be used like:
|
435 |
+
macs, params = thop.profile(
|
436 |
+
model,
|
437 |
+
inputs=(inputs, timestamps),
|
438 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
439 |
+
)
|
440 |
+
"""
|
441 |
+
b, c, *spatial = y[0].shape
|
442 |
+
num_spatial = int(np.prod(spatial))
|
443 |
+
# We perform two matmuls with the same number of ops.
|
444 |
+
# The first computes the weight matrix, the second computes
|
445 |
+
# the combination of the value vectors.
|
446 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
447 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
448 |
+
|
449 |
+
|
450 |
+
class QKVAttentionLegacy(nn.Module):
|
451 |
+
"""
|
452 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
453 |
+
"""
|
454 |
+
|
455 |
+
def __init__(self, n_heads):
|
456 |
+
super().__init__()
|
457 |
+
self.n_heads = n_heads
|
458 |
+
|
459 |
+
def forward(self, qkv):
|
460 |
+
"""
|
461 |
+
Apply QKV attention.
|
462 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
463 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
464 |
+
"""
|
465 |
+
bs, width, length = qkv.shape
|
466 |
+
assert width % (3 * self.n_heads) == 0
|
467 |
+
ch = width // (3 * self.n_heads)
|
468 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
469 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
470 |
+
weight = th.einsum(
|
471 |
+
"bct,bcs->bts", q * scale, k * scale
|
472 |
+
) # More stable with f16 than dividing afterwards
|
473 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
474 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
475 |
+
return a.reshape(bs, -1, length)
|
476 |
+
|
477 |
+
@staticmethod
|
478 |
+
def count_flops(model, _x, y):
|
479 |
+
return count_flops_attn(model, _x, y)
|
480 |
+
|
481 |
+
|
482 |
+
class QKVAttention(nn.Module):
|
483 |
+
"""
|
484 |
+
A module which performs QKV attention and splits in a different order.
|
485 |
+
"""
|
486 |
+
|
487 |
+
def __init__(self, n_heads):
|
488 |
+
super().__init__()
|
489 |
+
self.n_heads = n_heads
|
490 |
+
|
491 |
+
def forward(self, qkv):
|
492 |
+
"""
|
493 |
+
Apply QKV attention.
|
494 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
495 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
496 |
+
"""
|
497 |
+
bs, width, length = qkv.shape
|
498 |
+
assert width % (3 * self.n_heads) == 0
|
499 |
+
ch = width // (3 * self.n_heads)
|
500 |
+
q, k, v = qkv.chunk(3, dim=1)
|
501 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
502 |
+
weight = th.einsum(
|
503 |
+
"bct,bcs->bts",
|
504 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
505 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
506 |
+
) # More stable with f16 than dividing afterwards
|
507 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
508 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
509 |
+
return a.reshape(bs, -1, length)
|
510 |
+
|
511 |
+
@staticmethod
|
512 |
+
def count_flops(model, _x, y):
|
513 |
+
return count_flops_attn(model, _x, y)
|
514 |
+
|
515 |
+
|
516 |
+
class UNetModel(nn.Module):
|
517 |
+
"""
|
518 |
+
The full UNet model with attention and timestep embedding.
|
519 |
+
:param in_channels: channels in the input Tensor.
|
520 |
+
:param model_channels: base channel count for the model.
|
521 |
+
:param out_channels: channels in the output Tensor.
|
522 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
523 |
+
:param attention_resolutions: a collection of downsample rates at which
|
524 |
+
attention will take place. May be a set, list, or tuple.
|
525 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
526 |
+
will be used.
|
527 |
+
:param dropout: the dropout probability.
|
528 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
529 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
530 |
+
downsampling.
|
531 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
532 |
+
:param num_classes: if specified (as an int), then this model will be
|
533 |
+
class-conditional with `num_classes` classes.
|
534 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
535 |
+
:param num_heads: the number of attention heads in each attention layer.
|
536 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
537 |
+
a fixed channel width per attention head.
|
538 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
539 |
+
of heads for upsampling. Deprecated.
|
540 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
541 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
542 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
543 |
+
increased efficiency.
|
544 |
+
"""
|
545 |
+
|
546 |
+
def __init__(
|
547 |
+
self,
|
548 |
+
image_size,
|
549 |
+
in_channels,
|
550 |
+
model_channels,
|
551 |
+
out_channels,
|
552 |
+
num_res_blocks,
|
553 |
+
attention_resolutions,
|
554 |
+
dropout=0,
|
555 |
+
channel_mult=(1, 2, 4, 8),
|
556 |
+
conv_resample=True,
|
557 |
+
dims=2,
|
558 |
+
num_classes=None,
|
559 |
+
use_checkpoint=False,
|
560 |
+
use_fp16=False,
|
561 |
+
num_heads=-1,
|
562 |
+
num_head_channels=-1,
|
563 |
+
num_heads_upsample=-1,
|
564 |
+
use_scale_shift_norm=False,
|
565 |
+
resblock_updown=False,
|
566 |
+
use_new_attention_order=False,
|
567 |
+
use_spatial_transformer=False, # custom transformer support
|
568 |
+
transformer_depth=1, # custom transformer support
|
569 |
+
context_dim=None, # custom transformer support
|
570 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
571 |
+
legacy=True,
|
572 |
+
):
|
573 |
+
super().__init__()
|
574 |
+
if use_spatial_transformer:
|
575 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
576 |
+
|
577 |
+
if context_dim is not None:
|
578 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
579 |
+
from omegaconf.listconfig import ListConfig
|
580 |
+
if type(context_dim) == ListConfig:
|
581 |
+
context_dim = list(context_dim)
|
582 |
+
|
583 |
+
if num_heads_upsample == -1:
|
584 |
+
num_heads_upsample = num_heads
|
585 |
+
|
586 |
+
if num_heads == -1:
|
587 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
588 |
+
|
589 |
+
if num_head_channels == -1:
|
590 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
591 |
+
|
592 |
+
self.image_size = image_size
|
593 |
+
self.in_channels = in_channels
|
594 |
+
self.model_channels = model_channels
|
595 |
+
self.out_channels = out_channels
|
596 |
+
self.num_res_blocks = num_res_blocks
|
597 |
+
self.attention_resolutions = attention_resolutions
|
598 |
+
self.dropout = dropout
|
599 |
+
self.channel_mult = channel_mult
|
600 |
+
self.conv_resample = conv_resample
|
601 |
+
self.num_classes = num_classes
|
602 |
+
self.use_checkpoint = use_checkpoint
|
603 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
604 |
+
self.num_heads = num_heads
|
605 |
+
self.num_head_channels = num_head_channels
|
606 |
+
self.num_heads_upsample = num_heads_upsample
|
607 |
+
self.predict_codebook_ids = n_embed is not None
|
608 |
+
|
609 |
+
time_embed_dim = model_channels * 4
|
610 |
+
self.time_embed = nn.Sequential(
|
611 |
+
linear(model_channels, time_embed_dim),
|
612 |
+
nn.SiLU(),
|
613 |
+
linear(time_embed_dim, time_embed_dim),
|
614 |
+
)
|
615 |
+
|
616 |
+
if self.num_classes is not None:
|
617 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
618 |
+
|
619 |
+
self.input_blocks = nn.ModuleList(
|
620 |
+
[
|
621 |
+
TimestepEmbedSequential(
|
622 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
623 |
+
)
|
624 |
+
]
|
625 |
+
)
|
626 |
+
self._feature_size = model_channels
|
627 |
+
input_block_chans = [model_channels]
|
628 |
+
ch = model_channels
|
629 |
+
ds = 1
|
630 |
+
for level, mult in enumerate(channel_mult):
|
631 |
+
for _ in range(num_res_blocks):
|
632 |
+
layers = [
|
633 |
+
ResBlock(
|
634 |
+
ch,
|
635 |
+
time_embed_dim,
|
636 |
+
dropout,
|
637 |
+
out_channels=mult * model_channels,
|
638 |
+
dims=dims,
|
639 |
+
use_checkpoint=use_checkpoint,
|
640 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
641 |
+
)
|
642 |
+
]
|
643 |
+
ch = mult * model_channels
|
644 |
+
if ds in attention_resolutions:
|
645 |
+
if num_head_channels == -1:
|
646 |
+
dim_head = ch // num_heads
|
647 |
+
else:
|
648 |
+
num_heads = ch // num_head_channels
|
649 |
+
dim_head = num_head_channels
|
650 |
+
if legacy:
|
651 |
+
#num_heads = 1
|
652 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
653 |
+
layers.append(
|
654 |
+
TriplaneAttentionBlock(
|
655 |
+
ch,
|
656 |
+
use_checkpoint=use_checkpoint,
|
657 |
+
num_heads=num_heads,
|
658 |
+
num_head_channels=dim_head,
|
659 |
+
use_new_attention_order=use_new_attention_order,
|
660 |
+
)
|
661 |
+
)
|
662 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
663 |
+
self._feature_size += ch
|
664 |
+
input_block_chans.append(ch)
|
665 |
+
if level != len(channel_mult) - 1:
|
666 |
+
out_ch = ch
|
667 |
+
self.input_blocks.append(
|
668 |
+
TimestepEmbedSequential(
|
669 |
+
ResBlock(
|
670 |
+
ch,
|
671 |
+
time_embed_dim,
|
672 |
+
dropout,
|
673 |
+
out_channels=out_ch,
|
674 |
+
dims=dims,
|
675 |
+
use_checkpoint=use_checkpoint,
|
676 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
677 |
+
down=True,
|
678 |
+
)
|
679 |
+
if resblock_updown
|
680 |
+
else Downsample(
|
681 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
682 |
+
)
|
683 |
+
)
|
684 |
+
)
|
685 |
+
ch = out_ch
|
686 |
+
input_block_chans.append(ch)
|
687 |
+
ds *= 2
|
688 |
+
self._feature_size += ch
|
689 |
+
|
690 |
+
if num_head_channels == -1:
|
691 |
+
dim_head = ch // num_heads
|
692 |
+
else:
|
693 |
+
num_heads = ch // num_head_channels
|
694 |
+
dim_head = num_head_channels
|
695 |
+
if legacy:
|
696 |
+
#num_heads = 1
|
697 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
698 |
+
self.middle_block = TimestepEmbedSequential(
|
699 |
+
ResBlock(
|
700 |
+
ch,
|
701 |
+
time_embed_dim,
|
702 |
+
dropout,
|
703 |
+
dims=dims,
|
704 |
+
use_checkpoint=use_checkpoint,
|
705 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
706 |
+
),
|
707 |
+
TriplaneAttentionBlock(
|
708 |
+
ch,
|
709 |
+
use_checkpoint=use_checkpoint,
|
710 |
+
num_heads=num_heads,
|
711 |
+
num_head_channels=dim_head,
|
712 |
+
use_new_attention_order=use_new_attention_order,
|
713 |
+
),
|
714 |
+
ResBlock(
|
715 |
+
ch,
|
716 |
+
time_embed_dim,
|
717 |
+
dropout,
|
718 |
+
dims=dims,
|
719 |
+
use_checkpoint=use_checkpoint,
|
720 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
721 |
+
),
|
722 |
+
)
|
723 |
+
self._feature_size += ch
|
724 |
+
|
725 |
+
self.output_blocks = nn.ModuleList([])
|
726 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
727 |
+
for i in range(num_res_blocks + 1):
|
728 |
+
ich = input_block_chans.pop()
|
729 |
+
layers = [
|
730 |
+
ResBlock(
|
731 |
+
ch + ich,
|
732 |
+
time_embed_dim,
|
733 |
+
dropout,
|
734 |
+
out_channels=model_channels * mult,
|
735 |
+
dims=dims,
|
736 |
+
use_checkpoint=use_checkpoint,
|
737 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
738 |
+
)
|
739 |
+
]
|
740 |
+
ch = model_channels * mult
|
741 |
+
if ds in attention_resolutions:
|
742 |
+
if num_head_channels == -1:
|
743 |
+
dim_head = ch // num_heads
|
744 |
+
else:
|
745 |
+
num_heads = ch // num_head_channels
|
746 |
+
dim_head = num_head_channels
|
747 |
+
if legacy:
|
748 |
+
#num_heads = 1
|
749 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
750 |
+
layers.append(
|
751 |
+
TriplaneAttentionBlock(
|
752 |
+
ch,
|
753 |
+
use_checkpoint=use_checkpoint,
|
754 |
+
num_heads=num_heads_upsample,
|
755 |
+
num_head_channels=dim_head,
|
756 |
+
use_new_attention_order=use_new_attention_order,
|
757 |
+
)
|
758 |
+
)
|
759 |
+
if level and i == num_res_blocks:
|
760 |
+
out_ch = ch
|
761 |
+
layers.append(
|
762 |
+
ResBlock(
|
763 |
+
ch,
|
764 |
+
time_embed_dim,
|
765 |
+
dropout,
|
766 |
+
out_channels=out_ch,
|
767 |
+
dims=dims,
|
768 |
+
use_checkpoint=use_checkpoint,
|
769 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
770 |
+
up=True,
|
771 |
+
)
|
772 |
+
if resblock_updown
|
773 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
774 |
+
)
|
775 |
+
ds //= 2
|
776 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
777 |
+
self._feature_size += ch
|
778 |
+
|
779 |
+
self.out = nn.Sequential(
|
780 |
+
normalization(ch),
|
781 |
+
nn.SiLU(),
|
782 |
+
zero_module(conv_nd(dims, ch, out_channels, 3, padding=1)),
|
783 |
+
)
|
784 |
+
if self.predict_codebook_ids:
|
785 |
+
self.id_predictor = nn.Sequential(
|
786 |
+
normalization(ch),
|
787 |
+
conv_nd(dims, ch, n_embed, 1),
|
788 |
+
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
789 |
+
)
|
790 |
+
|
791 |
+
def convert_to_fp16(self):
|
792 |
+
"""
|
793 |
+
Convert the torso of the model to float16.
|
794 |
+
"""
|
795 |
+
self.input_blocks.apply(convert_module_to_f16)
|
796 |
+
self.middle_block.apply(convert_module_to_f16)
|
797 |
+
self.output_blocks.apply(convert_module_to_f16)
|
798 |
+
|
799 |
+
def convert_to_fp32(self):
|
800 |
+
"""
|
801 |
+
Convert the torso of the model to float32.
|
802 |
+
"""
|
803 |
+
self.input_blocks.apply(convert_module_to_f32)
|
804 |
+
self.middle_block.apply(convert_module_to_f32)
|
805 |
+
self.output_blocks.apply(convert_module_to_f32)
|
806 |
+
|
807 |
+
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
808 |
+
"""
|
809 |
+
Apply the model to an input batch.
|
810 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
811 |
+
:param timesteps: a 1-D batch of timesteps.
|
812 |
+
:param context: conditioning plugged in via crossattn
|
813 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
814 |
+
:return: an [N x C x ...] Tensor of outputs.
|
815 |
+
"""
|
816 |
+
assert (y is not None) == (
|
817 |
+
self.num_classes is not None
|
818 |
+
), "must specify y if and only if the model is class-conditional"
|
819 |
+
hs = []
|
820 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
821 |
+
emb = self.time_embed(t_emb)
|
822 |
+
|
823 |
+
if self.num_classes is not None:
|
824 |
+
assert y.shape == (x.shape[0],)
|
825 |
+
emb = emb + self.label_emb(y)
|
826 |
+
|
827 |
+
h = x.type(self.dtype)
|
828 |
+
for module in self.input_blocks:
|
829 |
+
h = module(h, emb, context)
|
830 |
+
hs.append(h)
|
831 |
+
h = self.middle_block(h, emb, context)
|
832 |
+
for module in self.output_blocks:
|
833 |
+
h = th.cat([h, hs.pop()], dim=1)
|
834 |
+
h = module(h, emb, context)
|
835 |
+
h = h.type(x.dtype)
|
836 |
+
if self.predict_codebook_ids:
|
837 |
+
return self.id_predictor(h)
|
838 |
+
else:
|
839 |
+
return self.out(h)
|
840 |
+
|
841 |
+
|
842 |
+
class EncoderUNetModel(nn.Module):
|
843 |
+
"""
|
844 |
+
The half UNet model with attention and timestep embedding.
|
845 |
+
For usage, see UNet.
|
846 |
+
"""
|
847 |
+
|
848 |
+
def __init__(
|
849 |
+
self,
|
850 |
+
image_size,
|
851 |
+
in_channels,
|
852 |
+
model_channels,
|
853 |
+
out_channels,
|
854 |
+
num_res_blocks,
|
855 |
+
attention_resolutions,
|
856 |
+
dropout=0,
|
857 |
+
channel_mult=(1, 2, 4, 8),
|
858 |
+
conv_resample=True,
|
859 |
+
dims=2,
|
860 |
+
use_checkpoint=False,
|
861 |
+
use_fp16=False,
|
862 |
+
num_heads=1,
|
863 |
+
num_head_channels=-1,
|
864 |
+
num_heads_upsample=-1,
|
865 |
+
use_scale_shift_norm=False,
|
866 |
+
resblock_updown=False,
|
867 |
+
use_new_attention_order=False,
|
868 |
+
pool="adaptive",
|
869 |
+
*args,
|
870 |
+
**kwargs
|
871 |
+
):
|
872 |
+
super().__init__()
|
873 |
+
|
874 |
+
if num_heads_upsample == -1:
|
875 |
+
num_heads_upsample = num_heads
|
876 |
+
|
877 |
+
self.in_channels = in_channels
|
878 |
+
self.model_channels = model_channels
|
879 |
+
self.out_channels = out_channels
|
880 |
+
self.num_res_blocks = num_res_blocks
|
881 |
+
self.attention_resolutions = attention_resolutions
|
882 |
+
self.dropout = dropout
|
883 |
+
self.channel_mult = channel_mult
|
884 |
+
self.conv_resample = conv_resample
|
885 |
+
self.use_checkpoint = use_checkpoint
|
886 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
887 |
+
self.num_heads = num_heads
|
888 |
+
self.num_head_channels = num_head_channels
|
889 |
+
self.num_heads_upsample = num_heads_upsample
|
890 |
+
|
891 |
+
time_embed_dim = model_channels * 4
|
892 |
+
self.time_embed = nn.Sequential(
|
893 |
+
linear(model_channels, time_embed_dim),
|
894 |
+
nn.SiLU(),
|
895 |
+
linear(time_embed_dim, time_embed_dim),
|
896 |
+
)
|
897 |
+
|
898 |
+
self.input_blocks = nn.ModuleList(
|
899 |
+
[
|
900 |
+
TimestepEmbedSequential(
|
901 |
+
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
902 |
+
)
|
903 |
+
]
|
904 |
+
)
|
905 |
+
self._feature_size = model_channels
|
906 |
+
input_block_chans = [model_channels]
|
907 |
+
ch = model_channels
|
908 |
+
ds = 1
|
909 |
+
for level, mult in enumerate(channel_mult):
|
910 |
+
for _ in range(num_res_blocks):
|
911 |
+
layers = [
|
912 |
+
ResBlock(
|
913 |
+
ch,
|
914 |
+
time_embed_dim,
|
915 |
+
dropout,
|
916 |
+
out_channels=mult * model_channels,
|
917 |
+
dims=dims,
|
918 |
+
use_checkpoint=use_checkpoint,
|
919 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
920 |
+
)
|
921 |
+
]
|
922 |
+
ch = mult * model_channels
|
923 |
+
if ds in attention_resolutions:
|
924 |
+
layers.append(
|
925 |
+
AttentionBlock(
|
926 |
+
ch,
|
927 |
+
use_checkpoint=use_checkpoint,
|
928 |
+
num_heads=num_heads,
|
929 |
+
num_head_channels=num_head_channels,
|
930 |
+
use_new_attention_order=use_new_attention_order,
|
931 |
+
)
|
932 |
+
)
|
933 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
934 |
+
self._feature_size += ch
|
935 |
+
input_block_chans.append(ch)
|
936 |
+
if level != len(channel_mult) - 1:
|
937 |
+
out_ch = ch
|
938 |
+
self.input_blocks.append(
|
939 |
+
TimestepEmbedSequential(
|
940 |
+
ResBlock(
|
941 |
+
ch,
|
942 |
+
time_embed_dim,
|
943 |
+
dropout,
|
944 |
+
out_channels=out_ch,
|
945 |
+
dims=dims,
|
946 |
+
use_checkpoint=use_checkpoint,
|
947 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
948 |
+
down=True,
|
949 |
+
)
|
950 |
+
if resblock_updown
|
951 |
+
else Downsample(
|
952 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
953 |
+
)
|
954 |
+
)
|
955 |
+
)
|
956 |
+
ch = out_ch
|
957 |
+
input_block_chans.append(ch)
|
958 |
+
ds *= 2
|
959 |
+
self._feature_size += ch
|
960 |
+
|
961 |
+
self.middle_block = TimestepEmbedSequential(
|
962 |
+
ResBlock(
|
963 |
+
ch,
|
964 |
+
time_embed_dim,
|
965 |
+
dropout,
|
966 |
+
dims=dims,
|
967 |
+
use_checkpoint=use_checkpoint,
|
968 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
969 |
+
),
|
970 |
+
AttentionBlock(
|
971 |
+
ch,
|
972 |
+
use_checkpoint=use_checkpoint,
|
973 |
+
num_heads=num_heads,
|
974 |
+
num_head_channels=num_head_channels,
|
975 |
+
use_new_attention_order=use_new_attention_order,
|
976 |
+
),
|
977 |
+
ResBlock(
|
978 |
+
ch,
|
979 |
+
time_embed_dim,
|
980 |
+
dropout,
|
981 |
+
dims=dims,
|
982 |
+
use_checkpoint=use_checkpoint,
|
983 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
984 |
+
),
|
985 |
+
)
|
986 |
+
self._feature_size += ch
|
987 |
+
self.pool = pool
|
988 |
+
if pool == "adaptive":
|
989 |
+
self.out = nn.Sequential(
|
990 |
+
normalization(ch),
|
991 |
+
nn.SiLU(),
|
992 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
993 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
994 |
+
nn.Flatten(),
|
995 |
+
)
|
996 |
+
elif pool == "attention":
|
997 |
+
assert num_head_channels != -1
|
998 |
+
self.out = nn.Sequential(
|
999 |
+
normalization(ch),
|
1000 |
+
nn.SiLU(),
|
1001 |
+
AttentionPool2d(
|
1002 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
1003 |
+
),
|
1004 |
+
)
|
1005 |
+
elif pool == "spatial":
|
1006 |
+
self.out = nn.Sequential(
|
1007 |
+
nn.Linear(self._feature_size, 2048),
|
1008 |
+
nn.ReLU(),
|
1009 |
+
nn.Linear(2048, self.out_channels),
|
1010 |
+
)
|
1011 |
+
elif pool == "spatial_v2":
|
1012 |
+
self.out = nn.Sequential(
|
1013 |
+
nn.Linear(self._feature_size, 2048),
|
1014 |
+
normalization(2048),
|
1015 |
+
nn.SiLU(),
|
1016 |
+
nn.Linear(2048, self.out_channels),
|
1017 |
+
)
|
1018 |
+
else:
|
1019 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
1020 |
+
|
1021 |
+
def convert_to_fp16(self):
|
1022 |
+
"""
|
1023 |
+
Convert the torso of the model to float16.
|
1024 |
+
"""
|
1025 |
+
self.input_blocks.apply(convert_module_to_f16)
|
1026 |
+
self.middle_block.apply(convert_module_to_f16)
|
1027 |
+
|
1028 |
+
def convert_to_fp32(self):
|
1029 |
+
"""
|
1030 |
+
Convert the torso of the model to float32.
|
1031 |
+
"""
|
1032 |
+
self.input_blocks.apply(convert_module_to_f32)
|
1033 |
+
self.middle_block.apply(convert_module_to_f32)
|
1034 |
+
|
1035 |
+
def forward(self, x, timesteps):
|
1036 |
+
"""
|
1037 |
+
Apply the model to an input batch.
|
1038 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
1039 |
+
:param timesteps: a 1-D batch of timesteps.
|
1040 |
+
:return: an [N x K] Tensor of outputs.
|
1041 |
+
"""
|
1042 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
1043 |
+
|
1044 |
+
results = []
|
1045 |
+
h = x.type(self.dtype)
|
1046 |
+
for module in self.input_blocks:
|
1047 |
+
h = module(h, emb)
|
1048 |
+
if self.pool.startswith("spatial"):
|
1049 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
1050 |
+
h = self.middle_block(h, emb)
|
1051 |
+
if self.pool.startswith("spatial"):
|
1052 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
1053 |
+
h = th.cat(results, axis=-1)
|
1054 |
+
return self.out(h)
|
1055 |
+
else:
|
1056 |
+
h = h.type(x.dtype)
|
1057 |
+
return self.out(h)
|
1058 |
+
|
3DTopia/ldm/modules/diffusionmodules/util.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
from ldm.util import instantiate_from_config
|
19 |
+
|
20 |
+
def force_zero_snr(betas):
|
21 |
+
alphas = 1 - betas
|
22 |
+
alphas_bar = torch.cumprod(alphas, dim=0)
|
23 |
+
alphas_bar_sqrt = alphas_bar ** (1/2)
|
24 |
+
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
25 |
+
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() - 1e-6
|
26 |
+
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
27 |
+
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
28 |
+
alphas_bar = alphas_bar_sqrt ** 2
|
29 |
+
alphas = alphas_bar[1:] / alphas_bar[:-1]
|
30 |
+
alphas = torch.cat([alphas_bar[0:1], alphas], 0)
|
31 |
+
betas = 1 - alphas
|
32 |
+
return betas
|
33 |
+
|
34 |
+
def shift_schedule(base_betas, shift_scale):
|
35 |
+
alphas = 1 - base_betas
|
36 |
+
alphas_bar = torch.cumprod(alphas, dim=0)
|
37 |
+
snr = alphas_bar / (1 - alphas_bar) # snr(1-ab)=ab; snr-snr*ab=ab; snr=(1+snr)ab; ab=snr/(1+snr)
|
38 |
+
shifted_snr = snr * ((1 / shift_scale) ** 2)
|
39 |
+
shifted_alphas_bar = shifted_snr / (1 + shifted_snr)
|
40 |
+
shifted_alphas = shifted_alphas_bar[1:] / shifted_alphas_bar[:-1]
|
41 |
+
shifted_alphas = torch.cat([shifted_alphas_bar[0:1], shifted_alphas], 0)
|
42 |
+
shifted_betas = 1 - shifted_alphas
|
43 |
+
return shifted_betas
|
44 |
+
|
45 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, shift_scale=None):
|
46 |
+
if schedule == "linear":
|
47 |
+
betas = (
|
48 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
49 |
+
)
|
50 |
+
|
51 |
+
elif schedule == "cosine":
|
52 |
+
timesteps = (
|
53 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
54 |
+
)
|
55 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
56 |
+
alphas = torch.cos(alphas).pow(2)
|
57 |
+
alphas = alphas / alphas[0]
|
58 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
59 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
60 |
+
|
61 |
+
elif schedule == "sqrt_linear":
|
62 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
63 |
+
elif schedule == "sqrt":
|
64 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
65 |
+
elif schedule == 'linear_force_zero_snr':
|
66 |
+
betas = (
|
67 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
68 |
+
)
|
69 |
+
betas = force_zero_snr(betas)
|
70 |
+
elif schedule == 'linear_100':
|
71 |
+
betas = (
|
72 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
73 |
+
)
|
74 |
+
betas = betas[:100]
|
75 |
+
else:
|
76 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
77 |
+
|
78 |
+
if shift_scale is not None:
|
79 |
+
betas = shift_schedule(betas, shift_scale)
|
80 |
+
|
81 |
+
return betas.numpy()
|
82 |
+
|
83 |
+
|
84 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
85 |
+
if ddim_discr_method == 'uniform':
|
86 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
87 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
88 |
+
elif ddim_discr_method == 'quad':
|
89 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
90 |
+
else:
|
91 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
92 |
+
|
93 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
94 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
95 |
+
steps_out = ddim_timesteps + 1
|
96 |
+
if verbose:
|
97 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
98 |
+
return steps_out
|
99 |
+
|
100 |
+
|
101 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
102 |
+
# select alphas for computing the variance schedule
|
103 |
+
alphas = alphacums[ddim_timesteps]
|
104 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
105 |
+
|
106 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
107 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
108 |
+
if verbose:
|
109 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
110 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
111 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
112 |
+
return sigmas, alphas, alphas_prev
|
113 |
+
|
114 |
+
|
115 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
116 |
+
"""
|
117 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
118 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
119 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
120 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
121 |
+
produces the cumulative product of (1-beta) up to that
|
122 |
+
part of the diffusion process.
|
123 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
124 |
+
prevent singularities.
|
125 |
+
"""
|
126 |
+
betas = []
|
127 |
+
for i in range(num_diffusion_timesteps):
|
128 |
+
t1 = i / num_diffusion_timesteps
|
129 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
130 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
131 |
+
return np.array(betas)
|
132 |
+
|
133 |
+
|
134 |
+
def extract_into_tensor(a, t, x_shape):
|
135 |
+
b, *_ = t.shape
|
136 |
+
out = a.gather(-1, t)
|
137 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
138 |
+
|
139 |
+
|
140 |
+
def checkpoint(func, inputs, params, flag):
|
141 |
+
"""
|
142 |
+
Evaluate a function without caching intermediate activations, allowing for
|
143 |
+
reduced memory at the expense of extra compute in the backward pass.
|
144 |
+
:param func: the function to evaluate.
|
145 |
+
:param inputs: the argument sequence to pass to `func`.
|
146 |
+
:param params: a sequence of parameters `func` depends on but does not
|
147 |
+
explicitly take as arguments.
|
148 |
+
:param flag: if False, disable gradient checkpointing.
|
149 |
+
"""
|
150 |
+
if flag:
|
151 |
+
args = tuple(inputs) + tuple(params)
|
152 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
153 |
+
else:
|
154 |
+
return func(*inputs)
|
155 |
+
|
156 |
+
|
157 |
+
class CheckpointFunction(torch.autograd.Function):
|
158 |
+
@staticmethod
|
159 |
+
def forward(ctx, run_function, length, *args):
|
160 |
+
ctx.run_function = run_function
|
161 |
+
ctx.input_tensors = list(args[:length])
|
162 |
+
ctx.input_params = list(args[length:])
|
163 |
+
|
164 |
+
with torch.no_grad():
|
165 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
166 |
+
return output_tensors
|
167 |
+
|
168 |
+
@staticmethod
|
169 |
+
def backward(ctx, *output_grads):
|
170 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
171 |
+
with torch.enable_grad():
|
172 |
+
# Fixes a bug where the first op in run_function modifies the
|
173 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
174 |
+
# Tensors.
|
175 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
176 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
177 |
+
input_grads = torch.autograd.grad(
|
178 |
+
output_tensors,
|
179 |
+
ctx.input_tensors + ctx.input_params,
|
180 |
+
output_grads,
|
181 |
+
allow_unused=True,
|
182 |
+
)
|
183 |
+
del ctx.input_tensors
|
184 |
+
del ctx.input_params
|
185 |
+
del output_tensors
|
186 |
+
return (None, None) + input_grads
|
187 |
+
|
188 |
+
|
189 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
190 |
+
"""
|
191 |
+
Create sinusoidal timestep embeddings.
|
192 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
193 |
+
These may be fractional.
|
194 |
+
:param dim: the dimension of the output.
|
195 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
196 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
197 |
+
"""
|
198 |
+
if not repeat_only:
|
199 |
+
half = dim // 2
|
200 |
+
freqs = torch.exp(
|
201 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
202 |
+
).to(device=timesteps.device)
|
203 |
+
args = timesteps[:, None].float() * freqs[None]
|
204 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
205 |
+
if dim % 2:
|
206 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
207 |
+
else:
|
208 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
209 |
+
return embedding
|
210 |
+
|
211 |
+
|
212 |
+
def zero_module(module):
|
213 |
+
"""
|
214 |
+
Zero out the parameters of a module and return it.
|
215 |
+
"""
|
216 |
+
for p in module.parameters():
|
217 |
+
p.detach().zero_()
|
218 |
+
return module
|
219 |
+
|
220 |
+
|
221 |
+
def scale_module(module, scale):
|
222 |
+
"""
|
223 |
+
Scale the parameters of a module and return it.
|
224 |
+
"""
|
225 |
+
for p in module.parameters():
|
226 |
+
p.detach().mul_(scale)
|
227 |
+
return module
|
228 |
+
|
229 |
+
|
230 |
+
def mean_flat(tensor):
|
231 |
+
"""
|
232 |
+
Take the mean over all non-batch dimensions.
|
233 |
+
"""
|
234 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
235 |
+
|
236 |
+
|
237 |
+
def normalization(channels):
|
238 |
+
"""
|
239 |
+
Make a standard normalization layer.
|
240 |
+
:param channels: number of input channels.
|
241 |
+
:return: an nn.Module for normalization.
|
242 |
+
"""
|
243 |
+
return GroupNorm32(32, channels)
|
244 |
+
|
245 |
+
|
246 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
247 |
+
class SiLU(nn.Module):
|
248 |
+
def forward(self, x):
|
249 |
+
return x * torch.sigmoid(x)
|
250 |
+
|
251 |
+
|
252 |
+
class GroupNorm32(nn.GroupNorm):
|
253 |
+
def forward(self, x):
|
254 |
+
return super().forward(x.float()).type(x.dtype)
|
255 |
+
|
256 |
+
def conv_nd(dims, *args, **kwargs):
|
257 |
+
"""
|
258 |
+
Create a 1D, 2D, or 3D convolution module.
|
259 |
+
"""
|
260 |
+
if dims == 1:
|
261 |
+
return nn.Conv1d(*args, **kwargs)
|
262 |
+
elif dims == 2:
|
263 |
+
return nn.Conv2d(*args, **kwargs)
|
264 |
+
elif dims == 3:
|
265 |
+
return nn.Conv3d(*args, **kwargs)
|
266 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
267 |
+
|
268 |
+
|
269 |
+
def linear(*args, **kwargs):
|
270 |
+
"""
|
271 |
+
Create a linear module.
|
272 |
+
"""
|
273 |
+
return nn.Linear(*args, **kwargs)
|
274 |
+
|
275 |
+
|
276 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
277 |
+
"""
|
278 |
+
Create a 1D, 2D, or 3D average pooling module.
|
279 |
+
"""
|
280 |
+
if dims == 1:
|
281 |
+
return nn.AvgPool1d(*args, **kwargs)
|
282 |
+
elif dims == 2:
|
283 |
+
return nn.AvgPool2d(*args, **kwargs)
|
284 |
+
elif dims == 3:
|
285 |
+
return nn.AvgPool3d(*args, **kwargs)
|
286 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
287 |
+
|
288 |
+
|
289 |
+
class HybridConditioner(nn.Module):
|
290 |
+
|
291 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
292 |
+
super().__init__()
|
293 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
294 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
295 |
+
|
296 |
+
def forward(self, c_concat, c_crossattn):
|
297 |
+
c_concat = self.concat_conditioner(c_concat)
|
298 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
299 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
300 |
+
|
301 |
+
|
302 |
+
def noise_like(shape, device, repeat=False):
|
303 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
304 |
+
noise = lambda: torch.randn(shape, device=device)
|
305 |
+
return repeat_noise() if repeat else noise()
|
3DTopia/ldm/modules/distributions/__init__.py
ADDED
File without changes
|
3DTopia/ldm/modules/distributions/distributions.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractDistribution:
|
6 |
+
def sample(self):
|
7 |
+
raise NotImplementedError()
|
8 |
+
|
9 |
+
def mode(self):
|
10 |
+
raise NotImplementedError()
|
11 |
+
|
12 |
+
|
13 |
+
class DiracDistribution(AbstractDistribution):
|
14 |
+
def __init__(self, value):
|
15 |
+
self.value = value
|
16 |
+
|
17 |
+
def sample(self):
|
18 |
+
return self.value
|
19 |
+
|
20 |
+
def mode(self):
|
21 |
+
return self.value
|
22 |
+
|
23 |
+
|
24 |
+
class DiagonalGaussianDistribution(object):
|
25 |
+
def __init__(self, parameters, deterministic=False):
|
26 |
+
self.parameters = parameters
|
27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
+
self.deterministic = deterministic
|
30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
31 |
+
self.var = torch.exp(self.logvar)
|
32 |
+
if self.deterministic:
|
33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
+
|
35 |
+
def sample(self):
|
36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
+
return x
|
38 |
+
|
39 |
+
def kl(self, other=None):
|
40 |
+
if self.deterministic:
|
41 |
+
return torch.Tensor([0.])
|
42 |
+
else:
|
43 |
+
if other is None:
|
44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
+
+ self.var - 1.0 - self.logvar,
|
46 |
+
dim=[1, 2, 3])
|
47 |
+
else:
|
48 |
+
return 0.5 * torch.sum(
|
49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
+
dim=[1, 2, 3])
|
52 |
+
|
53 |
+
def nll(self, sample, dims=[1,2,3]):
|
54 |
+
if self.deterministic:
|
55 |
+
return torch.Tensor([0.])
|
56 |
+
logtwopi = np.log(2.0 * np.pi)
|
57 |
+
return 0.5 * torch.sum(
|
58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
+
dim=dims)
|
60 |
+
|
61 |
+
def mode(self):
|
62 |
+
return self.mean
|
63 |
+
|
64 |
+
|
65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
+
"""
|
67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
+
Compute the KL divergence between two gaussians.
|
69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
+
scalars, among other use cases.
|
71 |
+
"""
|
72 |
+
tensor = None
|
73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
+
if isinstance(obj, torch.Tensor):
|
75 |
+
tensor = obj
|
76 |
+
break
|
77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
+
|
79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
+
# Tensors, but it does not work for torch.exp().
|
81 |
+
logvar1, logvar2 = [
|
82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
+
for x in (logvar1, logvar2)
|
84 |
+
]
|
85 |
+
|
86 |
+
return 0.5 * (
|
87 |
+
-1.0
|
88 |
+
+ logvar2
|
89 |
+
- logvar1
|
90 |
+
+ torch.exp(logvar1 - logvar2)
|
91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
+
)
|
3DTopia/ldm/modules/ema.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class LitEma(nn.Module):
|
6 |
+
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
+
super().__init__()
|
8 |
+
if decay < 0.0 or decay > 1.0:
|
9 |
+
raise ValueError('Decay must be between 0 and 1')
|
10 |
+
|
11 |
+
self.m_name2s_name = {}
|
12 |
+
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
+
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
+
else torch.tensor(-1,dtype=torch.int))
|
15 |
+
|
16 |
+
for name, p in model.named_parameters():
|
17 |
+
if p.requires_grad:
|
18 |
+
#remove as '.'-character is not allowed in buffers
|
19 |
+
s_name = name.replace('.','')
|
20 |
+
self.m_name2s_name.update({name:s_name})
|
21 |
+
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
+
|
23 |
+
self.collected_params = []
|
24 |
+
|
25 |
+
def forward(self,model):
|
26 |
+
decay = self.decay
|
27 |
+
|
28 |
+
if self.num_updates >= 0:
|
29 |
+
self.num_updates += 1
|
30 |
+
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
+
|
32 |
+
one_minus_decay = 1.0 - decay
|
33 |
+
|
34 |
+
with torch.no_grad():
|
35 |
+
m_param = dict(model.named_parameters())
|
36 |
+
shadow_params = dict(self.named_buffers())
|
37 |
+
|
38 |
+
for key in m_param:
|
39 |
+
if m_param[key].requires_grad:
|
40 |
+
sname = self.m_name2s_name[key]
|
41 |
+
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
+
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
+
else:
|
44 |
+
assert not key in self.m_name2s_name
|
45 |
+
|
46 |
+
def copy_to(self, model):
|
47 |
+
m_param = dict(model.named_parameters())
|
48 |
+
shadow_params = dict(self.named_buffers())
|
49 |
+
for key in m_param:
|
50 |
+
if m_param[key].requires_grad:
|
51 |
+
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
+
else:
|
53 |
+
assert not key in self.m_name2s_name
|
54 |
+
|
55 |
+
def store(self, parameters):
|
56 |
+
"""
|
57 |
+
Save the current parameters for restoring later.
|
58 |
+
Args:
|
59 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
+
temporarily stored.
|
61 |
+
"""
|
62 |
+
self.collected_params = [param.clone() for param in parameters]
|
63 |
+
|
64 |
+
def restore(self, parameters):
|
65 |
+
"""
|
66 |
+
Restore the parameters stored with the `store` method.
|
67 |
+
Useful to validate the model with EMA parameters without affecting the
|
68 |
+
original optimization process. Store the parameters before the
|
69 |
+
`copy_to` method. After validation (or model saving), use this to
|
70 |
+
restore the former parameters.
|
71 |
+
Args:
|
72 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
+
updated with the stored parameters.
|
74 |
+
"""
|
75 |
+
for c_param, param in zip(self.collected_params, parameters):
|
76 |
+
param.data.copy_(c_param.data)
|
3DTopia/ldm/modules/encoders/__init__.py
ADDED
File without changes
|
3DTopia/ldm/modules/encoders/modules.py
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
import clip
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
7 |
+
import kornia
|
8 |
+
|
9 |
+
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
10 |
+
|
11 |
+
|
12 |
+
class AbstractEncoder(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
def encode(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
class ClassEmbedder(nn.Module):
|
22 |
+
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
23 |
+
super().__init__()
|
24 |
+
self.key = key
|
25 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
26 |
+
|
27 |
+
def forward(self, batch, key=None):
|
28 |
+
if key is None:
|
29 |
+
key = self.key
|
30 |
+
# this is for use in crossattn
|
31 |
+
c = batch[key][:, None]
|
32 |
+
c = self.embedding(c)
|
33 |
+
return c
|
34 |
+
|
35 |
+
|
36 |
+
class TransformerEmbedder(AbstractEncoder):
|
37 |
+
"""Some transformer encoder layers"""
|
38 |
+
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
39 |
+
super().__init__()
|
40 |
+
self.device = device
|
41 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
42 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
43 |
+
|
44 |
+
def forward(self, tokens):
|
45 |
+
tokens = tokens.to(self.device) # meh
|
46 |
+
z = self.transformer(tokens, return_embeddings=True)
|
47 |
+
return z
|
48 |
+
|
49 |
+
def encode(self, x):
|
50 |
+
return self(x)
|
51 |
+
|
52 |
+
|
53 |
+
class BERTTokenizer(AbstractEncoder):
|
54 |
+
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
55 |
+
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
56 |
+
super().__init__()
|
57 |
+
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
58 |
+
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
59 |
+
self.device = device
|
60 |
+
self.vq_interface = vq_interface
|
61 |
+
self.max_length = max_length
|
62 |
+
|
63 |
+
def forward(self, text):
|
64 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
65 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
66 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
67 |
+
return tokens
|
68 |
+
|
69 |
+
@torch.no_grad()
|
70 |
+
def encode(self, text):
|
71 |
+
tokens = self(text)
|
72 |
+
if not self.vq_interface:
|
73 |
+
return tokens
|
74 |
+
return None, None, [None, None, tokens]
|
75 |
+
|
76 |
+
def decode(self, text):
|
77 |
+
return text
|
78 |
+
|
79 |
+
|
80 |
+
class BERTEmbedder(AbstractEncoder):
|
81 |
+
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
82 |
+
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
83 |
+
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
84 |
+
super().__init__()
|
85 |
+
self.use_tknz_fn = use_tokenizer
|
86 |
+
if self.use_tknz_fn:
|
87 |
+
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
88 |
+
self.device = device
|
89 |
+
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
90 |
+
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
91 |
+
emb_dropout=embedding_dropout)
|
92 |
+
|
93 |
+
def forward(self, text):
|
94 |
+
if self.use_tknz_fn:
|
95 |
+
tokens = self.tknz_fn(text)#.to(self.device)
|
96 |
+
else:
|
97 |
+
tokens = text
|
98 |
+
z = self.transformer(tokens, return_embeddings=True)
|
99 |
+
return z
|
100 |
+
|
101 |
+
def encode(self, text):
|
102 |
+
# output of length 77
|
103 |
+
return self(text)
|
104 |
+
|
105 |
+
|
106 |
+
class SpatialRescaler(nn.Module):
|
107 |
+
def __init__(self,
|
108 |
+
n_stages=1,
|
109 |
+
method='bilinear',
|
110 |
+
multiplier=0.5,
|
111 |
+
in_channels=3,
|
112 |
+
out_channels=None,
|
113 |
+
bias=False):
|
114 |
+
super().__init__()
|
115 |
+
self.n_stages = n_stages
|
116 |
+
assert self.n_stages >= 0
|
117 |
+
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
118 |
+
self.multiplier = multiplier
|
119 |
+
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
120 |
+
self.remap_output = out_channels is not None
|
121 |
+
if self.remap_output:
|
122 |
+
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
123 |
+
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
124 |
+
|
125 |
+
def forward(self,x):
|
126 |
+
for stage in range(self.n_stages):
|
127 |
+
x = self.interpolator(x, scale_factor=self.multiplier)
|
128 |
+
|
129 |
+
|
130 |
+
if self.remap_output:
|
131 |
+
x = self.channel_mapper(x)
|
132 |
+
return x
|
133 |
+
|
134 |
+
def encode(self, x):
|
135 |
+
return self(x)
|
136 |
+
|
137 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
138 |
+
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
139 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
|
140 |
+
super().__init__()
|
141 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
142 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
143 |
+
self.device = device
|
144 |
+
self.max_length = max_length
|
145 |
+
self.freeze()
|
146 |
+
|
147 |
+
def freeze(self):
|
148 |
+
self.transformer = self.transformer.eval()
|
149 |
+
for param in self.parameters():
|
150 |
+
param.requires_grad = False
|
151 |
+
|
152 |
+
def forward(self, text):
|
153 |
+
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
154 |
+
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
155 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
156 |
+
outputs = self.transformer(input_ids=tokens)
|
157 |
+
|
158 |
+
z = outputs.last_hidden_state
|
159 |
+
return z
|
160 |
+
|
161 |
+
def encode(self, text):
|
162 |
+
return self(text)
|
163 |
+
|
164 |
+
import hashlib
|
165 |
+
import os
|
166 |
+
import urllib
|
167 |
+
import warnings
|
168 |
+
from typing import Any, Union, List
|
169 |
+
from pkg_resources import packaging
|
170 |
+
|
171 |
+
import torch
|
172 |
+
from PIL import Image
|
173 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
174 |
+
from tqdm import tqdm
|
175 |
+
|
176 |
+
from clip.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
177 |
+
|
178 |
+
try:
|
179 |
+
from torchvision.transforms import InterpolationMode
|
180 |
+
BICUBIC = InterpolationMode.BICUBIC
|
181 |
+
except ImportError:
|
182 |
+
BICUBIC = Image.BICUBIC
|
183 |
+
|
184 |
+
|
185 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
186 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
187 |
+
|
188 |
+
|
189 |
+
__all__ = ["available_models", "load", "tokenize"]
|
190 |
+
_tokenizer = _Tokenizer()
|
191 |
+
|
192 |
+
def tokenize_with_truncation(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
193 |
+
"""
|
194 |
+
Returns the tokenized representation of given input string(s)
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
texts : Union[str, List[str]]
|
199 |
+
An input string or a list of input strings to tokenize
|
200 |
+
|
201 |
+
context_length : int
|
202 |
+
The context length to use; all CLIP models use 77 as the context length
|
203 |
+
|
204 |
+
truncate: bool
|
205 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
206 |
+
|
207 |
+
Returns
|
208 |
+
-------
|
209 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
210 |
+
"""
|
211 |
+
if isinstance(texts, str):
|
212 |
+
texts = [texts]
|
213 |
+
|
214 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
215 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
216 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
217 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
218 |
+
|
219 |
+
for i, tokens in enumerate(all_tokens):
|
220 |
+
if len(tokens) > context_length:
|
221 |
+
if truncate:
|
222 |
+
tokens = tokens[:context_length]
|
223 |
+
tokens[-1] = eot_token
|
224 |
+
else:
|
225 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
226 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
227 |
+
|
228 |
+
return result
|
229 |
+
|
230 |
+
class FrozenCLIPTextEmbedder(nn.Module):
|
231 |
+
"""
|
232 |
+
Uses the CLIP transformer encoder for text.
|
233 |
+
"""
|
234 |
+
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
|
235 |
+
super().__init__()
|
236 |
+
self.model, _ = clip.load(version, jit=False, device="cpu")
|
237 |
+
self.device = device
|
238 |
+
self.max_length = max_length
|
239 |
+
self.n_repeat = n_repeat
|
240 |
+
self.normalize = normalize
|
241 |
+
|
242 |
+
def freeze(self):
|
243 |
+
self.model = self.model.eval()
|
244 |
+
for param in self.parameters():
|
245 |
+
param.requires_grad = False
|
246 |
+
|
247 |
+
def forward(self, text):
|
248 |
+
# tokens = clip.tokenize(text).to(self.device)
|
249 |
+
tokens = tokenize_with_truncation(text, truncate=True).to(self.device)
|
250 |
+
z = self.model.encode_text(tokens)
|
251 |
+
if self.normalize:
|
252 |
+
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
253 |
+
return z
|
254 |
+
|
255 |
+
def encode(self, text):
|
256 |
+
z = self(text)
|
257 |
+
if z.ndim==2:
|
258 |
+
z = z[:, None, :]
|
259 |
+
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
|
260 |
+
return z
|
261 |
+
|
262 |
+
|
263 |
+
class FrozenClipImageEmbedder(nn.Module):
|
264 |
+
"""
|
265 |
+
Uses the CLIP image encoder.
|
266 |
+
"""
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
model='ViT-L/14',
|
270 |
+
jit=False,
|
271 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
272 |
+
antialias=False,
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
# self.model, _ = clip.load(name=model, device=device, jit=jit)
|
276 |
+
self.model, _ = clip.load(name=model, device=device)
|
277 |
+
|
278 |
+
self.antialias = antialias
|
279 |
+
|
280 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
281 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
282 |
+
|
283 |
+
def preprocess(self, x):
|
284 |
+
# normalize to [0,1]
|
285 |
+
x = kornia.geometry.resize(x, (224, 224),
|
286 |
+
interpolation='bicubic',align_corners=True,
|
287 |
+
antialias=self.antialias)
|
288 |
+
# x = (x + 1.) / 2.
|
289 |
+
# renormalize according to clip
|
290 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
291 |
+
|
292 |
+
return x
|
293 |
+
|
294 |
+
def forward(self, x):
|
295 |
+
# x is assumed to be in range [-1,1]
|
296 |
+
z = self.model.encode_image(self.preprocess(x))
|
297 |
+
if z.ndim==2:
|
298 |
+
z = z[:, None, :]
|
299 |
+
return z
|
300 |
+
|
301 |
+
|
302 |
+
############### OPENCLIP #################
|
303 |
+
import open_clip
|
304 |
+
|
305 |
+
class OpenClipTextEmbedder(nn.Module):
|
306 |
+
def __init__(
|
307 |
+
self,
|
308 |
+
model='ViT-bigG-14',
|
309 |
+
pretrained='laion2b_s39b_b160k',
|
310 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
311 |
+
normalize=True,):
|
312 |
+
super().__init__()
|
313 |
+
self.model, _, _ = open_clip.create_model_and_transforms(model, pretrained=pretrained, device='cpu')
|
314 |
+
self.tokenizer = open_clip.get_tokenizer(model)
|
315 |
+
self.normalize = normalize
|
316 |
+
self.device = device
|
317 |
+
|
318 |
+
def freeze(self):
|
319 |
+
self.model = self.model.eval()
|
320 |
+
for param in self.parameters():
|
321 |
+
param.requires_grad = False
|
322 |
+
|
323 |
+
def forward(self, text):
|
324 |
+
tok_text = self.tokenizer(text).to(self.device)
|
325 |
+
z = self.model.encode_text(tok_text)
|
326 |
+
if self.normalize:
|
327 |
+
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
|
328 |
+
return z
|
329 |
+
|
330 |
+
def encode(self, text):
|
331 |
+
z = self(text)
|
332 |
+
if z.ndim==2:
|
333 |
+
z = z[:, None, :]
|
334 |
+
z = repeat(z, 'b 1 d -> b k d', k=1)
|
335 |
+
return z
|
336 |
+
|
337 |
+
class OpenClipImageEmbedder(nn.Module):
|
338 |
+
def __init__(
|
339 |
+
self,
|
340 |
+
model='ViT-bigG-14',
|
341 |
+
pretrained='laion2b_s39b_b160k',
|
342 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
343 |
+
):
|
344 |
+
super().__init__()
|
345 |
+
self.model, _, _ = open_clip.create_model_and_transforms(model, pretrained=pretrained, device=device)
|
346 |
+
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
347 |
+
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
348 |
+
|
349 |
+
def preprocess(self, x):
|
350 |
+
x = kornia.geometry.resize(x, (224, 224),
|
351 |
+
interpolation='bicubic',align_corners=True,
|
352 |
+
antialias=self.antialias)
|
353 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
354 |
+
return x
|
355 |
+
|
356 |
+
def forward(self, x):
|
357 |
+
z = self.model.encode_image(self.preprocess(x))
|
358 |
+
if z.ndim==2:
|
359 |
+
z = z[:, None, :]
|
360 |
+
return z
|
361 |
+
|
362 |
+
class DinoV2(nn.Module):
|
363 |
+
def __init__(self, model='dinov2_vitb14', ckpt='dino_ckpt/dinov2_vitb14_pretrain.pth'):
|
364 |
+
super().__init__()
|
365 |
+
# device='cuda' if torch.cuda.is_available() else 'cpu'
|
366 |
+
# self.model = torch.hub.load('facebookresearch/dinov2', model)
|
367 |
+
self.model = torch.hub.load('dinov2', model, source='local', pretrained=False)
|
368 |
+
self.model.load_state_dict(torch.load(ckpt))
|
369 |
+
# self.model = self.model.to(device)
|
370 |
+
self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]), persistent=False)
|
371 |
+
self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]), persistent=False)
|
372 |
+
|
373 |
+
def preprocess(self, x):
|
374 |
+
x = kornia.geometry.resize(x, (224, 224),
|
375 |
+
interpolation='bicubic',align_corners=True,
|
376 |
+
antialias=False)
|
377 |
+
x = kornia.enhance.normalize(x, self.mean, self.std)
|
378 |
+
return x
|
379 |
+
|
380 |
+
def forward(self, x):
|
381 |
+
return self.model.forward_features(self.preprocess(x))['x_norm_patchtokens']
|
382 |
+
|
383 |
+
if __name__ == "__main__":
|
384 |
+
from ldm.util import count_params
|
385 |
+
model = FrozenCLIPEmbedder()
|
386 |
+
count_params(model, verbose=True)
|
3DTopia/ldm/modules/image_degradation/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
2 |
+
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
3DTopia/ldm/modules/image_degradation/bsrgan.py
ADDED
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
# --------------------------------------------
|
4 |
+
# Super-Resolution
|
5 |
+
# --------------------------------------------
|
6 |
+
#
|
7 |
+
# Kai Zhang (cskaizhang@gmail.com)
|
8 |
+
# https://github.com/cszn
|
9 |
+
# From 2019/03--2021/08
|
10 |
+
# --------------------------------------------
|
11 |
+
"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from functools import partial
|
18 |
+
import random
|
19 |
+
from scipy import ndimage
|
20 |
+
import scipy
|
21 |
+
import scipy.stats as ss
|
22 |
+
from scipy.interpolate import interp2d
|
23 |
+
from scipy.linalg import orth
|
24 |
+
import albumentations
|
25 |
+
|
26 |
+
import ldm.modules.image_degradation.utils_image as util
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
if random.random() < 0.5:
|
329 |
+
l1 = wd2 * random.random()
|
330 |
+
l2 = wd2 * random.random()
|
331 |
+
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
332 |
+
else:
|
333 |
+
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
334 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
335 |
+
|
336 |
+
return img
|
337 |
+
|
338 |
+
|
339 |
+
def add_resize(img, sf=4):
|
340 |
+
rnum = np.random.rand()
|
341 |
+
if rnum > 0.8: # up
|
342 |
+
sf1 = random.uniform(1, 2)
|
343 |
+
elif rnum < 0.7: # down
|
344 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
345 |
+
else:
|
346 |
+
sf1 = 1.0
|
347 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
348 |
+
img = np.clip(img, 0.0, 1.0)
|
349 |
+
|
350 |
+
return img
|
351 |
+
|
352 |
+
|
353 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
354 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
355 |
+
# rnum = np.random.rand()
|
356 |
+
# if rnum > 0.6: # add color Gaussian noise
|
357 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
358 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
359 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
360 |
+
# else: # add noise
|
361 |
+
# L = noise_level2 / 255.
|
362 |
+
# D = np.diag(np.random.rand(3))
|
363 |
+
# U = orth(np.random.rand(3, 3))
|
364 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
365 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
366 |
+
# img = np.clip(img, 0.0, 1.0)
|
367 |
+
# return img
|
368 |
+
|
369 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
370 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
371 |
+
rnum = np.random.rand()
|
372 |
+
if rnum > 0.6: # add color Gaussian noise
|
373 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
374 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
375 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
376 |
+
else: # add noise
|
377 |
+
L = noise_level2 / 255.
|
378 |
+
D = np.diag(np.random.rand(3))
|
379 |
+
U = orth(np.random.rand(3, 3))
|
380 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
381 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
382 |
+
img = np.clip(img, 0.0, 1.0)
|
383 |
+
return img
|
384 |
+
|
385 |
+
|
386 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
387 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
388 |
+
img = np.clip(img, 0.0, 1.0)
|
389 |
+
rnum = random.random()
|
390 |
+
if rnum > 0.6:
|
391 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
392 |
+
elif rnum < 0.4:
|
393 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
394 |
+
else:
|
395 |
+
L = noise_level2 / 255.
|
396 |
+
D = np.diag(np.random.rand(3))
|
397 |
+
U = orth(np.random.rand(3, 3))
|
398 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
399 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
400 |
+
img = np.clip(img, 0.0, 1.0)
|
401 |
+
return img
|
402 |
+
|
403 |
+
|
404 |
+
def add_Poisson_noise(img):
|
405 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
406 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
407 |
+
if random.random() < 0.5:
|
408 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
409 |
+
else:
|
410 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
411 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
412 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
413 |
+
img += noise_gray[:, :, np.newaxis]
|
414 |
+
img = np.clip(img, 0.0, 1.0)
|
415 |
+
return img
|
416 |
+
|
417 |
+
|
418 |
+
def add_JPEG_noise(img):
|
419 |
+
quality_factor = random.randint(30, 95)
|
420 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
421 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
422 |
+
img = cv2.imdecode(encimg, 1)
|
423 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
424 |
+
return img
|
425 |
+
|
426 |
+
|
427 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
428 |
+
h, w = lq.shape[:2]
|
429 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
430 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
431 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
432 |
+
|
433 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
434 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
435 |
+
return lq, hq
|
436 |
+
|
437 |
+
|
438 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
439 |
+
"""
|
440 |
+
This is the degradation model of BSRGAN from the paper
|
441 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
442 |
+
----------
|
443 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
444 |
+
sf: scale factor
|
445 |
+
isp_model: camera ISP model
|
446 |
+
Returns
|
447 |
+
-------
|
448 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
449 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
450 |
+
"""
|
451 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
452 |
+
sf_ori = sf
|
453 |
+
|
454 |
+
h1, w1 = img.shape[:2]
|
455 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
456 |
+
h, w = img.shape[:2]
|
457 |
+
|
458 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
459 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
460 |
+
|
461 |
+
hq = img.copy()
|
462 |
+
|
463 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
464 |
+
if np.random.rand() < 0.5:
|
465 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
466 |
+
interpolation=random.choice([1, 2, 3]))
|
467 |
+
else:
|
468 |
+
img = util.imresize_np(img, 1 / 2, True)
|
469 |
+
img = np.clip(img, 0.0, 1.0)
|
470 |
+
sf = 2
|
471 |
+
|
472 |
+
shuffle_order = random.sample(range(7), 7)
|
473 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
474 |
+
if idx1 > idx2: # keep downsample3 last
|
475 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
476 |
+
|
477 |
+
for i in shuffle_order:
|
478 |
+
|
479 |
+
if i == 0:
|
480 |
+
img = add_blur(img, sf=sf)
|
481 |
+
|
482 |
+
elif i == 1:
|
483 |
+
img = add_blur(img, sf=sf)
|
484 |
+
|
485 |
+
elif i == 2:
|
486 |
+
a, b = img.shape[1], img.shape[0]
|
487 |
+
# downsample2
|
488 |
+
if random.random() < 0.75:
|
489 |
+
sf1 = random.uniform(1, 2 * sf)
|
490 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
491 |
+
interpolation=random.choice([1, 2, 3]))
|
492 |
+
else:
|
493 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
494 |
+
k_shifted = shift_pixel(k, sf)
|
495 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
496 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
497 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
498 |
+
img = np.clip(img, 0.0, 1.0)
|
499 |
+
|
500 |
+
elif i == 3:
|
501 |
+
# downsample3
|
502 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
503 |
+
img = np.clip(img, 0.0, 1.0)
|
504 |
+
|
505 |
+
elif i == 4:
|
506 |
+
# add Gaussian noise
|
507 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
508 |
+
|
509 |
+
elif i == 5:
|
510 |
+
# add JPEG noise
|
511 |
+
if random.random() < jpeg_prob:
|
512 |
+
img = add_JPEG_noise(img)
|
513 |
+
|
514 |
+
elif i == 6:
|
515 |
+
# add processed camera sensor noise
|
516 |
+
if random.random() < isp_prob and isp_model is not None:
|
517 |
+
with torch.no_grad():
|
518 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
519 |
+
|
520 |
+
# add final JPEG compression noise
|
521 |
+
img = add_JPEG_noise(img)
|
522 |
+
|
523 |
+
# random crop
|
524 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
525 |
+
|
526 |
+
return img, hq
|
527 |
+
|
528 |
+
|
529 |
+
# todo no isp_model?
|
530 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
531 |
+
"""
|
532 |
+
This is the degradation model of BSRGAN from the paper
|
533 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
534 |
+
----------
|
535 |
+
sf: scale factor
|
536 |
+
isp_model: camera ISP model
|
537 |
+
Returns
|
538 |
+
-------
|
539 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
540 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
541 |
+
"""
|
542 |
+
image = util.uint2single(image)
|
543 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
544 |
+
sf_ori = sf
|
545 |
+
|
546 |
+
h1, w1 = image.shape[:2]
|
547 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
548 |
+
h, w = image.shape[:2]
|
549 |
+
|
550 |
+
hq = image.copy()
|
551 |
+
|
552 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
553 |
+
if np.random.rand() < 0.5:
|
554 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
555 |
+
interpolation=random.choice([1, 2, 3]))
|
556 |
+
else:
|
557 |
+
image = util.imresize_np(image, 1 / 2, True)
|
558 |
+
image = np.clip(image, 0.0, 1.0)
|
559 |
+
sf = 2
|
560 |
+
|
561 |
+
shuffle_order = random.sample(range(7), 7)
|
562 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
563 |
+
if idx1 > idx2: # keep downsample3 last
|
564 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
565 |
+
|
566 |
+
for i in shuffle_order:
|
567 |
+
|
568 |
+
if i == 0:
|
569 |
+
image = add_blur(image, sf=sf)
|
570 |
+
|
571 |
+
elif i == 1:
|
572 |
+
image = add_blur(image, sf=sf)
|
573 |
+
|
574 |
+
elif i == 2:
|
575 |
+
a, b = image.shape[1], image.shape[0]
|
576 |
+
# downsample2
|
577 |
+
if random.random() < 0.75:
|
578 |
+
sf1 = random.uniform(1, 2 * sf)
|
579 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
580 |
+
interpolation=random.choice([1, 2, 3]))
|
581 |
+
else:
|
582 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
583 |
+
k_shifted = shift_pixel(k, sf)
|
584 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
585 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
586 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
587 |
+
image = np.clip(image, 0.0, 1.0)
|
588 |
+
|
589 |
+
elif i == 3:
|
590 |
+
# downsample3
|
591 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
592 |
+
image = np.clip(image, 0.0, 1.0)
|
593 |
+
|
594 |
+
elif i == 4:
|
595 |
+
# add Gaussian noise
|
596 |
+
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
597 |
+
|
598 |
+
elif i == 5:
|
599 |
+
# add JPEG noise
|
600 |
+
if random.random() < jpeg_prob:
|
601 |
+
image = add_JPEG_noise(image)
|
602 |
+
|
603 |
+
# elif i == 6:
|
604 |
+
# # add processed camera sensor noise
|
605 |
+
# if random.random() < isp_prob and isp_model is not None:
|
606 |
+
# with torch.no_grad():
|
607 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
608 |
+
|
609 |
+
# add final JPEG compression noise
|
610 |
+
image = add_JPEG_noise(image)
|
611 |
+
image = util.single2uint(image)
|
612 |
+
example = {"image":image}
|
613 |
+
return example
|
614 |
+
|
615 |
+
|
616 |
+
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
617 |
+
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
618 |
+
"""
|
619 |
+
This is an extended degradation model by combining
|
620 |
+
the degradation models of BSRGAN and Real-ESRGAN
|
621 |
+
----------
|
622 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
623 |
+
sf: scale factor
|
624 |
+
use_shuffle: the degradation shuffle
|
625 |
+
use_sharp: sharpening the img
|
626 |
+
Returns
|
627 |
+
-------
|
628 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
629 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
630 |
+
"""
|
631 |
+
|
632 |
+
h1, w1 = img.shape[:2]
|
633 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
634 |
+
h, w = img.shape[:2]
|
635 |
+
|
636 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
637 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
638 |
+
|
639 |
+
if use_sharp:
|
640 |
+
img = add_sharpening(img)
|
641 |
+
hq = img.copy()
|
642 |
+
|
643 |
+
if random.random() < shuffle_prob:
|
644 |
+
shuffle_order = random.sample(range(13), 13)
|
645 |
+
else:
|
646 |
+
shuffle_order = list(range(13))
|
647 |
+
# local shuffle for noise, JPEG is always the last one
|
648 |
+
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
649 |
+
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
650 |
+
|
651 |
+
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
652 |
+
|
653 |
+
for i in shuffle_order:
|
654 |
+
if i == 0:
|
655 |
+
img = add_blur(img, sf=sf)
|
656 |
+
elif i == 1:
|
657 |
+
img = add_resize(img, sf=sf)
|
658 |
+
elif i == 2:
|
659 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
660 |
+
elif i == 3:
|
661 |
+
if random.random() < poisson_prob:
|
662 |
+
img = add_Poisson_noise(img)
|
663 |
+
elif i == 4:
|
664 |
+
if random.random() < speckle_prob:
|
665 |
+
img = add_speckle_noise(img)
|
666 |
+
elif i == 5:
|
667 |
+
if random.random() < isp_prob and isp_model is not None:
|
668 |
+
with torch.no_grad():
|
669 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
670 |
+
elif i == 6:
|
671 |
+
img = add_JPEG_noise(img)
|
672 |
+
elif i == 7:
|
673 |
+
img = add_blur(img, sf=sf)
|
674 |
+
elif i == 8:
|
675 |
+
img = add_resize(img, sf=sf)
|
676 |
+
elif i == 9:
|
677 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
678 |
+
elif i == 10:
|
679 |
+
if random.random() < poisson_prob:
|
680 |
+
img = add_Poisson_noise(img)
|
681 |
+
elif i == 11:
|
682 |
+
if random.random() < speckle_prob:
|
683 |
+
img = add_speckle_noise(img)
|
684 |
+
elif i == 12:
|
685 |
+
if random.random() < isp_prob and isp_model is not None:
|
686 |
+
with torch.no_grad():
|
687 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
688 |
+
else:
|
689 |
+
print('check the shuffle!')
|
690 |
+
|
691 |
+
# resize to desired size
|
692 |
+
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
693 |
+
interpolation=random.choice([1, 2, 3]))
|
694 |
+
|
695 |
+
# add final JPEG compression noise
|
696 |
+
img = add_JPEG_noise(img)
|
697 |
+
|
698 |
+
# random crop
|
699 |
+
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
700 |
+
|
701 |
+
return img, hq
|
702 |
+
|
703 |
+
|
704 |
+
if __name__ == '__main__':
|
705 |
+
print("hey")
|
706 |
+
img = util.imread_uint('utils/test.png', 3)
|
707 |
+
print(img)
|
708 |
+
img = util.uint2single(img)
|
709 |
+
print(img)
|
710 |
+
img = img[:448, :448]
|
711 |
+
h = img.shape[0] // 4
|
712 |
+
print("resizing to", h)
|
713 |
+
sf = 4
|
714 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
715 |
+
for i in range(20):
|
716 |
+
print(i)
|
717 |
+
img_lq = deg_fn(img)
|
718 |
+
print(img_lq)
|
719 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
720 |
+
print(img_lq.shape)
|
721 |
+
print("bicubic", img_lq_bicubic.shape)
|
722 |
+
print(img_hq.shape)
|
723 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
724 |
+
interpolation=0)
|
725 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
726 |
+
interpolation=0)
|
727 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
728 |
+
util.imsave(img_concat, str(i) + '.png')
|
729 |
+
|
730 |
+
|
3DTopia/ldm/modules/image_degradation/bsrgan_light.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
import random
|
8 |
+
from scipy import ndimage
|
9 |
+
import scipy
|
10 |
+
import scipy.stats as ss
|
11 |
+
from scipy.interpolate import interp2d
|
12 |
+
from scipy.linalg import orth
|
13 |
+
import albumentations
|
14 |
+
|
15 |
+
import ldm.modules.image_degradation.utils_image as util
|
16 |
+
|
17 |
+
"""
|
18 |
+
# --------------------------------------------
|
19 |
+
# Super-Resolution
|
20 |
+
# --------------------------------------------
|
21 |
+
#
|
22 |
+
# Kai Zhang (cskaizhang@gmail.com)
|
23 |
+
# https://github.com/cszn
|
24 |
+
# From 2019/03--2021/08
|
25 |
+
# --------------------------------------------
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
def modcrop_np(img, sf):
|
30 |
+
'''
|
31 |
+
Args:
|
32 |
+
img: numpy image, WxH or WxHxC
|
33 |
+
sf: scale factor
|
34 |
+
Return:
|
35 |
+
cropped image
|
36 |
+
'''
|
37 |
+
w, h = img.shape[:2]
|
38 |
+
im = np.copy(img)
|
39 |
+
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
# --------------------------------------------
|
44 |
+
# anisotropic Gaussian kernels
|
45 |
+
# --------------------------------------------
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def analytic_kernel(k):
|
50 |
+
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
+
k_size = k.shape[0]
|
52 |
+
# Calculate the big kernels size
|
53 |
+
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
+
# Loop over the small kernel to fill the big one
|
55 |
+
for r in range(k_size):
|
56 |
+
for c in range(k_size):
|
57 |
+
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
+
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
+
crop = k_size // 2
|
60 |
+
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
+
# Normalize to 1
|
62 |
+
return cropped_big_k / cropped_big_k.sum()
|
63 |
+
|
64 |
+
|
65 |
+
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
+
""" generate an anisotropic Gaussian kernel
|
67 |
+
Args:
|
68 |
+
ksize : e.g., 15, kernel size
|
69 |
+
theta : [0, pi], rotation angle range
|
70 |
+
l1 : [0.1,50], scaling of eigenvalues
|
71 |
+
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
+
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
+
Returns:
|
74 |
+
k : kernel
|
75 |
+
"""
|
76 |
+
|
77 |
+
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
+
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
+
D = np.array([[l1, 0], [0, l2]])
|
80 |
+
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
+
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
+
|
83 |
+
return k
|
84 |
+
|
85 |
+
|
86 |
+
def gm_blur_kernel(mean, cov, size=15):
|
87 |
+
center = size / 2.0 + 0.5
|
88 |
+
k = np.zeros([size, size])
|
89 |
+
for y in range(size):
|
90 |
+
for x in range(size):
|
91 |
+
cy = y - center + 1
|
92 |
+
cx = x - center + 1
|
93 |
+
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
+
|
95 |
+
k = k / np.sum(k)
|
96 |
+
return k
|
97 |
+
|
98 |
+
|
99 |
+
def shift_pixel(x, sf, upper_left=True):
|
100 |
+
"""shift pixel for super-resolution with different scale factors
|
101 |
+
Args:
|
102 |
+
x: WxHxC or WxH
|
103 |
+
sf: scale factor
|
104 |
+
upper_left: shift direction
|
105 |
+
"""
|
106 |
+
h, w = x.shape[:2]
|
107 |
+
shift = (sf - 1) * 0.5
|
108 |
+
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
+
if upper_left:
|
110 |
+
x1 = xv + shift
|
111 |
+
y1 = yv + shift
|
112 |
+
else:
|
113 |
+
x1 = xv - shift
|
114 |
+
y1 = yv - shift
|
115 |
+
|
116 |
+
x1 = np.clip(x1, 0, w - 1)
|
117 |
+
y1 = np.clip(y1, 0, h - 1)
|
118 |
+
|
119 |
+
if x.ndim == 2:
|
120 |
+
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
+
if x.ndim == 3:
|
122 |
+
for i in range(x.shape[-1]):
|
123 |
+
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
+
|
125 |
+
return x
|
126 |
+
|
127 |
+
|
128 |
+
def blur(x, k):
|
129 |
+
'''
|
130 |
+
x: image, NxcxHxW
|
131 |
+
k: kernel, Nx1xhxw
|
132 |
+
'''
|
133 |
+
n, c = x.shape[:2]
|
134 |
+
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
+
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
+
k = k.repeat(1, c, 1, 1)
|
137 |
+
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
+
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
+
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
+
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
+
""""
|
147 |
+
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
+
# Kai Zhang
|
149 |
+
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
+
# max_var = 2.5 * sf
|
151 |
+
"""
|
152 |
+
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
+
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
+
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
+
theta = np.random.rand() * np.pi # random theta
|
156 |
+
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
+
|
158 |
+
# Set COV matrix using Lambdas and Theta
|
159 |
+
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
+
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
+
[np.sin(theta), np.cos(theta)]])
|
162 |
+
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
+
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
+
|
165 |
+
# Set expectation position (shifting kernel for aligned image)
|
166 |
+
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
+
MU = MU[None, None, :, None]
|
168 |
+
|
169 |
+
# Create meshgrid for Gaussian
|
170 |
+
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
+
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
+
|
173 |
+
# Calcualte Gaussian for every pixel of the kernel
|
174 |
+
ZZ = Z - MU
|
175 |
+
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
+
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
+
|
178 |
+
# shift the kernel so it will be centered
|
179 |
+
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
+
|
181 |
+
# Normalize the kernel and return
|
182 |
+
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
+
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
+
return kernel
|
185 |
+
|
186 |
+
|
187 |
+
def fspecial_gaussian(hsize, sigma):
|
188 |
+
hsize = [hsize, hsize]
|
189 |
+
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
+
std = sigma
|
191 |
+
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
+
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
+
h = np.exp(arg)
|
194 |
+
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
+
sumh = h.sum()
|
196 |
+
if sumh != 0:
|
197 |
+
h = h / sumh
|
198 |
+
return h
|
199 |
+
|
200 |
+
|
201 |
+
def fspecial_laplacian(alpha):
|
202 |
+
alpha = max([0, min([alpha, 1])])
|
203 |
+
h1 = alpha / (alpha + 1)
|
204 |
+
h2 = (1 - alpha) / (alpha + 1)
|
205 |
+
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
+
h = np.array(h)
|
207 |
+
return h
|
208 |
+
|
209 |
+
|
210 |
+
def fspecial(filter_type, *args, **kwargs):
|
211 |
+
'''
|
212 |
+
python code from:
|
213 |
+
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
+
'''
|
215 |
+
if filter_type == 'gaussian':
|
216 |
+
return fspecial_gaussian(*args, **kwargs)
|
217 |
+
if filter_type == 'laplacian':
|
218 |
+
return fspecial_laplacian(*args, **kwargs)
|
219 |
+
|
220 |
+
|
221 |
+
"""
|
222 |
+
# --------------------------------------------
|
223 |
+
# degradation models
|
224 |
+
# --------------------------------------------
|
225 |
+
"""
|
226 |
+
|
227 |
+
|
228 |
+
def bicubic_degradation(x, sf=3):
|
229 |
+
'''
|
230 |
+
Args:
|
231 |
+
x: HxWxC image, [0, 1]
|
232 |
+
sf: down-scale factor
|
233 |
+
Return:
|
234 |
+
bicubicly downsampled LR image
|
235 |
+
'''
|
236 |
+
x = util.imresize_np(x, scale=1 / sf)
|
237 |
+
return x
|
238 |
+
|
239 |
+
|
240 |
+
def srmd_degradation(x, k, sf=3):
|
241 |
+
''' blur + bicubic downsampling
|
242 |
+
Args:
|
243 |
+
x: HxWxC image, [0, 1]
|
244 |
+
k: hxw, double
|
245 |
+
sf: down-scale factor
|
246 |
+
Return:
|
247 |
+
downsampled LR image
|
248 |
+
Reference:
|
249 |
+
@inproceedings{zhang2018learning,
|
250 |
+
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
+
pages={3262--3271},
|
254 |
+
year={2018}
|
255 |
+
}
|
256 |
+
'''
|
257 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
+
x = bicubic_degradation(x, sf=sf)
|
259 |
+
return x
|
260 |
+
|
261 |
+
|
262 |
+
def dpsr_degradation(x, k, sf=3):
|
263 |
+
''' bicubic downsampling + blur
|
264 |
+
Args:
|
265 |
+
x: HxWxC image, [0, 1]
|
266 |
+
k: hxw, double
|
267 |
+
sf: down-scale factor
|
268 |
+
Return:
|
269 |
+
downsampled LR image
|
270 |
+
Reference:
|
271 |
+
@inproceedings{zhang2019deep,
|
272 |
+
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
+
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
+
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
+
pages={1671--1681},
|
276 |
+
year={2019}
|
277 |
+
}
|
278 |
+
'''
|
279 |
+
x = bicubic_degradation(x, sf=sf)
|
280 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
+
return x
|
282 |
+
|
283 |
+
|
284 |
+
def classical_degradation(x, k, sf=3):
|
285 |
+
''' blur + downsampling
|
286 |
+
Args:
|
287 |
+
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
+
k: hxw, double
|
289 |
+
sf: down-scale factor
|
290 |
+
Return:
|
291 |
+
downsampled LR image
|
292 |
+
'''
|
293 |
+
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
+
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
+
st = 0
|
296 |
+
return x[st::sf, st::sf, ...]
|
297 |
+
|
298 |
+
|
299 |
+
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
+
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
+
Input image: I; Blurry image: B.
|
302 |
+
1. K = I + weight * (I - B)
|
303 |
+
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
+
3. Blur mask:
|
305 |
+
4. Out = Mask * K + (1 - Mask) * I
|
306 |
+
Args:
|
307 |
+
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
+
weight (float): Sharp weight. Default: 1.
|
309 |
+
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
+
threshold (int):
|
311 |
+
"""
|
312 |
+
if radius % 2 == 0:
|
313 |
+
radius += 1
|
314 |
+
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
+
residual = img - blur
|
316 |
+
mask = np.abs(residual) * 255 > threshold
|
317 |
+
mask = mask.astype('float32')
|
318 |
+
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
+
|
320 |
+
K = img + weight * residual
|
321 |
+
K = np.clip(K, 0, 1)
|
322 |
+
return soft_mask * K + (1 - soft_mask) * img
|
323 |
+
|
324 |
+
|
325 |
+
def add_blur(img, sf=4):
|
326 |
+
wd2 = 4.0 + sf
|
327 |
+
wd = 2.0 + 0.2 * sf
|
328 |
+
|
329 |
+
wd2 = wd2/4
|
330 |
+
wd = wd/4
|
331 |
+
|
332 |
+
if random.random() < 0.5:
|
333 |
+
l1 = wd2 * random.random()
|
334 |
+
l2 = wd2 * random.random()
|
335 |
+
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
336 |
+
else:
|
337 |
+
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
338 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
339 |
+
|
340 |
+
return img
|
341 |
+
|
342 |
+
|
343 |
+
def add_resize(img, sf=4):
|
344 |
+
rnum = np.random.rand()
|
345 |
+
if rnum > 0.8: # up
|
346 |
+
sf1 = random.uniform(1, 2)
|
347 |
+
elif rnum < 0.7: # down
|
348 |
+
sf1 = random.uniform(0.5 / sf, 1)
|
349 |
+
else:
|
350 |
+
sf1 = 1.0
|
351 |
+
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
352 |
+
img = np.clip(img, 0.0, 1.0)
|
353 |
+
|
354 |
+
return img
|
355 |
+
|
356 |
+
|
357 |
+
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
358 |
+
# noise_level = random.randint(noise_level1, noise_level2)
|
359 |
+
# rnum = np.random.rand()
|
360 |
+
# if rnum > 0.6: # add color Gaussian noise
|
361 |
+
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
362 |
+
# elif rnum < 0.4: # add grayscale Gaussian noise
|
363 |
+
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
364 |
+
# else: # add noise
|
365 |
+
# L = noise_level2 / 255.
|
366 |
+
# D = np.diag(np.random.rand(3))
|
367 |
+
# U = orth(np.random.rand(3, 3))
|
368 |
+
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
369 |
+
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
370 |
+
# img = np.clip(img, 0.0, 1.0)
|
371 |
+
# return img
|
372 |
+
|
373 |
+
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
374 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
375 |
+
rnum = np.random.rand()
|
376 |
+
if rnum > 0.6: # add color Gaussian noise
|
377 |
+
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
378 |
+
elif rnum < 0.4: # add grayscale Gaussian noise
|
379 |
+
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
380 |
+
else: # add noise
|
381 |
+
L = noise_level2 / 255.
|
382 |
+
D = np.diag(np.random.rand(3))
|
383 |
+
U = orth(np.random.rand(3, 3))
|
384 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
385 |
+
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
386 |
+
img = np.clip(img, 0.0, 1.0)
|
387 |
+
return img
|
388 |
+
|
389 |
+
|
390 |
+
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
391 |
+
noise_level = random.randint(noise_level1, noise_level2)
|
392 |
+
img = np.clip(img, 0.0, 1.0)
|
393 |
+
rnum = random.random()
|
394 |
+
if rnum > 0.6:
|
395 |
+
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
396 |
+
elif rnum < 0.4:
|
397 |
+
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
398 |
+
else:
|
399 |
+
L = noise_level2 / 255.
|
400 |
+
D = np.diag(np.random.rand(3))
|
401 |
+
U = orth(np.random.rand(3, 3))
|
402 |
+
conv = np.dot(np.dot(np.transpose(U), D), U)
|
403 |
+
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
404 |
+
img = np.clip(img, 0.0, 1.0)
|
405 |
+
return img
|
406 |
+
|
407 |
+
|
408 |
+
def add_Poisson_noise(img):
|
409 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
410 |
+
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
411 |
+
if random.random() < 0.5:
|
412 |
+
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
413 |
+
else:
|
414 |
+
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
415 |
+
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
416 |
+
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
417 |
+
img += noise_gray[:, :, np.newaxis]
|
418 |
+
img = np.clip(img, 0.0, 1.0)
|
419 |
+
return img
|
420 |
+
|
421 |
+
|
422 |
+
def add_JPEG_noise(img):
|
423 |
+
quality_factor = random.randint(80, 95)
|
424 |
+
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
425 |
+
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
426 |
+
img = cv2.imdecode(encimg, 1)
|
427 |
+
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
428 |
+
return img
|
429 |
+
|
430 |
+
|
431 |
+
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
432 |
+
h, w = lq.shape[:2]
|
433 |
+
rnd_h = random.randint(0, h - lq_patchsize)
|
434 |
+
rnd_w = random.randint(0, w - lq_patchsize)
|
435 |
+
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
436 |
+
|
437 |
+
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
438 |
+
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
439 |
+
return lq, hq
|
440 |
+
|
441 |
+
|
442 |
+
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
443 |
+
"""
|
444 |
+
This is the degradation model of BSRGAN from the paper
|
445 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
446 |
+
----------
|
447 |
+
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
448 |
+
sf: scale factor
|
449 |
+
isp_model: camera ISP model
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
453 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
454 |
+
"""
|
455 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
456 |
+
sf_ori = sf
|
457 |
+
|
458 |
+
h1, w1 = img.shape[:2]
|
459 |
+
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
460 |
+
h, w = img.shape[:2]
|
461 |
+
|
462 |
+
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
463 |
+
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
464 |
+
|
465 |
+
hq = img.copy()
|
466 |
+
|
467 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
468 |
+
if np.random.rand() < 0.5:
|
469 |
+
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
470 |
+
interpolation=random.choice([1, 2, 3]))
|
471 |
+
else:
|
472 |
+
img = util.imresize_np(img, 1 / 2, True)
|
473 |
+
img = np.clip(img, 0.0, 1.0)
|
474 |
+
sf = 2
|
475 |
+
|
476 |
+
shuffle_order = random.sample(range(7), 7)
|
477 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
478 |
+
if idx1 > idx2: # keep downsample3 last
|
479 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
480 |
+
|
481 |
+
for i in shuffle_order:
|
482 |
+
|
483 |
+
if i == 0:
|
484 |
+
img = add_blur(img, sf=sf)
|
485 |
+
|
486 |
+
elif i == 1:
|
487 |
+
img = add_blur(img, sf=sf)
|
488 |
+
|
489 |
+
elif i == 2:
|
490 |
+
a, b = img.shape[1], img.shape[0]
|
491 |
+
# downsample2
|
492 |
+
if random.random() < 0.75:
|
493 |
+
sf1 = random.uniform(1, 2 * sf)
|
494 |
+
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
495 |
+
interpolation=random.choice([1, 2, 3]))
|
496 |
+
else:
|
497 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
498 |
+
k_shifted = shift_pixel(k, sf)
|
499 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
500 |
+
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
501 |
+
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
502 |
+
img = np.clip(img, 0.0, 1.0)
|
503 |
+
|
504 |
+
elif i == 3:
|
505 |
+
# downsample3
|
506 |
+
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
507 |
+
img = np.clip(img, 0.0, 1.0)
|
508 |
+
|
509 |
+
elif i == 4:
|
510 |
+
# add Gaussian noise
|
511 |
+
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
512 |
+
|
513 |
+
elif i == 5:
|
514 |
+
# add JPEG noise
|
515 |
+
if random.random() < jpeg_prob:
|
516 |
+
img = add_JPEG_noise(img)
|
517 |
+
|
518 |
+
elif i == 6:
|
519 |
+
# add processed camera sensor noise
|
520 |
+
if random.random() < isp_prob and isp_model is not None:
|
521 |
+
with torch.no_grad():
|
522 |
+
img, hq = isp_model.forward(img.copy(), hq)
|
523 |
+
|
524 |
+
# add final JPEG compression noise
|
525 |
+
img = add_JPEG_noise(img)
|
526 |
+
|
527 |
+
# random crop
|
528 |
+
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
529 |
+
|
530 |
+
return img, hq
|
531 |
+
|
532 |
+
|
533 |
+
# todo no isp_model?
|
534 |
+
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
535 |
+
"""
|
536 |
+
This is the degradation model of BSRGAN from the paper
|
537 |
+
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
538 |
+
----------
|
539 |
+
sf: scale factor
|
540 |
+
isp_model: camera ISP model
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
544 |
+
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
545 |
+
"""
|
546 |
+
image = util.uint2single(image)
|
547 |
+
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
548 |
+
sf_ori = sf
|
549 |
+
|
550 |
+
h1, w1 = image.shape[:2]
|
551 |
+
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
552 |
+
h, w = image.shape[:2]
|
553 |
+
|
554 |
+
hq = image.copy()
|
555 |
+
|
556 |
+
if sf == 4 and random.random() < scale2_prob: # downsample1
|
557 |
+
if np.random.rand() < 0.5:
|
558 |
+
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
559 |
+
interpolation=random.choice([1, 2, 3]))
|
560 |
+
else:
|
561 |
+
image = util.imresize_np(image, 1 / 2, True)
|
562 |
+
image = np.clip(image, 0.0, 1.0)
|
563 |
+
sf = 2
|
564 |
+
|
565 |
+
shuffle_order = random.sample(range(7), 7)
|
566 |
+
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
567 |
+
if idx1 > idx2: # keep downsample3 last
|
568 |
+
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
569 |
+
|
570 |
+
for i in shuffle_order:
|
571 |
+
|
572 |
+
if i == 0:
|
573 |
+
image = add_blur(image, sf=sf)
|
574 |
+
|
575 |
+
# elif i == 1:
|
576 |
+
# image = add_blur(image, sf=sf)
|
577 |
+
|
578 |
+
if i == 0:
|
579 |
+
pass
|
580 |
+
|
581 |
+
elif i == 2:
|
582 |
+
a, b = image.shape[1], image.shape[0]
|
583 |
+
# downsample2
|
584 |
+
if random.random() < 0.8:
|
585 |
+
sf1 = random.uniform(1, 2 * sf)
|
586 |
+
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
587 |
+
interpolation=random.choice([1, 2, 3]))
|
588 |
+
else:
|
589 |
+
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
590 |
+
k_shifted = shift_pixel(k, sf)
|
591 |
+
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
592 |
+
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
593 |
+
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
594 |
+
|
595 |
+
image = np.clip(image, 0.0, 1.0)
|
596 |
+
|
597 |
+
elif i == 3:
|
598 |
+
# downsample3
|
599 |
+
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
600 |
+
image = np.clip(image, 0.0, 1.0)
|
601 |
+
|
602 |
+
elif i == 4:
|
603 |
+
# add Gaussian noise
|
604 |
+
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
605 |
+
|
606 |
+
elif i == 5:
|
607 |
+
# add JPEG noise
|
608 |
+
if random.random() < jpeg_prob:
|
609 |
+
image = add_JPEG_noise(image)
|
610 |
+
#
|
611 |
+
# elif i == 6:
|
612 |
+
# # add processed camera sensor noise
|
613 |
+
# if random.random() < isp_prob and isp_model is not None:
|
614 |
+
# with torch.no_grad():
|
615 |
+
# img, hq = isp_model.forward(img.copy(), hq)
|
616 |
+
|
617 |
+
# add final JPEG compression noise
|
618 |
+
image = add_JPEG_noise(image)
|
619 |
+
image = util.single2uint(image)
|
620 |
+
example = {"image": image}
|
621 |
+
return example
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
|
626 |
+
if __name__ == '__main__':
|
627 |
+
print("hey")
|
628 |
+
img = util.imread_uint('utils/test.png', 3)
|
629 |
+
img = img[:448, :448]
|
630 |
+
h = img.shape[0] // 4
|
631 |
+
print("resizing to", h)
|
632 |
+
sf = 4
|
633 |
+
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
634 |
+
for i in range(20):
|
635 |
+
print(i)
|
636 |
+
img_hq = img
|
637 |
+
img_lq = deg_fn(img)["image"]
|
638 |
+
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
639 |
+
print(img_lq)
|
640 |
+
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
641 |
+
print(img_lq.shape)
|
642 |
+
print("bicubic", img_lq_bicubic.shape)
|
643 |
+
print(img_hq.shape)
|
644 |
+
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
645 |
+
interpolation=0)
|
646 |
+
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
647 |
+
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
648 |
+
interpolation=0)
|
649 |
+
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
650 |
+
util.imsave(img_concat, str(i) + '.png')
|
3DTopia/ldm/modules/image_degradation/utils/test.png
ADDED
3DTopia/ldm/modules/image_degradation/utils_image.py
ADDED
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import cv2
|
7 |
+
from torchvision.utils import make_grid
|
8 |
+
from datetime import datetime
|
9 |
+
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
10 |
+
|
11 |
+
|
12 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
13 |
+
|
14 |
+
|
15 |
+
'''
|
16 |
+
# --------------------------------------------
|
17 |
+
# Kai Zhang (github: https://github.com/cszn)
|
18 |
+
# 03/Mar/2019
|
19 |
+
# --------------------------------------------
|
20 |
+
# https://github.com/twhui/SRGAN-pyTorch
|
21 |
+
# https://github.com/xinntao/BasicSR
|
22 |
+
# --------------------------------------------
|
23 |
+
'''
|
24 |
+
|
25 |
+
|
26 |
+
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
27 |
+
|
28 |
+
|
29 |
+
def is_image_file(filename):
|
30 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
31 |
+
|
32 |
+
|
33 |
+
def get_timestamp():
|
34 |
+
return datetime.now().strftime('%y%m%d-%H%M%S')
|
35 |
+
|
36 |
+
|
37 |
+
def imshow(x, title=None, cbar=False, figsize=None):
|
38 |
+
plt.figure(figsize=figsize)
|
39 |
+
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
40 |
+
if title:
|
41 |
+
plt.title(title)
|
42 |
+
if cbar:
|
43 |
+
plt.colorbar()
|
44 |
+
plt.show()
|
45 |
+
|
46 |
+
|
47 |
+
def surf(Z, cmap='rainbow', figsize=None):
|
48 |
+
plt.figure(figsize=figsize)
|
49 |
+
ax3 = plt.axes(projection='3d')
|
50 |
+
|
51 |
+
w, h = Z.shape[:2]
|
52 |
+
xx = np.arange(0,w,1)
|
53 |
+
yy = np.arange(0,h,1)
|
54 |
+
X, Y = np.meshgrid(xx, yy)
|
55 |
+
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
56 |
+
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
57 |
+
plt.show()
|
58 |
+
|
59 |
+
|
60 |
+
'''
|
61 |
+
# --------------------------------------------
|
62 |
+
# get image pathes
|
63 |
+
# --------------------------------------------
|
64 |
+
'''
|
65 |
+
|
66 |
+
|
67 |
+
def get_image_paths(dataroot):
|
68 |
+
paths = None # return None if dataroot is None
|
69 |
+
if dataroot is not None:
|
70 |
+
paths = sorted(_get_paths_from_images(dataroot))
|
71 |
+
return paths
|
72 |
+
|
73 |
+
|
74 |
+
def _get_paths_from_images(path):
|
75 |
+
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
76 |
+
images = []
|
77 |
+
for dirpath, _, fnames in sorted(os.walk(path)):
|
78 |
+
for fname in sorted(fnames):
|
79 |
+
if is_image_file(fname):
|
80 |
+
img_path = os.path.join(dirpath, fname)
|
81 |
+
images.append(img_path)
|
82 |
+
assert images, '{:s} has no valid image file'.format(path)
|
83 |
+
return images
|
84 |
+
|
85 |
+
|
86 |
+
'''
|
87 |
+
# --------------------------------------------
|
88 |
+
# split large images into small images
|
89 |
+
# --------------------------------------------
|
90 |
+
'''
|
91 |
+
|
92 |
+
|
93 |
+
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
94 |
+
w, h = img.shape[:2]
|
95 |
+
patches = []
|
96 |
+
if w > p_max and h > p_max:
|
97 |
+
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
98 |
+
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
99 |
+
w1.append(w-p_size)
|
100 |
+
h1.append(h-p_size)
|
101 |
+
# print(w1)
|
102 |
+
# print(h1)
|
103 |
+
for i in w1:
|
104 |
+
for j in h1:
|
105 |
+
patches.append(img[i:i+p_size, j:j+p_size,:])
|
106 |
+
else:
|
107 |
+
patches.append(img)
|
108 |
+
|
109 |
+
return patches
|
110 |
+
|
111 |
+
|
112 |
+
def imssave(imgs, img_path):
|
113 |
+
"""
|
114 |
+
imgs: list, N images of size WxHxC
|
115 |
+
"""
|
116 |
+
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
117 |
+
|
118 |
+
for i, img in enumerate(imgs):
|
119 |
+
if img.ndim == 3:
|
120 |
+
img = img[:, :, [2, 1, 0]]
|
121 |
+
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
122 |
+
cv2.imwrite(new_path, img)
|
123 |
+
|
124 |
+
|
125 |
+
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
126 |
+
"""
|
127 |
+
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
128 |
+
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
129 |
+
will be splitted.
|
130 |
+
Args:
|
131 |
+
original_dataroot:
|
132 |
+
taget_dataroot:
|
133 |
+
p_size: size of small images
|
134 |
+
p_overlap: patch size in training is a good choice
|
135 |
+
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
136 |
+
"""
|
137 |
+
paths = get_image_paths(original_dataroot)
|
138 |
+
for img_path in paths:
|
139 |
+
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
140 |
+
img = imread_uint(img_path, n_channels=n_channels)
|
141 |
+
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
142 |
+
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
143 |
+
#if original_dataroot == taget_dataroot:
|
144 |
+
#del img_path
|
145 |
+
|
146 |
+
'''
|
147 |
+
# --------------------------------------------
|
148 |
+
# makedir
|
149 |
+
# --------------------------------------------
|
150 |
+
'''
|
151 |
+
|
152 |
+
|
153 |
+
def mkdir(path):
|
154 |
+
if not os.path.exists(path):
|
155 |
+
os.makedirs(path)
|
156 |
+
|
157 |
+
|
158 |
+
def mkdirs(paths):
|
159 |
+
if isinstance(paths, str):
|
160 |
+
mkdir(paths)
|
161 |
+
else:
|
162 |
+
for path in paths:
|
163 |
+
mkdir(path)
|
164 |
+
|
165 |
+
|
166 |
+
def mkdir_and_rename(path):
|
167 |
+
if os.path.exists(path):
|
168 |
+
new_name = path + '_archived_' + get_timestamp()
|
169 |
+
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
170 |
+
os.rename(path, new_name)
|
171 |
+
os.makedirs(path)
|
172 |
+
|
173 |
+
|
174 |
+
'''
|
175 |
+
# --------------------------------------------
|
176 |
+
# read image from path
|
177 |
+
# opencv is fast, but read BGR numpy image
|
178 |
+
# --------------------------------------------
|
179 |
+
'''
|
180 |
+
|
181 |
+
|
182 |
+
# --------------------------------------------
|
183 |
+
# get uint8 image of size HxWxn_channles (RGB)
|
184 |
+
# --------------------------------------------
|
185 |
+
def imread_uint(path, n_channels=3):
|
186 |
+
# input: path
|
187 |
+
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
188 |
+
if n_channels == 1:
|
189 |
+
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
190 |
+
img = np.expand_dims(img, axis=2) # HxWx1
|
191 |
+
elif n_channels == 3:
|
192 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
193 |
+
if img.ndim == 2:
|
194 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
195 |
+
else:
|
196 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
197 |
+
return img
|
198 |
+
|
199 |
+
|
200 |
+
# --------------------------------------------
|
201 |
+
# matlab's imwrite
|
202 |
+
# --------------------------------------------
|
203 |
+
def imsave(img, img_path):
|
204 |
+
img = np.squeeze(img)
|
205 |
+
if img.ndim == 3:
|
206 |
+
img = img[:, :, [2, 1, 0]]
|
207 |
+
cv2.imwrite(img_path, img)
|
208 |
+
|
209 |
+
def imwrite(img, img_path):
|
210 |
+
img = np.squeeze(img)
|
211 |
+
if img.ndim == 3:
|
212 |
+
img = img[:, :, [2, 1, 0]]
|
213 |
+
cv2.imwrite(img_path, img)
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# --------------------------------------------
|
218 |
+
# get single image of size HxWxn_channles (BGR)
|
219 |
+
# --------------------------------------------
|
220 |
+
def read_img(path):
|
221 |
+
# read image by cv2
|
222 |
+
# return: Numpy float32, HWC, BGR, [0,1]
|
223 |
+
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
224 |
+
img = img.astype(np.float32) / 255.
|
225 |
+
if img.ndim == 2:
|
226 |
+
img = np.expand_dims(img, axis=2)
|
227 |
+
# some images have 4 channels
|
228 |
+
if img.shape[2] > 3:
|
229 |
+
img = img[:, :, :3]
|
230 |
+
return img
|
231 |
+
|
232 |
+
|
233 |
+
'''
|
234 |
+
# --------------------------------------------
|
235 |
+
# image format conversion
|
236 |
+
# --------------------------------------------
|
237 |
+
# numpy(single) <---> numpy(unit)
|
238 |
+
# numpy(single) <---> tensor
|
239 |
+
# numpy(unit) <---> tensor
|
240 |
+
# --------------------------------------------
|
241 |
+
'''
|
242 |
+
|
243 |
+
|
244 |
+
# --------------------------------------------
|
245 |
+
# numpy(single) [0, 1] <---> numpy(unit)
|
246 |
+
# --------------------------------------------
|
247 |
+
|
248 |
+
|
249 |
+
def uint2single(img):
|
250 |
+
|
251 |
+
return np.float32(img/255.)
|
252 |
+
|
253 |
+
|
254 |
+
def single2uint(img):
|
255 |
+
|
256 |
+
return np.uint8((img.clip(0, 1)*255.).round())
|
257 |
+
|
258 |
+
|
259 |
+
def uint162single(img):
|
260 |
+
|
261 |
+
return np.float32(img/65535.)
|
262 |
+
|
263 |
+
|
264 |
+
def single2uint16(img):
|
265 |
+
|
266 |
+
return np.uint16((img.clip(0, 1)*65535.).round())
|
267 |
+
|
268 |
+
|
269 |
+
# --------------------------------------------
|
270 |
+
# numpy(unit) (HxWxC or HxW) <---> tensor
|
271 |
+
# --------------------------------------------
|
272 |
+
|
273 |
+
|
274 |
+
# convert uint to 4-dimensional torch tensor
|
275 |
+
def uint2tensor4(img):
|
276 |
+
if img.ndim == 2:
|
277 |
+
img = np.expand_dims(img, axis=2)
|
278 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
279 |
+
|
280 |
+
|
281 |
+
# convert uint to 3-dimensional torch tensor
|
282 |
+
def uint2tensor3(img):
|
283 |
+
if img.ndim == 2:
|
284 |
+
img = np.expand_dims(img, axis=2)
|
285 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
286 |
+
|
287 |
+
|
288 |
+
# convert 2/3/4-dimensional torch tensor to uint
|
289 |
+
def tensor2uint(img):
|
290 |
+
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
291 |
+
if img.ndim == 3:
|
292 |
+
img = np.transpose(img, (1, 2, 0))
|
293 |
+
return np.uint8((img*255.0).round())
|
294 |
+
|
295 |
+
|
296 |
+
# --------------------------------------------
|
297 |
+
# numpy(single) (HxWxC) <---> tensor
|
298 |
+
# --------------------------------------------
|
299 |
+
|
300 |
+
|
301 |
+
# convert single (HxWxC) to 3-dimensional torch tensor
|
302 |
+
def single2tensor3(img):
|
303 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
304 |
+
|
305 |
+
|
306 |
+
# convert single (HxWxC) to 4-dimensional torch tensor
|
307 |
+
def single2tensor4(img):
|
308 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
309 |
+
|
310 |
+
|
311 |
+
# convert torch tensor to single
|
312 |
+
def tensor2single(img):
|
313 |
+
img = img.data.squeeze().float().cpu().numpy()
|
314 |
+
if img.ndim == 3:
|
315 |
+
img = np.transpose(img, (1, 2, 0))
|
316 |
+
|
317 |
+
return img
|
318 |
+
|
319 |
+
# convert torch tensor to single
|
320 |
+
def tensor2single3(img):
|
321 |
+
img = img.data.squeeze().float().cpu().numpy()
|
322 |
+
if img.ndim == 3:
|
323 |
+
img = np.transpose(img, (1, 2, 0))
|
324 |
+
elif img.ndim == 2:
|
325 |
+
img = np.expand_dims(img, axis=2)
|
326 |
+
return img
|
327 |
+
|
328 |
+
|
329 |
+
def single2tensor5(img):
|
330 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
331 |
+
|
332 |
+
|
333 |
+
def single32tensor5(img):
|
334 |
+
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
335 |
+
|
336 |
+
|
337 |
+
def single42tensor4(img):
|
338 |
+
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
339 |
+
|
340 |
+
|
341 |
+
# from skimage.io import imread, imsave
|
342 |
+
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
343 |
+
'''
|
344 |
+
Converts a torch Tensor into an image Numpy array of BGR channel order
|
345 |
+
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
346 |
+
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
347 |
+
'''
|
348 |
+
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
349 |
+
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
350 |
+
n_dim = tensor.dim()
|
351 |
+
if n_dim == 4:
|
352 |
+
n_img = len(tensor)
|
353 |
+
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
354 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
355 |
+
elif n_dim == 3:
|
356 |
+
img_np = tensor.numpy()
|
357 |
+
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
358 |
+
elif n_dim == 2:
|
359 |
+
img_np = tensor.numpy()
|
360 |
+
else:
|
361 |
+
raise TypeError(
|
362 |
+
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
363 |
+
if out_type == np.uint8:
|
364 |
+
img_np = (img_np * 255.0).round()
|
365 |
+
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
366 |
+
return img_np.astype(out_type)
|
367 |
+
|
368 |
+
|
369 |
+
'''
|
370 |
+
# --------------------------------------------
|
371 |
+
# Augmentation, flipe and/or rotate
|
372 |
+
# --------------------------------------------
|
373 |
+
# The following two are enough.
|
374 |
+
# (1) augmet_img: numpy image of WxHxC or WxH
|
375 |
+
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
376 |
+
# --------------------------------------------
|
377 |
+
'''
|
378 |
+
|
379 |
+
|
380 |
+
def augment_img(img, mode=0):
|
381 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
382 |
+
'''
|
383 |
+
if mode == 0:
|
384 |
+
return img
|
385 |
+
elif mode == 1:
|
386 |
+
return np.flipud(np.rot90(img))
|
387 |
+
elif mode == 2:
|
388 |
+
return np.flipud(img)
|
389 |
+
elif mode == 3:
|
390 |
+
return np.rot90(img, k=3)
|
391 |
+
elif mode == 4:
|
392 |
+
return np.flipud(np.rot90(img, k=2))
|
393 |
+
elif mode == 5:
|
394 |
+
return np.rot90(img)
|
395 |
+
elif mode == 6:
|
396 |
+
return np.rot90(img, k=2)
|
397 |
+
elif mode == 7:
|
398 |
+
return np.flipud(np.rot90(img, k=3))
|
399 |
+
|
400 |
+
|
401 |
+
def augment_img_tensor4(img, mode=0):
|
402 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
403 |
+
'''
|
404 |
+
if mode == 0:
|
405 |
+
return img
|
406 |
+
elif mode == 1:
|
407 |
+
return img.rot90(1, [2, 3]).flip([2])
|
408 |
+
elif mode == 2:
|
409 |
+
return img.flip([2])
|
410 |
+
elif mode == 3:
|
411 |
+
return img.rot90(3, [2, 3])
|
412 |
+
elif mode == 4:
|
413 |
+
return img.rot90(2, [2, 3]).flip([2])
|
414 |
+
elif mode == 5:
|
415 |
+
return img.rot90(1, [2, 3])
|
416 |
+
elif mode == 6:
|
417 |
+
return img.rot90(2, [2, 3])
|
418 |
+
elif mode == 7:
|
419 |
+
return img.rot90(3, [2, 3]).flip([2])
|
420 |
+
|
421 |
+
|
422 |
+
def augment_img_tensor(img, mode=0):
|
423 |
+
'''Kai Zhang (github: https://github.com/cszn)
|
424 |
+
'''
|
425 |
+
img_size = img.size()
|
426 |
+
img_np = img.data.cpu().numpy()
|
427 |
+
if len(img_size) == 3:
|
428 |
+
img_np = np.transpose(img_np, (1, 2, 0))
|
429 |
+
elif len(img_size) == 4:
|
430 |
+
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
431 |
+
img_np = augment_img(img_np, mode=mode)
|
432 |
+
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
433 |
+
if len(img_size) == 3:
|
434 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
435 |
+
elif len(img_size) == 4:
|
436 |
+
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
437 |
+
|
438 |
+
return img_tensor.type_as(img)
|
439 |
+
|
440 |
+
|
441 |
+
def augment_img_np3(img, mode=0):
|
442 |
+
if mode == 0:
|
443 |
+
return img
|
444 |
+
elif mode == 1:
|
445 |
+
return img.transpose(1, 0, 2)
|
446 |
+
elif mode == 2:
|
447 |
+
return img[::-1, :, :]
|
448 |
+
elif mode == 3:
|
449 |
+
img = img[::-1, :, :]
|
450 |
+
img = img.transpose(1, 0, 2)
|
451 |
+
return img
|
452 |
+
elif mode == 4:
|
453 |
+
return img[:, ::-1, :]
|
454 |
+
elif mode == 5:
|
455 |
+
img = img[:, ::-1, :]
|
456 |
+
img = img.transpose(1, 0, 2)
|
457 |
+
return img
|
458 |
+
elif mode == 6:
|
459 |
+
img = img[:, ::-1, :]
|
460 |
+
img = img[::-1, :, :]
|
461 |
+
return img
|
462 |
+
elif mode == 7:
|
463 |
+
img = img[:, ::-1, :]
|
464 |
+
img = img[::-1, :, :]
|
465 |
+
img = img.transpose(1, 0, 2)
|
466 |
+
return img
|
467 |
+
|
468 |
+
|
469 |
+
def augment_imgs(img_list, hflip=True, rot=True):
|
470 |
+
# horizontal flip OR rotate
|
471 |
+
hflip = hflip and random.random() < 0.5
|
472 |
+
vflip = rot and random.random() < 0.5
|
473 |
+
rot90 = rot and random.random() < 0.5
|
474 |
+
|
475 |
+
def _augment(img):
|
476 |
+
if hflip:
|
477 |
+
img = img[:, ::-1, :]
|
478 |
+
if vflip:
|
479 |
+
img = img[::-1, :, :]
|
480 |
+
if rot90:
|
481 |
+
img = img.transpose(1, 0, 2)
|
482 |
+
return img
|
483 |
+
|
484 |
+
return [_augment(img) for img in img_list]
|
485 |
+
|
486 |
+
|
487 |
+
'''
|
488 |
+
# --------------------------------------------
|
489 |
+
# modcrop and shave
|
490 |
+
# --------------------------------------------
|
491 |
+
'''
|
492 |
+
|
493 |
+
|
494 |
+
def modcrop(img_in, scale):
|
495 |
+
# img_in: Numpy, HWC or HW
|
496 |
+
img = np.copy(img_in)
|
497 |
+
if img.ndim == 2:
|
498 |
+
H, W = img.shape
|
499 |
+
H_r, W_r = H % scale, W % scale
|
500 |
+
img = img[:H - H_r, :W - W_r]
|
501 |
+
elif img.ndim == 3:
|
502 |
+
H, W, C = img.shape
|
503 |
+
H_r, W_r = H % scale, W % scale
|
504 |
+
img = img[:H - H_r, :W - W_r, :]
|
505 |
+
else:
|
506 |
+
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
507 |
+
return img
|
508 |
+
|
509 |
+
|
510 |
+
def shave(img_in, border=0):
|
511 |
+
# img_in: Numpy, HWC or HW
|
512 |
+
img = np.copy(img_in)
|
513 |
+
h, w = img.shape[:2]
|
514 |
+
img = img[border:h-border, border:w-border]
|
515 |
+
return img
|
516 |
+
|
517 |
+
|
518 |
+
'''
|
519 |
+
# --------------------------------------------
|
520 |
+
# image processing process on numpy image
|
521 |
+
# channel_convert(in_c, tar_type, img_list):
|
522 |
+
# rgb2ycbcr(img, only_y=True):
|
523 |
+
# bgr2ycbcr(img, only_y=True):
|
524 |
+
# ycbcr2rgb(img):
|
525 |
+
# --------------------------------------------
|
526 |
+
'''
|
527 |
+
|
528 |
+
|
529 |
+
def rgb2ycbcr(img, only_y=True):
|
530 |
+
'''same as matlab rgb2ycbcr
|
531 |
+
only_y: only return Y channel
|
532 |
+
Input:
|
533 |
+
uint8, [0, 255]
|
534 |
+
float, [0, 1]
|
535 |
+
'''
|
536 |
+
in_img_type = img.dtype
|
537 |
+
img.astype(np.float32)
|
538 |
+
if in_img_type != np.uint8:
|
539 |
+
img *= 255.
|
540 |
+
# convert
|
541 |
+
if only_y:
|
542 |
+
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
543 |
+
else:
|
544 |
+
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
545 |
+
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
546 |
+
if in_img_type == np.uint8:
|
547 |
+
rlt = rlt.round()
|
548 |
+
else:
|
549 |
+
rlt /= 255.
|
550 |
+
return rlt.astype(in_img_type)
|
551 |
+
|
552 |
+
|
553 |
+
def ycbcr2rgb(img):
|
554 |
+
'''same as matlab ycbcr2rgb
|
555 |
+
Input:
|
556 |
+
uint8, [0, 255]
|
557 |
+
float, [0, 1]
|
558 |
+
'''
|
559 |
+
in_img_type = img.dtype
|
560 |
+
img.astype(np.float32)
|
561 |
+
if in_img_type != np.uint8:
|
562 |
+
img *= 255.
|
563 |
+
# convert
|
564 |
+
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
565 |
+
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
566 |
+
if in_img_type == np.uint8:
|
567 |
+
rlt = rlt.round()
|
568 |
+
else:
|
569 |
+
rlt /= 255.
|
570 |
+
return rlt.astype(in_img_type)
|
571 |
+
|
572 |
+
|
573 |
+
def bgr2ycbcr(img, only_y=True):
|
574 |
+
'''bgr version of rgb2ycbcr
|
575 |
+
only_y: only return Y channel
|
576 |
+
Input:
|
577 |
+
uint8, [0, 255]
|
578 |
+
float, [0, 1]
|
579 |
+
'''
|
580 |
+
in_img_type = img.dtype
|
581 |
+
img.astype(np.float32)
|
582 |
+
if in_img_type != np.uint8:
|
583 |
+
img *= 255.
|
584 |
+
# convert
|
585 |
+
if only_y:
|
586 |
+
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
587 |
+
else:
|
588 |
+
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
589 |
+
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
590 |
+
if in_img_type == np.uint8:
|
591 |
+
rlt = rlt.round()
|
592 |
+
else:
|
593 |
+
rlt /= 255.
|
594 |
+
return rlt.astype(in_img_type)
|
595 |
+
|
596 |
+
|
597 |
+
def channel_convert(in_c, tar_type, img_list):
|
598 |
+
# conversion among BGR, gray and y
|
599 |
+
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
600 |
+
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
601 |
+
return [np.expand_dims(img, axis=2) for img in gray_list]
|
602 |
+
elif in_c == 3 and tar_type == 'y': # BGR to y
|
603 |
+
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
604 |
+
return [np.expand_dims(img, axis=2) for img in y_list]
|
605 |
+
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
606 |
+
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
607 |
+
else:
|
608 |
+
return img_list
|
609 |
+
|
610 |
+
|
611 |
+
'''
|
612 |
+
# --------------------------------------------
|
613 |
+
# metric, PSNR and SSIM
|
614 |
+
# --------------------------------------------
|
615 |
+
'''
|
616 |
+
|
617 |
+
|
618 |
+
# --------------------------------------------
|
619 |
+
# PSNR
|
620 |
+
# --------------------------------------------
|
621 |
+
def calculate_psnr(img1, img2, border=0):
|
622 |
+
# img1 and img2 have range [0, 255]
|
623 |
+
#img1 = img1.squeeze()
|
624 |
+
#img2 = img2.squeeze()
|
625 |
+
if not img1.shape == img2.shape:
|
626 |
+
raise ValueError('Input images must have the same dimensions.')
|
627 |
+
h, w = img1.shape[:2]
|
628 |
+
img1 = img1[border:h-border, border:w-border]
|
629 |
+
img2 = img2[border:h-border, border:w-border]
|
630 |
+
|
631 |
+
img1 = img1.astype(np.float64)
|
632 |
+
img2 = img2.astype(np.float64)
|
633 |
+
mse = np.mean((img1 - img2)**2)
|
634 |
+
if mse == 0:
|
635 |
+
return float('inf')
|
636 |
+
return 20 * math.log10(255.0 / math.sqrt(mse))
|
637 |
+
|
638 |
+
|
639 |
+
# --------------------------------------------
|
640 |
+
# SSIM
|
641 |
+
# --------------------------------------------
|
642 |
+
def calculate_ssim(img1, img2, border=0):
|
643 |
+
'''calculate SSIM
|
644 |
+
the same outputs as MATLAB's
|
645 |
+
img1, img2: [0, 255]
|
646 |
+
'''
|
647 |
+
#img1 = img1.squeeze()
|
648 |
+
#img2 = img2.squeeze()
|
649 |
+
if not img1.shape == img2.shape:
|
650 |
+
raise ValueError('Input images must have the same dimensions.')
|
651 |
+
h, w = img1.shape[:2]
|
652 |
+
img1 = img1[border:h-border, border:w-border]
|
653 |
+
img2 = img2[border:h-border, border:w-border]
|
654 |
+
|
655 |
+
if img1.ndim == 2:
|
656 |
+
return ssim(img1, img2)
|
657 |
+
elif img1.ndim == 3:
|
658 |
+
if img1.shape[2] == 3:
|
659 |
+
ssims = []
|
660 |
+
for i in range(3):
|
661 |
+
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
662 |
+
return np.array(ssims).mean()
|
663 |
+
elif img1.shape[2] == 1:
|
664 |
+
return ssim(np.squeeze(img1), np.squeeze(img2))
|
665 |
+
else:
|
666 |
+
raise ValueError('Wrong input image dimensions.')
|
667 |
+
|
668 |
+
|
669 |
+
def ssim(img1, img2):
|
670 |
+
C1 = (0.01 * 255)**2
|
671 |
+
C2 = (0.03 * 255)**2
|
672 |
+
|
673 |
+
img1 = img1.astype(np.float64)
|
674 |
+
img2 = img2.astype(np.float64)
|
675 |
+
kernel = cv2.getGaussianKernel(11, 1.5)
|
676 |
+
window = np.outer(kernel, kernel.transpose())
|
677 |
+
|
678 |
+
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
679 |
+
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
680 |
+
mu1_sq = mu1**2
|
681 |
+
mu2_sq = mu2**2
|
682 |
+
mu1_mu2 = mu1 * mu2
|
683 |
+
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
684 |
+
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
685 |
+
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
686 |
+
|
687 |
+
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
688 |
+
(sigma1_sq + sigma2_sq + C2))
|
689 |
+
return ssim_map.mean()
|
690 |
+
|
691 |
+
|
692 |
+
'''
|
693 |
+
# --------------------------------------------
|
694 |
+
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
695 |
+
# --------------------------------------------
|
696 |
+
'''
|
697 |
+
|
698 |
+
|
699 |
+
# matlab 'imresize' function, now only support 'bicubic'
|
700 |
+
def cubic(x):
|
701 |
+
absx = torch.abs(x)
|
702 |
+
absx2 = absx**2
|
703 |
+
absx3 = absx**3
|
704 |
+
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
705 |
+
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
706 |
+
|
707 |
+
|
708 |
+
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
709 |
+
if (scale < 1) and (antialiasing):
|
710 |
+
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
711 |
+
kernel_width = kernel_width / scale
|
712 |
+
|
713 |
+
# Output-space coordinates
|
714 |
+
x = torch.linspace(1, out_length, out_length)
|
715 |
+
|
716 |
+
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
717 |
+
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
718 |
+
# space maps to 1.5 in input space.
|
719 |
+
u = x / scale + 0.5 * (1 - 1 / scale)
|
720 |
+
|
721 |
+
# What is the left-most pixel that can be involved in the computation?
|
722 |
+
left = torch.floor(u - kernel_width / 2)
|
723 |
+
|
724 |
+
# What is the maximum number of pixels that can be involved in the
|
725 |
+
# computation? Note: it's OK to use an extra pixel here; if the
|
726 |
+
# corresponding weights are all zero, it will be eliminated at the end
|
727 |
+
# of this function.
|
728 |
+
P = math.ceil(kernel_width) + 2
|
729 |
+
|
730 |
+
# The indices of the input pixels involved in computing the k-th output
|
731 |
+
# pixel are in row k of the indices matrix.
|
732 |
+
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
733 |
+
1, P).expand(out_length, P)
|
734 |
+
|
735 |
+
# The weights used to compute the k-th output pixel are in row k of the
|
736 |
+
# weights matrix.
|
737 |
+
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
738 |
+
# apply cubic kernel
|
739 |
+
if (scale < 1) and (antialiasing):
|
740 |
+
weights = scale * cubic(distance_to_center * scale)
|
741 |
+
else:
|
742 |
+
weights = cubic(distance_to_center)
|
743 |
+
# Normalize the weights matrix so that each row sums to 1.
|
744 |
+
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
745 |
+
weights = weights / weights_sum.expand(out_length, P)
|
746 |
+
|
747 |
+
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
748 |
+
weights_zero_tmp = torch.sum((weights == 0), 0)
|
749 |
+
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
750 |
+
indices = indices.narrow(1, 1, P - 2)
|
751 |
+
weights = weights.narrow(1, 1, P - 2)
|
752 |
+
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
753 |
+
indices = indices.narrow(1, 0, P - 2)
|
754 |
+
weights = weights.narrow(1, 0, P - 2)
|
755 |
+
weights = weights.contiguous()
|
756 |
+
indices = indices.contiguous()
|
757 |
+
sym_len_s = -indices.min() + 1
|
758 |
+
sym_len_e = indices.max() - in_length
|
759 |
+
indices = indices + sym_len_s - 1
|
760 |
+
return weights, indices, int(sym_len_s), int(sym_len_e)
|
761 |
+
|
762 |
+
|
763 |
+
# --------------------------------------------
|
764 |
+
# imresize for tensor image [0, 1]
|
765 |
+
# --------------------------------------------
|
766 |
+
def imresize(img, scale, antialiasing=True):
|
767 |
+
# Now the scale should be the same for H and W
|
768 |
+
# input: img: pytorch tensor, CHW or HW [0,1]
|
769 |
+
# output: CHW or HW [0,1] w/o round
|
770 |
+
need_squeeze = True if img.dim() == 2 else False
|
771 |
+
if need_squeeze:
|
772 |
+
img.unsqueeze_(0)
|
773 |
+
in_C, in_H, in_W = img.size()
|
774 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
775 |
+
kernel_width = 4
|
776 |
+
kernel = 'cubic'
|
777 |
+
|
778 |
+
# Return the desired dimension order for performing the resize. The
|
779 |
+
# strategy is to perform the resize first along the dimension with the
|
780 |
+
# smallest scale factor.
|
781 |
+
# Now we do not support this.
|
782 |
+
|
783 |
+
# get weights and indices
|
784 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
785 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
786 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
787 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
788 |
+
# process H dimension
|
789 |
+
# symmetric copying
|
790 |
+
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
791 |
+
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
792 |
+
|
793 |
+
sym_patch = img[:, :sym_len_Hs, :]
|
794 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
795 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
796 |
+
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
797 |
+
|
798 |
+
sym_patch = img[:, -sym_len_He:, :]
|
799 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
800 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
801 |
+
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
802 |
+
|
803 |
+
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
804 |
+
kernel_width = weights_H.size(1)
|
805 |
+
for i in range(out_H):
|
806 |
+
idx = int(indices_H[i][0])
|
807 |
+
for j in range(out_C):
|
808 |
+
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
809 |
+
|
810 |
+
# process W dimension
|
811 |
+
# symmetric copying
|
812 |
+
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
813 |
+
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
814 |
+
|
815 |
+
sym_patch = out_1[:, :, :sym_len_Ws]
|
816 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
817 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
818 |
+
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
819 |
+
|
820 |
+
sym_patch = out_1[:, :, -sym_len_We:]
|
821 |
+
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
822 |
+
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
823 |
+
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
824 |
+
|
825 |
+
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
826 |
+
kernel_width = weights_W.size(1)
|
827 |
+
for i in range(out_W):
|
828 |
+
idx = int(indices_W[i][0])
|
829 |
+
for j in range(out_C):
|
830 |
+
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
831 |
+
if need_squeeze:
|
832 |
+
out_2.squeeze_()
|
833 |
+
return out_2
|
834 |
+
|
835 |
+
|
836 |
+
# --------------------------------------------
|
837 |
+
# imresize for numpy image [0, 1]
|
838 |
+
# --------------------------------------------
|
839 |
+
def imresize_np(img, scale, antialiasing=True):
|
840 |
+
# Now the scale should be the same for H and W
|
841 |
+
# input: img: Numpy, HWC or HW [0,1]
|
842 |
+
# output: HWC or HW [0,1] w/o round
|
843 |
+
img = torch.from_numpy(img)
|
844 |
+
need_squeeze = True if img.dim() == 2 else False
|
845 |
+
if need_squeeze:
|
846 |
+
img.unsqueeze_(2)
|
847 |
+
|
848 |
+
in_H, in_W, in_C = img.size()
|
849 |
+
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
850 |
+
kernel_width = 4
|
851 |
+
kernel = 'cubic'
|
852 |
+
|
853 |
+
# Return the desired dimension order for performing the resize. The
|
854 |
+
# strategy is to perform the resize first along the dimension with the
|
855 |
+
# smallest scale factor.
|
856 |
+
# Now we do not support this.
|
857 |
+
|
858 |
+
# get weights and indices
|
859 |
+
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
860 |
+
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
861 |
+
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
862 |
+
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
863 |
+
# process H dimension
|
864 |
+
# symmetric copying
|
865 |
+
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
866 |
+
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
867 |
+
|
868 |
+
sym_patch = img[:sym_len_Hs, :, :]
|
869 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
870 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
871 |
+
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
872 |
+
|
873 |
+
sym_patch = img[-sym_len_He:, :, :]
|
874 |
+
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
875 |
+
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
876 |
+
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
877 |
+
|
878 |
+
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
879 |
+
kernel_width = weights_H.size(1)
|
880 |
+
for i in range(out_H):
|
881 |
+
idx = int(indices_H[i][0])
|
882 |
+
for j in range(out_C):
|
883 |
+
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
884 |
+
|
885 |
+
# process W dimension
|
886 |
+
# symmetric copying
|
887 |
+
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
888 |
+
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
889 |
+
|
890 |
+
sym_patch = out_1[:, :sym_len_Ws, :]
|
891 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
892 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
893 |
+
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
894 |
+
|
895 |
+
sym_patch = out_1[:, -sym_len_We:, :]
|
896 |
+
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
897 |
+
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
898 |
+
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
899 |
+
|
900 |
+
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
901 |
+
kernel_width = weights_W.size(1)
|
902 |
+
for i in range(out_W):
|
903 |
+
idx = int(indices_W[i][0])
|
904 |
+
for j in range(out_C):
|
905 |
+
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
906 |
+
if need_squeeze:
|
907 |
+
out_2.squeeze_()
|
908 |
+
|
909 |
+
return out_2.numpy()
|
910 |
+
|
911 |
+
|
912 |
+
if __name__ == '__main__':
|
913 |
+
print('---')
|
914 |
+
# img = imread_uint('test.bmp', 3)
|
915 |
+
# img = uint2single(img)
|
916 |
+
# img_bicubic = imresize_np(img, 1/4)
|
3DTopia/ldm/modules/losses/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
|
3DTopia/ldm/modules/losses/contperceptual.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
|
5 |
+
|
6 |
+
|
7 |
+
class LPIPSWithDiscriminator(nn.Module):
|
8 |
+
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
|
9 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
10 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
11 |
+
disc_loss="hinge"):
|
12 |
+
|
13 |
+
super().__init__()
|
14 |
+
assert disc_loss in ["hinge", "vanilla"]
|
15 |
+
self.kl_weight = kl_weight
|
16 |
+
self.pixel_weight = pixelloss_weight
|
17 |
+
self.perceptual_loss = LPIPS().eval()
|
18 |
+
self.perceptual_weight = perceptual_weight
|
19 |
+
# output log variance
|
20 |
+
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
|
21 |
+
|
22 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
23 |
+
n_layers=disc_num_layers,
|
24 |
+
use_actnorm=use_actnorm
|
25 |
+
).apply(weights_init)
|
26 |
+
self.discriminator_iter_start = disc_start
|
27 |
+
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
|
28 |
+
self.disc_factor = disc_factor
|
29 |
+
self.discriminator_weight = disc_weight
|
30 |
+
self.disc_conditional = disc_conditional
|
31 |
+
|
32 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
33 |
+
if last_layer is not None:
|
34 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
35 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
36 |
+
else:
|
37 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
38 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
39 |
+
|
40 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
41 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
42 |
+
d_weight = d_weight * self.discriminator_weight
|
43 |
+
return d_weight
|
44 |
+
|
45 |
+
def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
|
46 |
+
global_step, last_layer=None, cond=None, split="train",
|
47 |
+
weights=None):
|
48 |
+
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
49 |
+
if self.perceptual_weight > 0:
|
50 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
51 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
52 |
+
|
53 |
+
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
|
54 |
+
weighted_nll_loss = nll_loss
|
55 |
+
if weights is not None:
|
56 |
+
weighted_nll_loss = weights*nll_loss
|
57 |
+
weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
|
58 |
+
nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
59 |
+
kl_loss = posteriors.kl()
|
60 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
61 |
+
|
62 |
+
# now the GAN part
|
63 |
+
if optimizer_idx == 0:
|
64 |
+
# generator update
|
65 |
+
if cond is None:
|
66 |
+
assert not self.disc_conditional
|
67 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
68 |
+
else:
|
69 |
+
assert self.disc_conditional
|
70 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
71 |
+
g_loss = -torch.mean(logits_fake)
|
72 |
+
|
73 |
+
if self.disc_factor > 0.0:
|
74 |
+
try:
|
75 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
76 |
+
except RuntimeError:
|
77 |
+
assert not self.training
|
78 |
+
d_weight = torch.tensor(0.0)
|
79 |
+
else:
|
80 |
+
d_weight = torch.tensor(0.0)
|
81 |
+
|
82 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
83 |
+
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
|
84 |
+
|
85 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
|
86 |
+
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
|
87 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
88 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
89 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
90 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
91 |
+
}
|
92 |
+
return loss, log
|
93 |
+
|
94 |
+
if optimizer_idx == 1:
|
95 |
+
# second pass for discriminator update
|
96 |
+
if cond is None:
|
97 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
98 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
99 |
+
else:
|
100 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
101 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
102 |
+
|
103 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
104 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
105 |
+
|
106 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
107 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
108 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
109 |
+
}
|
110 |
+
return d_loss, log
|
111 |
+
|
3DTopia/ldm/modules/losses/vqperceptual.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops import repeat
|
5 |
+
|
6 |
+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
7 |
+
from taming.modules.losses.lpips import LPIPS
|
8 |
+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
9 |
+
|
10 |
+
|
11 |
+
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
12 |
+
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
13 |
+
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
14 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
15 |
+
loss_real = (weights * loss_real).sum() / weights.sum()
|
16 |
+
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
17 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
18 |
+
return d_loss
|
19 |
+
|
20 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
21 |
+
if global_step < threshold:
|
22 |
+
weight = value
|
23 |
+
return weight
|
24 |
+
|
25 |
+
|
26 |
+
def measure_perplexity(predicted_indices, n_embed):
|
27 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
28 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
29 |
+
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
30 |
+
avg_probs = encodings.mean(0)
|
31 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
32 |
+
cluster_use = torch.sum(avg_probs > 0)
|
33 |
+
return perplexity, cluster_use
|
34 |
+
|
35 |
+
def l1(x, y):
|
36 |
+
return torch.abs(x-y)
|
37 |
+
|
38 |
+
|
39 |
+
def l2(x, y):
|
40 |
+
return torch.pow((x-y), 2)
|
41 |
+
|
42 |
+
|
43 |
+
class VQLPIPSWithDiscriminator(nn.Module):
|
44 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
45 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
46 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
47 |
+
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
48 |
+
pixel_loss="l1"):
|
49 |
+
super().__init__()
|
50 |
+
assert disc_loss in ["hinge", "vanilla"]
|
51 |
+
assert perceptual_loss in ["lpips", "clips", "dists"]
|
52 |
+
assert pixel_loss in ["l1", "l2"]
|
53 |
+
self.codebook_weight = codebook_weight
|
54 |
+
self.pixel_weight = pixelloss_weight
|
55 |
+
if perceptual_loss == "lpips":
|
56 |
+
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
57 |
+
self.perceptual_loss = LPIPS().eval()
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
60 |
+
self.perceptual_weight = perceptual_weight
|
61 |
+
|
62 |
+
if pixel_loss == "l1":
|
63 |
+
self.pixel_loss = l1
|
64 |
+
else:
|
65 |
+
self.pixel_loss = l2
|
66 |
+
|
67 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
68 |
+
n_layers=disc_num_layers,
|
69 |
+
use_actnorm=use_actnorm,
|
70 |
+
ndf=disc_ndf
|
71 |
+
).apply(weights_init)
|
72 |
+
self.discriminator_iter_start = disc_start
|
73 |
+
if disc_loss == "hinge":
|
74 |
+
self.disc_loss = hinge_d_loss
|
75 |
+
elif disc_loss == "vanilla":
|
76 |
+
self.disc_loss = vanilla_d_loss
|
77 |
+
else:
|
78 |
+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
79 |
+
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
80 |
+
self.disc_factor = disc_factor
|
81 |
+
self.discriminator_weight = disc_weight
|
82 |
+
self.disc_conditional = disc_conditional
|
83 |
+
self.n_classes = n_classes
|
84 |
+
|
85 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
86 |
+
if last_layer is not None:
|
87 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
88 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
89 |
+
else:
|
90 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
91 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
92 |
+
|
93 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
94 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
95 |
+
d_weight = d_weight * self.discriminator_weight
|
96 |
+
return d_weight
|
97 |
+
|
98 |
+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
99 |
+
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
|
100 |
+
if not exists(codebook_loss):
|
101 |
+
codebook_loss = torch.tensor([0.]).to(inputs.device)
|
102 |
+
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
103 |
+
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
104 |
+
if self.perceptual_weight > 0:
|
105 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
106 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
107 |
+
else:
|
108 |
+
p_loss = torch.tensor([0.0])
|
109 |
+
|
110 |
+
nll_loss = rec_loss
|
111 |
+
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
112 |
+
nll_loss = torch.mean(nll_loss)
|
113 |
+
|
114 |
+
# now the GAN part
|
115 |
+
if optimizer_idx == 0:
|
116 |
+
# generator update
|
117 |
+
if cond is None:
|
118 |
+
assert not self.disc_conditional
|
119 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
120 |
+
else:
|
121 |
+
assert self.disc_conditional
|
122 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
123 |
+
g_loss = -torch.mean(logits_fake)
|
124 |
+
|
125 |
+
try:
|
126 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
127 |
+
except RuntimeError:
|
128 |
+
assert not self.training
|
129 |
+
d_weight = torch.tensor(0.0)
|
130 |
+
|
131 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
132 |
+
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
133 |
+
|
134 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
135 |
+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
136 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
137 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
138 |
+
"{}/p_loss".format(split): p_loss.detach().mean(),
|
139 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
140 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
141 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
142 |
+
}
|
143 |
+
if predicted_indices is not None:
|
144 |
+
assert self.n_classes is not None
|
145 |
+
with torch.no_grad():
|
146 |
+
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
147 |
+
log[f"{split}/perplexity"] = perplexity
|
148 |
+
log[f"{split}/cluster_usage"] = cluster_usage
|
149 |
+
return loss, log
|
150 |
+
|
151 |
+
if optimizer_idx == 1:
|
152 |
+
# second pass for discriminator update
|
153 |
+
if cond is None:
|
154 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
155 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
156 |
+
else:
|
157 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
158 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
159 |
+
|
160 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
161 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
162 |
+
|
163 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
164 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
165 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
166 |
+
}
|
167 |
+
return d_loss, log
|
3DTopia/ldm/modules/x_transformer.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
2 |
+
import torch
|
3 |
+
from torch import nn, einsum
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from functools import partial
|
6 |
+
from inspect import isfunction
|
7 |
+
from collections import namedtuple
|
8 |
+
from einops import rearrange, repeat, reduce
|
9 |
+
|
10 |
+
# constants
|
11 |
+
|
12 |
+
DEFAULT_DIM_HEAD = 64
|
13 |
+
|
14 |
+
Intermediates = namedtuple('Intermediates', [
|
15 |
+
'pre_softmax_attn',
|
16 |
+
'post_softmax_attn'
|
17 |
+
])
|
18 |
+
|
19 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
20 |
+
'hiddens',
|
21 |
+
'attn_intermediates'
|
22 |
+
])
|
23 |
+
|
24 |
+
|
25 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
26 |
+
def __init__(self, dim, max_seq_len):
|
27 |
+
super().__init__()
|
28 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
29 |
+
self.init_()
|
30 |
+
|
31 |
+
def init_(self):
|
32 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
n = torch.arange(x.shape[1], device=x.device)
|
36 |
+
return self.emb(n)[None, :, :]
|
37 |
+
|
38 |
+
|
39 |
+
class FixedPositionalEmbedding(nn.Module):
|
40 |
+
def __init__(self, dim):
|
41 |
+
super().__init__()
|
42 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
43 |
+
self.register_buffer('inv_freq', inv_freq)
|
44 |
+
|
45 |
+
def forward(self, x, seq_dim=1, offset=0):
|
46 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
47 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
48 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
49 |
+
return emb[None, :, :]
|
50 |
+
|
51 |
+
|
52 |
+
# helpers
|
53 |
+
|
54 |
+
def exists(val):
|
55 |
+
return val is not None
|
56 |
+
|
57 |
+
|
58 |
+
def default(val, d):
|
59 |
+
if exists(val):
|
60 |
+
return val
|
61 |
+
return d() if isfunction(d) else d
|
62 |
+
|
63 |
+
|
64 |
+
def always(val):
|
65 |
+
def inner(*args, **kwargs):
|
66 |
+
return val
|
67 |
+
return inner
|
68 |
+
|
69 |
+
|
70 |
+
def not_equals(val):
|
71 |
+
def inner(x):
|
72 |
+
return x != val
|
73 |
+
return inner
|
74 |
+
|
75 |
+
|
76 |
+
def equals(val):
|
77 |
+
def inner(x):
|
78 |
+
return x == val
|
79 |
+
return inner
|
80 |
+
|
81 |
+
|
82 |
+
def max_neg_value(tensor):
|
83 |
+
return -torch.finfo(tensor.dtype).max
|
84 |
+
|
85 |
+
|
86 |
+
# keyword argument helpers
|
87 |
+
|
88 |
+
def pick_and_pop(keys, d):
|
89 |
+
values = list(map(lambda key: d.pop(key), keys))
|
90 |
+
return dict(zip(keys, values))
|
91 |
+
|
92 |
+
|
93 |
+
def group_dict_by_key(cond, d):
|
94 |
+
return_val = [dict(), dict()]
|
95 |
+
for key in d.keys():
|
96 |
+
match = bool(cond(key))
|
97 |
+
ind = int(not match)
|
98 |
+
return_val[ind][key] = d[key]
|
99 |
+
return (*return_val,)
|
100 |
+
|
101 |
+
|
102 |
+
def string_begins_with(prefix, str):
|
103 |
+
return str.startswith(prefix)
|
104 |
+
|
105 |
+
|
106 |
+
def group_by_key_prefix(prefix, d):
|
107 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
108 |
+
|
109 |
+
|
110 |
+
def groupby_prefix_and_trim(prefix, d):
|
111 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
112 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
113 |
+
return kwargs_without_prefix, kwargs
|
114 |
+
|
115 |
+
|
116 |
+
# classes
|
117 |
+
class Scale(nn.Module):
|
118 |
+
def __init__(self, value, fn):
|
119 |
+
super().__init__()
|
120 |
+
self.value = value
|
121 |
+
self.fn = fn
|
122 |
+
|
123 |
+
def forward(self, x, **kwargs):
|
124 |
+
x, *rest = self.fn(x, **kwargs)
|
125 |
+
return (x * self.value, *rest)
|
126 |
+
|
127 |
+
|
128 |
+
class Rezero(nn.Module):
|
129 |
+
def __init__(self, fn):
|
130 |
+
super().__init__()
|
131 |
+
self.fn = fn
|
132 |
+
self.g = nn.Parameter(torch.zeros(1))
|
133 |
+
|
134 |
+
def forward(self, x, **kwargs):
|
135 |
+
x, *rest = self.fn(x, **kwargs)
|
136 |
+
return (x * self.g, *rest)
|
137 |
+
|
138 |
+
|
139 |
+
class ScaleNorm(nn.Module):
|
140 |
+
def __init__(self, dim, eps=1e-5):
|
141 |
+
super().__init__()
|
142 |
+
self.scale = dim ** -0.5
|
143 |
+
self.eps = eps
|
144 |
+
self.g = nn.Parameter(torch.ones(1))
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
148 |
+
return x / norm.clamp(min=self.eps) * self.g
|
149 |
+
|
150 |
+
|
151 |
+
class RMSNorm(nn.Module):
|
152 |
+
def __init__(self, dim, eps=1e-8):
|
153 |
+
super().__init__()
|
154 |
+
self.scale = dim ** -0.5
|
155 |
+
self.eps = eps
|
156 |
+
self.g = nn.Parameter(torch.ones(dim))
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
160 |
+
return x / norm.clamp(min=self.eps) * self.g
|
161 |
+
|
162 |
+
|
163 |
+
class Residual(nn.Module):
|
164 |
+
def forward(self, x, residual):
|
165 |
+
return x + residual
|
166 |
+
|
167 |
+
|
168 |
+
class GRUGating(nn.Module):
|
169 |
+
def __init__(self, dim):
|
170 |
+
super().__init__()
|
171 |
+
self.gru = nn.GRUCell(dim, dim)
|
172 |
+
|
173 |
+
def forward(self, x, residual):
|
174 |
+
gated_output = self.gru(
|
175 |
+
rearrange(x, 'b n d -> (b n) d'),
|
176 |
+
rearrange(residual, 'b n d -> (b n) d')
|
177 |
+
)
|
178 |
+
|
179 |
+
return gated_output.reshape_as(x)
|
180 |
+
|
181 |
+
|
182 |
+
# feedforward
|
183 |
+
|
184 |
+
class GEGLU(nn.Module):
|
185 |
+
def __init__(self, dim_in, dim_out):
|
186 |
+
super().__init__()
|
187 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
191 |
+
return x * F.gelu(gate)
|
192 |
+
|
193 |
+
|
194 |
+
class FeedForward(nn.Module):
|
195 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
196 |
+
super().__init__()
|
197 |
+
inner_dim = int(dim * mult)
|
198 |
+
dim_out = default(dim_out, dim)
|
199 |
+
project_in = nn.Sequential(
|
200 |
+
nn.Linear(dim, inner_dim),
|
201 |
+
nn.GELU()
|
202 |
+
) if not glu else GEGLU(dim, inner_dim)
|
203 |
+
|
204 |
+
self.net = nn.Sequential(
|
205 |
+
project_in,
|
206 |
+
nn.Dropout(dropout),
|
207 |
+
nn.Linear(inner_dim, dim_out)
|
208 |
+
)
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
return self.net(x)
|
212 |
+
|
213 |
+
|
214 |
+
# attention.
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim,
|
219 |
+
dim_head=DEFAULT_DIM_HEAD,
|
220 |
+
heads=8,
|
221 |
+
causal=False,
|
222 |
+
mask=None,
|
223 |
+
talking_heads=False,
|
224 |
+
sparse_topk=None,
|
225 |
+
use_entmax15=False,
|
226 |
+
num_mem_kv=0,
|
227 |
+
dropout=0.,
|
228 |
+
on_attn=False
|
229 |
+
):
|
230 |
+
super().__init__()
|
231 |
+
if use_entmax15:
|
232 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
233 |
+
self.scale = dim_head ** -0.5
|
234 |
+
self.heads = heads
|
235 |
+
self.causal = causal
|
236 |
+
self.mask = mask
|
237 |
+
|
238 |
+
inner_dim = dim_head * heads
|
239 |
+
|
240 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
241 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
242 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
243 |
+
self.dropout = nn.Dropout(dropout)
|
244 |
+
|
245 |
+
# talking heads
|
246 |
+
self.talking_heads = talking_heads
|
247 |
+
if talking_heads:
|
248 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
249 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
250 |
+
|
251 |
+
# explicit topk sparse attention
|
252 |
+
self.sparse_topk = sparse_topk
|
253 |
+
|
254 |
+
# entmax
|
255 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
256 |
+
self.attn_fn = F.softmax
|
257 |
+
|
258 |
+
# add memory key / values
|
259 |
+
self.num_mem_kv = num_mem_kv
|
260 |
+
if num_mem_kv > 0:
|
261 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
262 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
263 |
+
|
264 |
+
# attention on attention
|
265 |
+
self.attn_on_attn = on_attn
|
266 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
x,
|
271 |
+
context=None,
|
272 |
+
mask=None,
|
273 |
+
context_mask=None,
|
274 |
+
rel_pos=None,
|
275 |
+
sinusoidal_emb=None,
|
276 |
+
prev_attn=None,
|
277 |
+
mem=None
|
278 |
+
):
|
279 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
280 |
+
kv_input = default(context, x)
|
281 |
+
|
282 |
+
q_input = x
|
283 |
+
k_input = kv_input
|
284 |
+
v_input = kv_input
|
285 |
+
|
286 |
+
if exists(mem):
|
287 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
288 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
289 |
+
|
290 |
+
if exists(sinusoidal_emb):
|
291 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
292 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
293 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
294 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
295 |
+
|
296 |
+
q = self.to_q(q_input)
|
297 |
+
k = self.to_k(k_input)
|
298 |
+
v = self.to_v(v_input)
|
299 |
+
|
300 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
301 |
+
|
302 |
+
input_mask = None
|
303 |
+
if any(map(exists, (mask, context_mask))):
|
304 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
305 |
+
k_mask = q_mask if not exists(context) else context_mask
|
306 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
307 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
308 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
309 |
+
input_mask = q_mask * k_mask
|
310 |
+
|
311 |
+
if self.num_mem_kv > 0:
|
312 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
313 |
+
k = torch.cat((mem_k, k), dim=-2)
|
314 |
+
v = torch.cat((mem_v, v), dim=-2)
|
315 |
+
if exists(input_mask):
|
316 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
317 |
+
|
318 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
319 |
+
mask_value = max_neg_value(dots)
|
320 |
+
|
321 |
+
if exists(prev_attn):
|
322 |
+
dots = dots + prev_attn
|
323 |
+
|
324 |
+
pre_softmax_attn = dots
|
325 |
+
|
326 |
+
if talking_heads:
|
327 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
328 |
+
|
329 |
+
if exists(rel_pos):
|
330 |
+
dots = rel_pos(dots)
|
331 |
+
|
332 |
+
if exists(input_mask):
|
333 |
+
dots.masked_fill_(~input_mask, mask_value)
|
334 |
+
del input_mask
|
335 |
+
|
336 |
+
if self.causal:
|
337 |
+
i, j = dots.shape[-2:]
|
338 |
+
r = torch.arange(i, device=device)
|
339 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
340 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
341 |
+
dots.masked_fill_(mask, mask_value)
|
342 |
+
del mask
|
343 |
+
|
344 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
345 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
346 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
347 |
+
mask = dots < vk
|
348 |
+
dots.masked_fill_(mask, mask_value)
|
349 |
+
del mask
|
350 |
+
|
351 |
+
attn = self.attn_fn(dots, dim=-1)
|
352 |
+
post_softmax_attn = attn
|
353 |
+
|
354 |
+
attn = self.dropout(attn)
|
355 |
+
|
356 |
+
if talking_heads:
|
357 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
358 |
+
|
359 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
360 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
361 |
+
|
362 |
+
intermediates = Intermediates(
|
363 |
+
pre_softmax_attn=pre_softmax_attn,
|
364 |
+
post_softmax_attn=post_softmax_attn
|
365 |
+
)
|
366 |
+
|
367 |
+
return self.to_out(out), intermediates
|
368 |
+
|
369 |
+
|
370 |
+
class AttentionLayers(nn.Module):
|
371 |
+
def __init__(
|
372 |
+
self,
|
373 |
+
dim,
|
374 |
+
depth,
|
375 |
+
heads=8,
|
376 |
+
causal=False,
|
377 |
+
cross_attend=False,
|
378 |
+
only_cross=False,
|
379 |
+
use_scalenorm=False,
|
380 |
+
use_rmsnorm=False,
|
381 |
+
use_rezero=False,
|
382 |
+
rel_pos_num_buckets=32,
|
383 |
+
rel_pos_max_distance=128,
|
384 |
+
position_infused_attn=False,
|
385 |
+
custom_layers=None,
|
386 |
+
sandwich_coef=None,
|
387 |
+
par_ratio=None,
|
388 |
+
residual_attn=False,
|
389 |
+
cross_residual_attn=False,
|
390 |
+
macaron=False,
|
391 |
+
pre_norm=True,
|
392 |
+
gate_residual=False,
|
393 |
+
**kwargs
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
397 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
398 |
+
|
399 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
400 |
+
|
401 |
+
self.dim = dim
|
402 |
+
self.depth = depth
|
403 |
+
self.layers = nn.ModuleList([])
|
404 |
+
|
405 |
+
self.has_pos_emb = position_infused_attn
|
406 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
407 |
+
self.rotary_pos_emb = always(None)
|
408 |
+
|
409 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
410 |
+
self.rel_pos = None
|
411 |
+
|
412 |
+
self.pre_norm = pre_norm
|
413 |
+
|
414 |
+
self.residual_attn = residual_attn
|
415 |
+
self.cross_residual_attn = cross_residual_attn
|
416 |
+
|
417 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
418 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
419 |
+
norm_fn = partial(norm_class, dim)
|
420 |
+
|
421 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
422 |
+
branch_fn = Rezero if use_rezero else None
|
423 |
+
|
424 |
+
if cross_attend and not only_cross:
|
425 |
+
default_block = ('a', 'c', 'f')
|
426 |
+
elif cross_attend and only_cross:
|
427 |
+
default_block = ('c', 'f')
|
428 |
+
else:
|
429 |
+
default_block = ('a', 'f')
|
430 |
+
|
431 |
+
if macaron:
|
432 |
+
default_block = ('f',) + default_block
|
433 |
+
|
434 |
+
if exists(custom_layers):
|
435 |
+
layer_types = custom_layers
|
436 |
+
elif exists(par_ratio):
|
437 |
+
par_depth = depth * len(default_block)
|
438 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
439 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
440 |
+
par_attn = par_depth // par_ratio
|
441 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
442 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
443 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
444 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
445 |
+
par_head = par_block * par_attn
|
446 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
447 |
+
elif exists(sandwich_coef):
|
448 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
449 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
450 |
+
else:
|
451 |
+
layer_types = default_block * depth
|
452 |
+
|
453 |
+
self.layer_types = layer_types
|
454 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
455 |
+
|
456 |
+
for layer_type in self.layer_types:
|
457 |
+
if layer_type == 'a':
|
458 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
459 |
+
elif layer_type == 'c':
|
460 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
461 |
+
elif layer_type == 'f':
|
462 |
+
layer = FeedForward(dim, **ff_kwargs)
|
463 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
464 |
+
else:
|
465 |
+
raise Exception(f'invalid layer type {layer_type}')
|
466 |
+
|
467 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
468 |
+
layer = branch_fn(layer)
|
469 |
+
|
470 |
+
if gate_residual:
|
471 |
+
residual_fn = GRUGating(dim)
|
472 |
+
else:
|
473 |
+
residual_fn = Residual()
|
474 |
+
|
475 |
+
self.layers.append(nn.ModuleList([
|
476 |
+
norm_fn(),
|
477 |
+
layer,
|
478 |
+
residual_fn
|
479 |
+
]))
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
x,
|
484 |
+
context=None,
|
485 |
+
mask=None,
|
486 |
+
context_mask=None,
|
487 |
+
mems=None,
|
488 |
+
return_hiddens=False
|
489 |
+
):
|
490 |
+
hiddens = []
|
491 |
+
intermediates = []
|
492 |
+
prev_attn = None
|
493 |
+
prev_cross_attn = None
|
494 |
+
|
495 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
496 |
+
|
497 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
498 |
+
is_last = ind == (len(self.layers) - 1)
|
499 |
+
|
500 |
+
if layer_type == 'a':
|
501 |
+
hiddens.append(x)
|
502 |
+
layer_mem = mems.pop(0)
|
503 |
+
|
504 |
+
residual = x
|
505 |
+
|
506 |
+
if self.pre_norm:
|
507 |
+
x = norm(x)
|
508 |
+
|
509 |
+
if layer_type == 'a':
|
510 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
511 |
+
prev_attn=prev_attn, mem=layer_mem)
|
512 |
+
elif layer_type == 'c':
|
513 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
514 |
+
elif layer_type == 'f':
|
515 |
+
out = block(x)
|
516 |
+
|
517 |
+
x = residual_fn(out, residual)
|
518 |
+
|
519 |
+
if layer_type in ('a', 'c'):
|
520 |
+
intermediates.append(inter)
|
521 |
+
|
522 |
+
if layer_type == 'a' and self.residual_attn:
|
523 |
+
prev_attn = inter.pre_softmax_attn
|
524 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
525 |
+
prev_cross_attn = inter.pre_softmax_attn
|
526 |
+
|
527 |
+
if not self.pre_norm and not is_last:
|
528 |
+
x = norm(x)
|
529 |
+
|
530 |
+
if return_hiddens:
|
531 |
+
intermediates = LayerIntermediates(
|
532 |
+
hiddens=hiddens,
|
533 |
+
attn_intermediates=intermediates
|
534 |
+
)
|
535 |
+
|
536 |
+
return x, intermediates
|
537 |
+
|
538 |
+
return x
|
539 |
+
|
540 |
+
|
541 |
+
class Encoder(AttentionLayers):
|
542 |
+
def __init__(self, **kwargs):
|
543 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
544 |
+
super().__init__(causal=False, **kwargs)
|
545 |
+
|
546 |
+
|
547 |
+
|
548 |
+
class TransformerWrapper(nn.Module):
|
549 |
+
def __init__(
|
550 |
+
self,
|
551 |
+
*,
|
552 |
+
num_tokens,
|
553 |
+
max_seq_len,
|
554 |
+
attn_layers,
|
555 |
+
emb_dim=None,
|
556 |
+
max_mem_len=0.,
|
557 |
+
emb_dropout=0.,
|
558 |
+
num_memory_tokens=None,
|
559 |
+
tie_embedding=False,
|
560 |
+
use_pos_emb=True
|
561 |
+
):
|
562 |
+
super().__init__()
|
563 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
564 |
+
|
565 |
+
dim = attn_layers.dim
|
566 |
+
emb_dim = default(emb_dim, dim)
|
567 |
+
|
568 |
+
self.max_seq_len = max_seq_len
|
569 |
+
self.max_mem_len = max_mem_len
|
570 |
+
self.num_tokens = num_tokens
|
571 |
+
|
572 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
573 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
574 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
575 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
576 |
+
|
577 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
578 |
+
self.attn_layers = attn_layers
|
579 |
+
self.norm = nn.LayerNorm(dim)
|
580 |
+
|
581 |
+
self.init_()
|
582 |
+
|
583 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
584 |
+
|
585 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
586 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
587 |
+
self.num_memory_tokens = num_memory_tokens
|
588 |
+
if num_memory_tokens > 0:
|
589 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
590 |
+
|
591 |
+
# let funnel encoder know number of memory tokens, if specified
|
592 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
593 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
594 |
+
|
595 |
+
def init_(self):
|
596 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
597 |
+
|
598 |
+
def forward(
|
599 |
+
self,
|
600 |
+
x,
|
601 |
+
return_embeddings=False,
|
602 |
+
mask=None,
|
603 |
+
return_mems=False,
|
604 |
+
return_attn=False,
|
605 |
+
mems=None,
|
606 |
+
**kwargs
|
607 |
+
):
|
608 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
609 |
+
x = self.token_emb(x)
|
610 |
+
x += self.pos_emb(x)
|
611 |
+
x = self.emb_dropout(x)
|
612 |
+
|
613 |
+
x = self.project_emb(x)
|
614 |
+
|
615 |
+
if num_mem > 0:
|
616 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
617 |
+
x = torch.cat((mem, x), dim=1)
|
618 |
+
|
619 |
+
# auto-handle masking after appending memory tokens
|
620 |
+
if exists(mask):
|
621 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
622 |
+
|
623 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
624 |
+
x = self.norm(x)
|
625 |
+
|
626 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
627 |
+
|
628 |
+
out = self.to_logits(x) if not return_embeddings else x
|
629 |
+
|
630 |
+
if return_mems:
|
631 |
+
hiddens = intermediates.hiddens
|
632 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
633 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
634 |
+
return out, new_mems
|
635 |
+
|
636 |
+
if return_attn:
|
637 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
638 |
+
return out, attn_maps
|
639 |
+
|
640 |
+
return out
|
641 |
+
|
3DTopia/ldm/util.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from collections import abc
|
6 |
+
from einops import rearrange
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
import multiprocessing as mp
|
10 |
+
from threading import Thread
|
11 |
+
from queue import Queue
|
12 |
+
|
13 |
+
from inspect import isfunction
|
14 |
+
from PIL import Image, ImageDraw, ImageFont
|
15 |
+
|
16 |
+
|
17 |
+
def log_txt_as_img(wh, xc, size=10):
|
18 |
+
# wh a tuple of (width, height)
|
19 |
+
# xc a list of captions to plot
|
20 |
+
b = len(xc)
|
21 |
+
txts = list()
|
22 |
+
for bi in range(b):
|
23 |
+
txt = Image.new("RGB", wh, color="white")
|
24 |
+
draw = ImageDraw.Draw(txt)
|
25 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
26 |
+
nc = int(40 * (wh[0] / 256))
|
27 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
28 |
+
|
29 |
+
try:
|
30 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
31 |
+
except UnicodeEncodeError:
|
32 |
+
print("Cant encode string for logging. Skipping.")
|
33 |
+
|
34 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
35 |
+
txts.append(txt)
|
36 |
+
txts = np.stack(txts)
|
37 |
+
txts = torch.tensor(txts)
|
38 |
+
return txts
|
39 |
+
|
40 |
+
|
41 |
+
def ismap(x):
|
42 |
+
if not isinstance(x, torch.Tensor):
|
43 |
+
return False
|
44 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
45 |
+
|
46 |
+
|
47 |
+
def isimage(x):
|
48 |
+
if not isinstance(x, torch.Tensor):
|
49 |
+
return False
|
50 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
51 |
+
|
52 |
+
|
53 |
+
def exists(x):
|
54 |
+
return x is not None
|
55 |
+
|
56 |
+
|
57 |
+
def default(val, d):
|
58 |
+
if exists(val):
|
59 |
+
return val
|
60 |
+
return d() if isfunction(d) else d
|
61 |
+
|
62 |
+
|
63 |
+
def mean_flat(tensor):
|
64 |
+
"""
|
65 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
66 |
+
Take the mean over all non-batch dimensions.
|
67 |
+
"""
|
68 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
69 |
+
|
70 |
+
|
71 |
+
def count_params(model, verbose=False):
|
72 |
+
total_params = sum(p.numel() for p in model.parameters())
|
73 |
+
if verbose:
|
74 |
+
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
75 |
+
return total_params
|
76 |
+
|
77 |
+
|
78 |
+
def instantiate_from_config(config):
|
79 |
+
if not "target" in config:
|
80 |
+
if config == '__is_first_stage__':
|
81 |
+
return None
|
82 |
+
elif config == "__is_unconditional__":
|
83 |
+
return None
|
84 |
+
raise KeyError("Expected key `target` to instantiate.")
|
85 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
86 |
+
|
87 |
+
|
88 |
+
def get_obj_from_str(string, reload=False):
|
89 |
+
module, cls = string.rsplit(".", 1)
|
90 |
+
if reload:
|
91 |
+
module_imp = importlib.import_module(module)
|
92 |
+
importlib.reload(module_imp)
|
93 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
94 |
+
|
95 |
+
|
96 |
+
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
97 |
+
# create dummy dataset instance
|
98 |
+
|
99 |
+
# run prefetching
|
100 |
+
if idx_to_fn:
|
101 |
+
res = func(data, worker_id=idx)
|
102 |
+
else:
|
103 |
+
res = func(data)
|
104 |
+
Q.put([idx, res])
|
105 |
+
Q.put("Done")
|
106 |
+
|
107 |
+
|
108 |
+
def parallel_data_prefetch(
|
109 |
+
func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
|
110 |
+
):
|
111 |
+
# if target_data_type not in ["ndarray", "list"]:
|
112 |
+
# raise ValueError(
|
113 |
+
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
114 |
+
# )
|
115 |
+
if isinstance(data, np.ndarray) and target_data_type == "list":
|
116 |
+
raise ValueError("list expected but function got ndarray.")
|
117 |
+
elif isinstance(data, abc.Iterable):
|
118 |
+
if isinstance(data, dict):
|
119 |
+
print(
|
120 |
+
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
121 |
+
)
|
122 |
+
data = list(data.values())
|
123 |
+
if target_data_type == "ndarray":
|
124 |
+
data = np.asarray(data)
|
125 |
+
else:
|
126 |
+
data = list(data)
|
127 |
+
else:
|
128 |
+
raise TypeError(
|
129 |
+
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
130 |
+
)
|
131 |
+
|
132 |
+
if cpu_intensive:
|
133 |
+
Q = mp.Queue(1000)
|
134 |
+
proc = mp.Process
|
135 |
+
else:
|
136 |
+
Q = Queue(1000)
|
137 |
+
proc = Thread
|
138 |
+
# spawn processes
|
139 |
+
if target_data_type == "ndarray":
|
140 |
+
arguments = [
|
141 |
+
[func, Q, part, i, use_worker_id]
|
142 |
+
for i, part in enumerate(np.array_split(data, n_proc))
|
143 |
+
]
|
144 |
+
else:
|
145 |
+
step = (
|
146 |
+
int(len(data) / n_proc + 1)
|
147 |
+
if len(data) % n_proc != 0
|
148 |
+
else int(len(data) / n_proc)
|
149 |
+
)
|
150 |
+
arguments = [
|
151 |
+
[func, Q, part, i, use_worker_id]
|
152 |
+
for i, part in enumerate(
|
153 |
+
[data[i: i + step] for i in range(0, len(data), step)]
|
154 |
+
)
|
155 |
+
]
|
156 |
+
processes = []
|
157 |
+
for i in range(n_proc):
|
158 |
+
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
|
159 |
+
processes += [p]
|
160 |
+
|
161 |
+
# start processes
|
162 |
+
print(f"Start prefetching...")
|
163 |
+
import time
|
164 |
+
|
165 |
+
start = time.time()
|
166 |
+
gather_res = [[] for _ in range(n_proc)]
|
167 |
+
try:
|
168 |
+
for p in processes:
|
169 |
+
p.start()
|
170 |
+
|
171 |
+
k = 0
|
172 |
+
while k < n_proc:
|
173 |
+
# get result
|
174 |
+
res = Q.get()
|
175 |
+
if res == "Done":
|
176 |
+
k += 1
|
177 |
+
else:
|
178 |
+
gather_res[res[0]] = res[1]
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
print("Exception: ", e)
|
182 |
+
for p in processes:
|
183 |
+
p.terminate()
|
184 |
+
|
185 |
+
raise e
|
186 |
+
finally:
|
187 |
+
for p in processes:
|
188 |
+
p.join()
|
189 |
+
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
190 |
+
|
191 |
+
if target_data_type == 'ndarray':
|
192 |
+
if not isinstance(gather_res[0], np.ndarray):
|
193 |
+
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
194 |
+
|
195 |
+
# order outputs
|
196 |
+
return np.concatenate(gather_res, axis=0)
|
197 |
+
elif target_data_type == 'list':
|
198 |
+
out = []
|
199 |
+
for r in gather_res:
|
200 |
+
out.extend(r)
|
201 |
+
return out
|
202 |
+
else:
|
203 |
+
return gather_res
|
3DTopia/model/auto_regressive.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imageio
|
2 |
+
import os, math
|
3 |
+
import wandb
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
|
8 |
+
from utility.initialize import instantiate_from_config
|
9 |
+
from taming.modules.util import SOSProvider
|
10 |
+
from utility.triplane_renderer.renderer import get_embedder, NeRF, run_network, render_path1, to8b, img2mse, mse2psnr
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
|
16 |
+
def disabled_train(self, mode=True):
|
17 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
18 |
+
does not change anymore."""
|
19 |
+
return self
|
20 |
+
|
21 |
+
|
22 |
+
class Net2NetTransformer(pl.LightningModule):
|
23 |
+
def __init__(self,
|
24 |
+
transformer_config,
|
25 |
+
first_stage_config,
|
26 |
+
cond_stage_config,
|
27 |
+
permuter_config=None,
|
28 |
+
ckpt_path=None,
|
29 |
+
ignore_keys=[],
|
30 |
+
first_stage_key="triplane",
|
31 |
+
cond_stage_key="depth",
|
32 |
+
downsample_cond_size=-1,
|
33 |
+
pkeep=1.0,
|
34 |
+
sos_token=0,
|
35 |
+
unconditional=True,
|
36 |
+
learning_rate=1e-4,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.be_unconditional = unconditional
|
40 |
+
self.sos_token = sos_token
|
41 |
+
self.first_stage_key = first_stage_key
|
42 |
+
# self.cond_stage_key = cond_stage_key
|
43 |
+
self.init_first_stage_from_ckpt(first_stage_config)
|
44 |
+
# self.init_cond_stage_from_ckpt(cond_stage_config)
|
45 |
+
if permuter_config is None:
|
46 |
+
permuter_config = {"target": "taming.modules.transformer.permuter.Identity"}
|
47 |
+
self.permuter = instantiate_from_config(config=permuter_config)
|
48 |
+
self.transformer = instantiate_from_config(config=transformer_config)
|
49 |
+
|
50 |
+
if ckpt_path is not None:
|
51 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
52 |
+
self.downsample_cond_size = downsample_cond_size
|
53 |
+
self.pkeep = pkeep
|
54 |
+
self.learning_rate = learning_rate
|
55 |
+
|
56 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
57 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
58 |
+
for k in sd.keys():
|
59 |
+
for ik in ignore_keys:
|
60 |
+
if k.startswith(ik):
|
61 |
+
self.print("Deleting key {} from state_dict.".format(k))
|
62 |
+
del sd[k]
|
63 |
+
self.load_state_dict(sd, strict=False)
|
64 |
+
print(f"Restored from {path}")
|
65 |
+
|
66 |
+
def init_first_stage_from_ckpt(self, config):
|
67 |
+
model = instantiate_from_config(config)
|
68 |
+
# model = model.eval()
|
69 |
+
# model.train = disabled_train
|
70 |
+
|
71 |
+
self.first_stage_model = model
|
72 |
+
|
73 |
+
for param in self.first_stage_model.parameters():
|
74 |
+
param.requires_grad = False
|
75 |
+
|
76 |
+
self.first_stage_model.vector_quantizer.training = False
|
77 |
+
self.first_stage_model.vector_quantizer.embedding.update = False
|
78 |
+
|
79 |
+
def init_cond_stage_from_ckpt(self, config):
|
80 |
+
if config == "__is_first_stage__":
|
81 |
+
print("Using first stage also as cond stage.")
|
82 |
+
self.cond_stage_model = self.first_stage_model
|
83 |
+
elif config == "__is_unconditional__" or self.be_unconditional:
|
84 |
+
print(f"Using no cond stage. Assuming the training is intended to be unconditional. "
|
85 |
+
f"Prepending {self.sos_token} as a sos token.")
|
86 |
+
self.be_unconditional = True
|
87 |
+
self.cond_stage_key = self.first_stage_key
|
88 |
+
self.cond_stage_model = SOSProvider(self.sos_token)
|
89 |
+
else:
|
90 |
+
model = instantiate_from_config(config)
|
91 |
+
model = model.eval()
|
92 |
+
model.train = disabled_train
|
93 |
+
self.cond_stage_model = model
|
94 |
+
|
95 |
+
def forward(self, x, c):
|
96 |
+
# one step to produce the logits
|
97 |
+
_, z_indices = self.encode_to_z(x)
|
98 |
+
# _, c_indices = self.encode_to_c(c)
|
99 |
+
|
100 |
+
if self.training and self.pkeep < 1.0:
|
101 |
+
mask = torch.bernoulli(self.pkeep*torch.ones(z_indices.shape,
|
102 |
+
device=z_indices.device))
|
103 |
+
mask = mask.round().to(dtype=torch.int64)
|
104 |
+
r_indices = torch.randint_like(z_indices, self.transformer.config.vocab_size)
|
105 |
+
a_indices = mask*z_indices+(1-mask)*r_indices
|
106 |
+
else:
|
107 |
+
a_indices = z_indices
|
108 |
+
|
109 |
+
c_indices = torch.zeros_like(z_indices[:, 0:1]) + self.transformer.config.vocab_size - 1
|
110 |
+
cz_indices = torch.cat((c_indices, a_indices), dim=1)
|
111 |
+
|
112 |
+
# target includes all sequence elements (no need to handle first one
|
113 |
+
# differently because we are conditioning)
|
114 |
+
target = z_indices
|
115 |
+
# make the prediction
|
116 |
+
logits, _ = self.transformer(cz_indices[:, :-1])
|
117 |
+
# cut off conditioning outputs - output i corresponds to p(z_i | z_{<i}, c)
|
118 |
+
# logits = logits[:, c_indices.shape[1]-1:]
|
119 |
+
|
120 |
+
return logits, target
|
121 |
+
|
122 |
+
def top_k_logits(self, logits, k):
|
123 |
+
v, ix = torch.topk(logits, k)
|
124 |
+
out = logits.clone()
|
125 |
+
out[out < v[..., [-1]]] = -float('Inf')
|
126 |
+
return out
|
127 |
+
|
128 |
+
@torch.no_grad()
|
129 |
+
def sample(self, x, c, steps, temperature=1.0, sample=False, top_k=None,
|
130 |
+
callback=lambda k: None):
|
131 |
+
x = torch.cat((c,x),dim=1)
|
132 |
+
block_size = self.transformer.get_block_size()
|
133 |
+
assert not self.transformer.training
|
134 |
+
if self.pkeep <= 0.0:
|
135 |
+
# one pass suffices since input is pure noise anyway
|
136 |
+
assert len(x.shape)==2
|
137 |
+
noise_shape = (x.shape[0], steps-1)
|
138 |
+
#noise = torch.randint(self.transformer.config.vocab_size, noise_shape).to(x)
|
139 |
+
noise = c.clone()[:,x.shape[1]-c.shape[1]:-1]
|
140 |
+
x = torch.cat((x,noise),dim=1)
|
141 |
+
logits, _ = self.transformer(x)
|
142 |
+
# take all logits for now and scale by temp
|
143 |
+
logits = logits / temperature
|
144 |
+
# optionally crop probabilities to only the top k options
|
145 |
+
if top_k is not None:
|
146 |
+
logits = self.top_k_logits(logits, top_k)
|
147 |
+
# apply softmax to convert to probabilities
|
148 |
+
probs = F.softmax(logits, dim=-1)
|
149 |
+
# sample from the distribution or take the most likely
|
150 |
+
if sample:
|
151 |
+
shape = probs.shape
|
152 |
+
probs = probs.reshape(shape[0]*shape[1],shape[2])
|
153 |
+
ix = torch.multinomial(probs, num_samples=1)
|
154 |
+
probs = probs.reshape(shape[0],shape[1],shape[2])
|
155 |
+
ix = ix.reshape(shape[0],shape[1])
|
156 |
+
else:
|
157 |
+
_, ix = torch.topk(probs, k=1, dim=-1)
|
158 |
+
# cut off conditioning
|
159 |
+
x = ix[:, c.shape[1]-1:]
|
160 |
+
else:
|
161 |
+
for k in tqdm(range(steps)):
|
162 |
+
callback(k)
|
163 |
+
assert x.size(1) <= block_size # make sure model can see conditioning
|
164 |
+
x_cond = x if x.size(1) <= block_size else x[:, -block_size:] # crop context if needed
|
165 |
+
logits, _ = self.transformer(x_cond)
|
166 |
+
# pluck the logits at the final step and scale by temperature
|
167 |
+
logits = logits[:, -1, :] / temperature
|
168 |
+
# optionally crop probabilities to only the top k options
|
169 |
+
if top_k is not None:
|
170 |
+
logits = self.top_k_logits(logits, top_k)
|
171 |
+
# apply softmax to convert to probabilities
|
172 |
+
probs = F.softmax(logits, dim=-1)
|
173 |
+
# sample from the distribution or take the most likely
|
174 |
+
if sample:
|
175 |
+
ix = torch.multinomial(probs, num_samples=1)
|
176 |
+
else:
|
177 |
+
_, ix = torch.topk(probs, k=1, dim=-1)
|
178 |
+
# append to the sequence and continue
|
179 |
+
x = torch.cat((x, ix), dim=1)
|
180 |
+
# cut off conditioning
|
181 |
+
x = x[:, c.shape[1]:]
|
182 |
+
return x
|
183 |
+
|
184 |
+
@torch.no_grad()
|
185 |
+
def encode_to_z(self, x):
|
186 |
+
quant_z, _, perplexity, encoding_indices = self.first_stage_model.encode(x, rollout=True)
|
187 |
+
indices = encoding_indices.view(quant_z.shape[0], -1)
|
188 |
+
indices = self.permuter(indices)
|
189 |
+
return quant_z, indices
|
190 |
+
|
191 |
+
@torch.no_grad()
|
192 |
+
def encode_to_c(self, c):
|
193 |
+
if self.downsample_cond_size > -1:
|
194 |
+
c = F.interpolate(c, size=(self.downsample_cond_size, self.downsample_cond_size))
|
195 |
+
quant_c, _, [_,_,indices] = self.cond_stage_model.encode(c)
|
196 |
+
if len(indices.shape) > 2:
|
197 |
+
indices = indices.view(c.shape[0], -1)
|
198 |
+
return quant_c, indices
|
199 |
+
|
200 |
+
# @torch.no_grad()
|
201 |
+
# def decode_to_img(self, index, zshape):
|
202 |
+
# index = self.permuter(index, reverse=True)
|
203 |
+
# bhwc = (zshape[0],zshape[2],zshape[3],zshape[1])
|
204 |
+
# quant_z = self.first_stage_model.quantize.get_codebook_entry(
|
205 |
+
# index.reshape(-1), shape=bhwc)
|
206 |
+
# x = self.first_stage_model.decode(quant_z)
|
207 |
+
# return x
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def decode_to_triplane(self, index, zshape):
|
211 |
+
quant_z = self.first_stage_model.vector_quantizer.dequantize(index)
|
212 |
+
quant_z = quant_z.reshape(zshape[0], zshape[2], zshape[3], zshape[1])
|
213 |
+
quant_z = quant_z.permute(0, 3, 1, 2)
|
214 |
+
z = self.first_stage_model.decode(quant_z)
|
215 |
+
return z
|
216 |
+
|
217 |
+
@torch.no_grad()
|
218 |
+
def log_images(self, batch, temperature=None, top_k=None, callback=None, lr_interface=False, **kwargs):
|
219 |
+
log = dict()
|
220 |
+
|
221 |
+
N = 2
|
222 |
+
if lr_interface:
|
223 |
+
x, c = self.get_xc(batch, N, diffuse=False, upsample_factor=8)
|
224 |
+
else:
|
225 |
+
x, c = self.get_xc(batch, N)
|
226 |
+
x = x.to(device=self.device)
|
227 |
+
# c = c.to(device=self.device)
|
228 |
+
log["inputs"] = self.render_triplane(x, batch)
|
229 |
+
|
230 |
+
quant_z, z_indices = self.encode_to_z(x)
|
231 |
+
# quant_c, c_indices = self.encode_to_c(c)
|
232 |
+
c_indices = torch.zeros_like(z_indices[:, 0:1]) + self.transformer.config.vocab_size - 1
|
233 |
+
|
234 |
+
# create a "half"" sample
|
235 |
+
z_start_indices = z_indices[:,:z_indices.shape[1]//2]
|
236 |
+
index_sample = self.sample(z_start_indices, c_indices,
|
237 |
+
steps=z_indices.shape[1]-z_start_indices.shape[1],
|
238 |
+
temperature=temperature if temperature is not None else 1.0,
|
239 |
+
sample=True,
|
240 |
+
top_k=top_k if top_k is not None else 100,
|
241 |
+
callback=callback if callback is not None else lambda k: None)
|
242 |
+
x_sample = self.first_stage_model.unrollout(self.decode_to_triplane(index_sample, quant_z.shape))
|
243 |
+
log["samples_half"] = self.render_triplane(x_sample, batch)
|
244 |
+
|
245 |
+
# sample
|
246 |
+
z_start_indices = z_indices[:, :0]
|
247 |
+
index_sample = self.sample(z_start_indices, c_indices,
|
248 |
+
steps=z_indices.shape[1],
|
249 |
+
temperature=temperature if temperature is not None else 1.0,
|
250 |
+
sample=True,
|
251 |
+
top_k=top_k if top_k is not None else 100,
|
252 |
+
callback=callback if callback is not None else lambda k: None)
|
253 |
+
x_sample_nopix = self.first_stage_model.unrollout(self.decode_to_triplane(index_sample, quant_z.shape))
|
254 |
+
log["samples_nopix"] = self.render_triplane(x_sample_nopix, batch)
|
255 |
+
|
256 |
+
# # det sample
|
257 |
+
# z_start_indices = z_indices[:, :0]
|
258 |
+
# index_sample = self.sample(z_start_indices, c_indices,
|
259 |
+
# steps=z_indices.shape[1],
|
260 |
+
# sample=False,
|
261 |
+
# callback=callback if callback is not None else lambda k: None)
|
262 |
+
# x_sample_det = self.first_stage_model.unrollout(self.decode_to_triplane(index_sample, quant_z.shape))
|
263 |
+
# log["samples_det"] = self.render_triplane(x_sample_det, batch)
|
264 |
+
|
265 |
+
# reconstruction
|
266 |
+
x_rec = self.first_stage_model.unrollout(self.decode_to_triplane(z_indices, quant_z.shape))
|
267 |
+
# x_rec = self.first_stage_model.unrollout(self.first_stage_model(self.first_stage_model.rollout(x))[0])
|
268 |
+
log["reconstructions"] = self.render_triplane(x_rec, batch)
|
269 |
+
|
270 |
+
# if self.cond_stage_key in ["objects_bbox", "objects_center_points"]:
|
271 |
+
# figure_size = (x_rec.shape[2], x_rec.shape[3])
|
272 |
+
# dataset = kwargs["pl_module"].trainer.datamodule.datasets["validation"]
|
273 |
+
# label_for_category_no = dataset.get_textual_label_for_category_no
|
274 |
+
# plotter = dataset.conditional_builders[self.cond_stage_key].plot
|
275 |
+
# log["conditioning"] = torch.zeros_like(log["reconstructions"])
|
276 |
+
# for i in range(quant_c.shape[0]):
|
277 |
+
# log["conditioning"][i] = plotter(quant_c[i], label_for_category_no, figure_size)
|
278 |
+
# log["conditioning_rec"] = log["conditioning"]
|
279 |
+
# elif self.cond_stage_key != "image":
|
280 |
+
# cond_rec = self.cond_stage_model.decode(quant_c)
|
281 |
+
# if self.cond_stage_key == "segmentation":
|
282 |
+
# # get image from segmentation mask
|
283 |
+
# num_classes = cond_rec.shape[1]
|
284 |
+
|
285 |
+
# c = torch.argmax(c, dim=1, keepdim=True)
|
286 |
+
# c = F.one_hot(c, num_classes=num_classes)
|
287 |
+
# c = c.squeeze(1).permute(0, 3, 1, 2).float()
|
288 |
+
# c = self.cond_stage_model.to_rgb(c)
|
289 |
+
|
290 |
+
# cond_rec = torch.argmax(cond_rec, dim=1, keepdim=True)
|
291 |
+
# cond_rec = F.one_hot(cond_rec, num_classes=num_classes)
|
292 |
+
# cond_rec = cond_rec.squeeze(1).permute(0, 3, 1, 2).float()
|
293 |
+
# cond_rec = self.cond_stage_model.to_rgb(cond_rec)
|
294 |
+
# log["conditioning_rec"] = cond_rec
|
295 |
+
# log["conditioning"] = c
|
296 |
+
|
297 |
+
return log
|
298 |
+
|
299 |
+
def render_triplane(self, triplane, batch):
|
300 |
+
batch_size = triplane.shape[0]
|
301 |
+
rgb_list = []
|
302 |
+
for b in range(batch_size):
|
303 |
+
rgb, cur_psnr_list = self.first_stage_model.render_triplane_eg3d_decoder(
|
304 |
+
triplane[b:b+1], batch['batch_rays'][b], batch['img'][b],
|
305 |
+
)
|
306 |
+
rgb = to8b(rgb.detach().cpu().numpy())
|
307 |
+
rgb_list.append(rgb[1])
|
308 |
+
|
309 |
+
return np.stack(rgb_list, 0)
|
310 |
+
|
311 |
+
def get_input(self, key, batch):
|
312 |
+
x = batch[key]
|
313 |
+
# if len(x.shape) == 3:
|
314 |
+
# x = x[..., None]
|
315 |
+
# if len(x.shape) == 4:
|
316 |
+
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
|
317 |
+
# if x.dtype == torch.double:
|
318 |
+
# x = x.float()
|
319 |
+
return x
|
320 |
+
|
321 |
+
def get_xc(self, batch, N=None):
|
322 |
+
x = self.get_input(self.first_stage_key, batch)
|
323 |
+
# c = self.get_input(self.cond_stage_key, batch)
|
324 |
+
if N is not None:
|
325 |
+
x = x[:N]
|
326 |
+
# c = c[:N]
|
327 |
+
return x, None
|
328 |
+
|
329 |
+
def shared_step(self, batch, batch_idx):
|
330 |
+
x, c = self.get_xc(batch)
|
331 |
+
logits, target = self(x, c)
|
332 |
+
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
|
333 |
+
return loss
|
334 |
+
|
335 |
+
def training_step(self, batch, batch_idx):
|
336 |
+
loss = self.shared_step(batch, batch_idx)
|
337 |
+
self.log("train/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
338 |
+
return loss
|
339 |
+
|
340 |
+
def validation_step(self, batch, batch_idx):
|
341 |
+
loss = self.shared_step(batch, batch_idx)
|
342 |
+
self.log("val/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
343 |
+
if batch_idx == 0:
|
344 |
+
imgs = self.log_images(batch)
|
345 |
+
for i in range(imgs['inputs'].shape[0]):
|
346 |
+
self.logger.experiment.log({
|
347 |
+
"val/vis/inputs": [wandb.Image(imgs['inputs'][i])],
|
348 |
+
"val/vis/reconstructions": [wandb.Image(imgs['reconstructions'][i])],
|
349 |
+
"val/vis/samples_half": [wandb.Image(imgs['samples_half'][i])],
|
350 |
+
"val/vis/samples_nopix": [wandb.Image(imgs['samples_nopix'][i])],
|
351 |
+
# "val/vis/samples_det": [wandb.Image(imgs['samples_det'][i])],
|
352 |
+
})
|
353 |
+
return loss
|
354 |
+
|
355 |
+
def test_step(self, batch, batch_idx):
|
356 |
+
loss = self.shared_step(batch, batch_idx)
|
357 |
+
self.log("test/loss", loss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
358 |
+
imgs = self.log_images(batch, temperature=1.8)
|
359 |
+
print("Saved to {}".format(self.logger.log_dir))
|
360 |
+
for i in range(imgs['inputs'].shape[0]):
|
361 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "inputs_{}_{}.png".format(batch_idx, i)), imgs['inputs'][i])
|
362 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "reconstructions_{}_{}.png".format(batch_idx, i)), imgs['reconstructions'][i])
|
363 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "samples_half_{}_{}.png".format(batch_idx, i)), imgs['samples_half'][i])
|
364 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "samples_nopix_{}_{}.png".format(batch_idx, i)), imgs['samples_nopix'][i])
|
365 |
+
# imageio.imwrite(os.path.join(self.logger.log_dir, "samples_det_{}_{}.png".format(batch_idx, i)), imgs['samples_det'][i])
|
366 |
+
return loss
|
367 |
+
|
368 |
+
def configure_optimizers(self):
|
369 |
+
"""
|
370 |
+
Following minGPT:
|
371 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
372 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
373 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
374 |
+
We are then returning the PyTorch optimizer object.
|
375 |
+
"""
|
376 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
377 |
+
decay = set()
|
378 |
+
no_decay = set()
|
379 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
380 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
381 |
+
for mn, m in self.transformer.named_modules():
|
382 |
+
for pn, p in m.named_parameters():
|
383 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
384 |
+
|
385 |
+
if pn.endswith('bias'):
|
386 |
+
# all biases will not be decayed
|
387 |
+
no_decay.add(fpn)
|
388 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
389 |
+
# weights of whitelist modules will be weight decayed
|
390 |
+
decay.add(fpn)
|
391 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
392 |
+
# weights of blacklist modules will NOT be weight decayed
|
393 |
+
no_decay.add(fpn)
|
394 |
+
|
395 |
+
# special case the position embedding parameter in the root GPT module as not decayed
|
396 |
+
no_decay.add('pos_emb')
|
397 |
+
|
398 |
+
# validate that we considered every parameter
|
399 |
+
param_dict = {pn: p for pn, p in self.transformer.named_parameters()}
|
400 |
+
inter_params = decay & no_decay
|
401 |
+
union_params = decay | no_decay
|
402 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
403 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
404 |
+
% (str(param_dict.keys() - union_params), )
|
405 |
+
|
406 |
+
# create the pytorch optimizer object
|
407 |
+
optim_groups = [
|
408 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 0.01},
|
409 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
410 |
+
]
|
411 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=self.learning_rate, betas=(0.9, 0.95))
|
412 |
+
return optimizer
|
3DTopia/model/sv_vae_triplane.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
import torch.nn as nn
|
7 |
+
import pytorch_lightning as pl
|
8 |
+
import wandb
|
9 |
+
|
10 |
+
import lpips
|
11 |
+
from pytorch_msssim import SSIM
|
12 |
+
|
13 |
+
from utility.initialize import instantiate_from_config
|
14 |
+
|
15 |
+
class VAE(pl.LightningModule):
|
16 |
+
def __init__(self, vae_configs, renderer_configs, lr=1e-3, weight_decay=1e-2,
|
17 |
+
kld_weight=1, mse_weight=1, lpips_weight=0.1, ssim_weight=0.1,
|
18 |
+
log_image_freq=50):
|
19 |
+
super().__init__()
|
20 |
+
self.save_hyperparameters()
|
21 |
+
|
22 |
+
self.lr = lr
|
23 |
+
self.weight_decay = weight_decay
|
24 |
+
self.kld_weight = kld_weight
|
25 |
+
self.mse_weight = mse_weight
|
26 |
+
self.lpips_weight = lpips_weight
|
27 |
+
self.ssim_weight = ssim_weight
|
28 |
+
self.log_image_freq = log_image_freq
|
29 |
+
|
30 |
+
self.vae = instantiate_from_config(vae_configs)
|
31 |
+
self.renderer = instantiate_from_config(renderer_configs)
|
32 |
+
|
33 |
+
self.lpips_fn = lpips.LPIPS(net='alex')
|
34 |
+
self.ssim_fn = SSIM(data_range=1, size_average=True, channel=3)
|
35 |
+
|
36 |
+
self.triplane_render_kwargs = {
|
37 |
+
'depth_resolution': 64,
|
38 |
+
'disparity_space_sampling': False,
|
39 |
+
'box_warp': 2.4,
|
40 |
+
'depth_resolution_importance': 64,
|
41 |
+
'clamp_mode': 'softplus',
|
42 |
+
'white_back': True,
|
43 |
+
}
|
44 |
+
|
45 |
+
def forward(self, batch, is_train):
|
46 |
+
encoder_img, input_img, input_ray_o, input_ray_d, \
|
47 |
+
target_img, target_ray_o, target_ray_d = batch
|
48 |
+
grid, mu, logvar = self.vae(encoder_img, is_train)
|
49 |
+
|
50 |
+
cat_ray_o = torch.cat([input_ray_o, target_ray_o], 0)
|
51 |
+
cat_ray_d = torch.cat([input_ray_d, target_ray_d], 0)
|
52 |
+
render_out = self.renderer(torch.cat([grid, grid], 0), cat_ray_o, cat_ray_d, self.triplane_render_kwargs)
|
53 |
+
render_gt = torch.cat([input_img, target_img], 0)
|
54 |
+
|
55 |
+
return render_out['rgb_marched'], render_out['depth_final'], \
|
56 |
+
render_out['weights'], mu, logvar, render_gt
|
57 |
+
|
58 |
+
def calc_loss(self, render, mu, logvar, render_gt):
|
59 |
+
mse = torch.mean((render - render_gt) ** 2)
|
60 |
+
ssim_loss = 1 - self.ssim_fn(render, render_gt)
|
61 |
+
lpips_loss = self.lpips_fn((render * 2) - 1, (render_gt * 2) - 1).mean()
|
62 |
+
kld_loss = -0.5 * torch.mean(torch.mean(1 + logvar - mu.pow(2) - logvar.exp(), 1))
|
63 |
+
|
64 |
+
loss = self.mse_weight * mse + self.ssim_weight * ssim_loss + \
|
65 |
+
self.lpips_weight * lpips_loss + self.kld_weight * kld_loss
|
66 |
+
|
67 |
+
return {
|
68 |
+
'loss': loss,
|
69 |
+
'mse': mse,
|
70 |
+
'ssim': ssim_loss,
|
71 |
+
'lpips': lpips_loss,
|
72 |
+
'kld': kld_loss,
|
73 |
+
}
|
74 |
+
|
75 |
+
def log_dict(self, loss_dict, prefix):
|
76 |
+
for k, v in loss_dict.items():
|
77 |
+
self.log(prefix + k, v, on_step=True, logger=True)
|
78 |
+
|
79 |
+
def make_grid(self, render, depth, render_gt):
|
80 |
+
bs = render.shape[0] // 2
|
81 |
+
grid = torchvision.utils.make_grid(
|
82 |
+
torch.stack([render_gt[0], render_gt[bs], render[0], depth[0], render[bs], depth[bs]], 0))
|
83 |
+
grid = (grid.detach().cpu().permute(1, 2, 0) * 255.).numpy().astype(np.uint8)
|
84 |
+
return grid
|
85 |
+
|
86 |
+
def training_step(self, batch, batch_idx):
|
87 |
+
render, depth, weights, mu, logvar, render_gt = self.forward(batch, True)
|
88 |
+
loss_dict = self.calc_loss(render, mu, logvar, render_gt)
|
89 |
+
self.log_dict(loss_dict, 'train/')
|
90 |
+
if batch_idx % self.log_image_freq == 0:
|
91 |
+
self.logger.experiment.log({
|
92 |
+
'train/vis': [wandb.Image(self.make_grid(
|
93 |
+
render, depth, render_gt
|
94 |
+
))]
|
95 |
+
})
|
96 |
+
return loss_dict['loss']
|
97 |
+
|
98 |
+
def validation_step(self, batch, batch_idx):
|
99 |
+
render, depth, _, mu, logvar, render_gt = self.forward(batch, False)
|
100 |
+
loss_dict = self.calc_loss(render, mu, logvar, render_gt)
|
101 |
+
self.log_dict(loss_dict, 'val/')
|
102 |
+
if batch_idx % self.log_image_freq == 0:
|
103 |
+
self.logger.experiment.log({
|
104 |
+
'val/vis': [wandb.Image(self.make_grid(
|
105 |
+
render, depth, render_gt
|
106 |
+
))]
|
107 |
+
})
|
108 |
+
|
109 |
+
def configure_optimizers(self):
|
110 |
+
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr, weight_decay=self.weight_decay)
|
111 |
+
return optimizer
|
3DTopia/model/triplane_vae.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
3DTopia/model/triplane_vqvae.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import torch
|
4 |
+
import wandb
|
5 |
+
import numpy as np
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from module.model_2d import Encoder, Decoder, DiagonalGaussianDistribution, Encoder_GroupConv, Decoder_GroupConv, Encoder_GroupConv_LateFusion, Decoder_GroupConv_LateFusion
|
10 |
+
from utility.initialize import instantiate_from_config
|
11 |
+
from utility.triplane_renderer.renderer import get_embedder, NeRF, run_network, render_path1, to8b, img2mse, mse2psnr
|
12 |
+
from utility.triplane_renderer.eg3d_renderer import Renderer_TriPlane
|
13 |
+
from module.quantise import VectorQuantiser
|
14 |
+
from module.quantize_taming import EMAVectorQuantizer, VectorQuantizer2, QuantizeEMAReset
|
15 |
+
|
16 |
+
class CVQVAE(pl.LightningModule):
|
17 |
+
def __init__(self,
|
18 |
+
ddconfig,
|
19 |
+
lossconfig,
|
20 |
+
embed_dim,
|
21 |
+
learning_rate=1e-3,
|
22 |
+
ckpt_path=None,
|
23 |
+
ignore_keys=[],
|
24 |
+
colorize_nlabels=None,
|
25 |
+
monitor=None,
|
26 |
+
decoder_ckpt=None,
|
27 |
+
norm=True,
|
28 |
+
renderer_type='nerf',
|
29 |
+
is_cvqvae=False,
|
30 |
+
renderer_config=dict(
|
31 |
+
rgbnet_dim=18,
|
32 |
+
rgbnet_width=128,
|
33 |
+
viewpe=0,
|
34 |
+
feape=0
|
35 |
+
),
|
36 |
+
vector_quantizer_config=dict(
|
37 |
+
num_embed=1024,
|
38 |
+
beta=0.25,
|
39 |
+
distance='cos',
|
40 |
+
anchor='closest',
|
41 |
+
first_batch=False,
|
42 |
+
contras_loss=True,
|
43 |
+
)
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.save_hyperparameters()
|
47 |
+
self.norm = norm
|
48 |
+
self.renderer_config = renderer_config
|
49 |
+
self.learning_rate = learning_rate
|
50 |
+
|
51 |
+
ddconfig['double_z'] = False
|
52 |
+
self.encoder = Encoder_GroupConv(**ddconfig)
|
53 |
+
self.decoder = Decoder_GroupConv(**ddconfig)
|
54 |
+
|
55 |
+
self.lossconfig = lossconfig
|
56 |
+
|
57 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
58 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
59 |
+
|
60 |
+
self.embed_dim = embed_dim
|
61 |
+
if colorize_nlabels is not None:
|
62 |
+
assert type(colorize_nlabels)==int
|
63 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
64 |
+
if monitor is not None:
|
65 |
+
self.monitor = monitor
|
66 |
+
|
67 |
+
self.decoder_ckpt = decoder_ckpt
|
68 |
+
self.renderer_type = renderer_type
|
69 |
+
if decoder_ckpt is not None:
|
70 |
+
self.triplane_decoder, self.triplane_render_kwargs = self.create_eg3d_decoder(decoder_ckpt)
|
71 |
+
|
72 |
+
vector_quantizer_config['embed_dim'] = embed_dim
|
73 |
+
|
74 |
+
if is_cvqvae:
|
75 |
+
self.vector_quantizer = VectorQuantiser(
|
76 |
+
**vector_quantizer_config
|
77 |
+
)
|
78 |
+
else:
|
79 |
+
self.vector_quantizer = EMAVectorQuantizer(
|
80 |
+
n_embed=vector_quantizer_config['num_embed'],
|
81 |
+
codebook_dim = embed_dim,
|
82 |
+
beta=vector_quantizer_config['beta']
|
83 |
+
)
|
84 |
+
# self.vector_quantizer = VectorQuantizer2(
|
85 |
+
# n_e = vector_quantizer_config['num_embed'],
|
86 |
+
# e_dim = embed_dim,
|
87 |
+
# beta = vector_quantizer_config['beta']
|
88 |
+
# )
|
89 |
+
# self.vector_quantizer = QuantizeEMAReset(
|
90 |
+
# nb_code = vector_quantizer_config['num_embed'],
|
91 |
+
# code_dim = embed_dim,
|
92 |
+
# mu = vector_quantizer_config['beta'],
|
93 |
+
# )
|
94 |
+
|
95 |
+
self.psum = torch.zeros([1])
|
96 |
+
self.psum_sq = torch.zeros([1])
|
97 |
+
self.psum_min = torch.zeros([1])
|
98 |
+
self.psum_max = torch.zeros([1])
|
99 |
+
self.count = 0
|
100 |
+
self.len_dset = 0
|
101 |
+
self.latent_list = []
|
102 |
+
|
103 |
+
if ckpt_path is not None:
|
104 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
105 |
+
|
106 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
107 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
108 |
+
keys = list(sd.keys())
|
109 |
+
for k in keys:
|
110 |
+
for ik in ignore_keys:
|
111 |
+
if k.startswith(ik):
|
112 |
+
print("Deleting key {} from state_dict.".format(k))
|
113 |
+
del sd[k]
|
114 |
+
self.load_state_dict(sd, strict=True)
|
115 |
+
print(f"Restored from {path}")
|
116 |
+
|
117 |
+
def encode(self, x, rollout=False):
|
118 |
+
if rollout:
|
119 |
+
x = self.rollout(x)
|
120 |
+
h = self.encoder(x)
|
121 |
+
moments = self.quant_conv(h)
|
122 |
+
z_q, loss, (perplexity, min_encodings, encoding_indices) = self.vector_quantizer(moments)
|
123 |
+
return z_q, loss, perplexity, encoding_indices
|
124 |
+
|
125 |
+
def decode(self, z, unrollout=False):
|
126 |
+
z = self.post_quant_conv(z)
|
127 |
+
dec = self.decoder(z)
|
128 |
+
if unrollout:
|
129 |
+
dec = self.unrollout(dec)
|
130 |
+
return dec
|
131 |
+
|
132 |
+
def forward(self, input):
|
133 |
+
z_q, loss, perplexity, encoding_indices = self.encode(input)
|
134 |
+
dec = self.decode(z_q)
|
135 |
+
return dec, loss, perplexity, encoding_indices
|
136 |
+
|
137 |
+
def rollout(self, triplane):
|
138 |
+
res = triplane.shape[-1]
|
139 |
+
ch = triplane.shape[1]
|
140 |
+
triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res)
|
141 |
+
return triplane
|
142 |
+
|
143 |
+
def to3daware(self, triplane):
|
144 |
+
res = triplane.shape[-2]
|
145 |
+
plane1 = triplane[..., :res]
|
146 |
+
plane2 = triplane[..., res:2*res]
|
147 |
+
plane3 = triplane[..., 2*res:3*res]
|
148 |
+
|
149 |
+
x_mp = torch.nn.MaxPool2d((res, 1))
|
150 |
+
y_mp = torch.nn.MaxPool2d((1, res))
|
151 |
+
x_mp_rep = lambda i: x_mp(i).repeat(1, 1, res, 1).permute(0, 1, 3, 2)
|
152 |
+
y_mp_rep = lambda i: y_mp(i).repeat(1, 1, 1, res).permute(0, 1, 3, 2)
|
153 |
+
# for plane1
|
154 |
+
plane21 = x_mp_rep(plane2)
|
155 |
+
plane31 = torch.flip(y_mp_rep(plane3), (3,))
|
156 |
+
new_plane1 = torch.cat([plane1, plane21, plane31], 1)
|
157 |
+
# for plane2
|
158 |
+
plane12 = y_mp_rep(plane1)
|
159 |
+
plane32 = x_mp_rep(plane3)
|
160 |
+
new_plane2 = torch.cat([plane2, plane12, plane32], 1)
|
161 |
+
# for plane3
|
162 |
+
plane13 = torch.flip(x_mp_rep(plane1), (2,))
|
163 |
+
plane23 = y_mp_rep(plane2)
|
164 |
+
new_plane3 = torch.cat([plane3, plane13, plane23], 1)
|
165 |
+
|
166 |
+
new_plane = torch.cat([new_plane1, new_plane2, new_plane3], -1).contiguous()
|
167 |
+
return new_plane
|
168 |
+
|
169 |
+
def unrollout(self, triplane):
|
170 |
+
res = triplane.shape[-2]
|
171 |
+
ch = 3 * triplane.shape[1]
|
172 |
+
triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res)
|
173 |
+
return triplane
|
174 |
+
|
175 |
+
def training_step(self, batch, batch_idx):
|
176 |
+
inputs = self.rollout(batch['triplane'])
|
177 |
+
reconstructions, vq_loss, perplexity, encoding_indices = self(inputs)
|
178 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='train/', batch=batch)
|
179 |
+
log_dict_ae['train/perplexity'] = perplexity
|
180 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
181 |
+
return aeloss
|
182 |
+
|
183 |
+
def validation_step(self, batch, batch_idx):
|
184 |
+
inputs = self.rollout(batch['triplane'])
|
185 |
+
reconstructions, vq_loss, perplexity, encoding_indices = self(inputs)
|
186 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='val/', batch=None)
|
187 |
+
log_dict_ae['val/perplexity'] = perplexity
|
188 |
+
self.log_dict(log_dict_ae)
|
189 |
+
|
190 |
+
reconstructions = self.unrollout(reconstructions)
|
191 |
+
psnr_list = [] # between rec and gt
|
192 |
+
psnr_input_list = [] # between input and gt
|
193 |
+
psnr_rec_list = [] # between input and rec
|
194 |
+
batch_size = inputs.shape[0]
|
195 |
+
for b in range(batch_size):
|
196 |
+
rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder(
|
197 |
+
batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b],
|
198 |
+
)
|
199 |
+
rgb, cur_psnr_list = self.render_triplane_eg3d_decoder(
|
200 |
+
reconstructions[b:b+1], batch['batch_rays'][b], batch['img'][b],
|
201 |
+
)
|
202 |
+
|
203 |
+
cur_psnr_list_rec = []
|
204 |
+
for i in range(rgb.shape[0]):
|
205 |
+
cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i])))
|
206 |
+
|
207 |
+
rgb_input = to8b(rgb_input.detach().cpu().numpy())
|
208 |
+
rgb_gt = to8b(batch['img'][b].detach().cpu().numpy())
|
209 |
+
rgb = to8b(rgb.detach().cpu().numpy())
|
210 |
+
|
211 |
+
if b % 4 == 0 and batch_idx < 10:
|
212 |
+
rgb_all = np.concatenate([rgb_gt[1], rgb_input[1], rgb[1]], 1)
|
213 |
+
self.logger.experiment.log({
|
214 |
+
"val/vis": [wandb.Image(rgb_all)],
|
215 |
+
})
|
216 |
+
|
217 |
+
psnr_list += cur_psnr_list
|
218 |
+
psnr_input_list += cur_psnr_list_input
|
219 |
+
psnr_rec_list += cur_psnr_list_rec
|
220 |
+
|
221 |
+
self.log("val/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True)
|
222 |
+
self.log("val/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True)
|
223 |
+
self.log("val/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True)
|
224 |
+
|
225 |
+
return self.log_dict
|
226 |
+
|
227 |
+
def to_rgb(self, plane):
|
228 |
+
x = plane.float()
|
229 |
+
if not hasattr(self, "colorize"):
|
230 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
231 |
+
x = torch.nn.functional.conv2d(x, weight=self.colorize)
|
232 |
+
x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
233 |
+
return x
|
234 |
+
|
235 |
+
def to_rgb_triplane(self, plane):
|
236 |
+
x = plane.float()
|
237 |
+
if not hasattr(self, "colorize_triplane"):
|
238 |
+
self.colorize_triplane = torch.randn(3, x.shape[1], 1, 1).to(x)
|
239 |
+
x = torch.nn.functional.conv2d(x, weight=self.colorize_triplane)
|
240 |
+
x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
241 |
+
return x
|
242 |
+
|
243 |
+
def to_rgb_3daware(self, plane):
|
244 |
+
x = plane.float()
|
245 |
+
if not hasattr(self, "colorize_3daware"):
|
246 |
+
self.colorize_3daware = torch.randn(3, x.shape[1], 1, 1).to(x)
|
247 |
+
x = torch.nn.functional.conv2d(x, weight=self.colorize_3daware)
|
248 |
+
x = ((x - x.min()) / (x.max() - x.min()) * 255.).permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
249 |
+
return x
|
250 |
+
|
251 |
+
def test_step(self, batch, batch_idx):
|
252 |
+
inputs = self.rollout(batch['triplane'])
|
253 |
+
reconstructions, vq_loss, perplexity, encoding_indices = self(inputs)
|
254 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, vq_loss, prefix='test/', batch=None)
|
255 |
+
log_dict_ae['test/perplexity'] = perplexity
|
256 |
+
self.log_dict(log_dict_ae)
|
257 |
+
|
258 |
+
batch_size = inputs.shape[0]
|
259 |
+
psnr_list = [] # between rec and gt
|
260 |
+
psnr_input_list = [] # between input and gt
|
261 |
+
psnr_rec_list = [] # between input and rec
|
262 |
+
|
263 |
+
colorize_triplane_input = self.to_rgb_triplane(inputs)[0]
|
264 |
+
colorize_triplane_output = self.to_rgb_triplane(reconstructions)[0]
|
265 |
+
|
266 |
+
reconstructions = self.unrollout(reconstructions)
|
267 |
+
|
268 |
+
if self.norm:
|
269 |
+
assert NotImplementedError
|
270 |
+
else:
|
271 |
+
reconstructions_unnormalize = reconstructions
|
272 |
+
|
273 |
+
if True:
|
274 |
+
for b in range(batch_size):
|
275 |
+
rgb_input, cur_psnr_list_input = self.render_triplane_eg3d_decoder(
|
276 |
+
batch['triplane_ori'][b:b+1], batch['batch_rays'][b], batch['img'][b],
|
277 |
+
)
|
278 |
+
rgb, cur_psnr_list = self.render_triplane_eg3d_decoder(
|
279 |
+
reconstructions_unnormalize[b:b+1], batch['batch_rays'][b], batch['img'][b],
|
280 |
+
)
|
281 |
+
|
282 |
+
cur_psnr_list_rec = []
|
283 |
+
for i in range(rgb.shape[0]):
|
284 |
+
cur_psnr_list_rec.append(mse2psnr(img2mse(rgb_input[i], rgb[i])))
|
285 |
+
|
286 |
+
rgb_input = to8b(rgb_input.detach().cpu().numpy())
|
287 |
+
rgb_gt = to8b(batch['img'][b].detach().cpu().numpy())
|
288 |
+
rgb = to8b(rgb.detach().cpu().numpy())
|
289 |
+
|
290 |
+
if batch_idx < 10:
|
291 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_input.png".format(batch_idx, b)), rgb_input[1])
|
292 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_rec.png".format(batch_idx, b)), rgb[1])
|
293 |
+
imageio.imwrite(os.path.join(self.logger.log_dir, "{}_{}_gt.png".format(batch_idx, b)), rgb_gt[1])
|
294 |
+
|
295 |
+
psnr_list += cur_psnr_list
|
296 |
+
psnr_input_list += cur_psnr_list_input
|
297 |
+
psnr_rec_list += cur_psnr_list_rec
|
298 |
+
|
299 |
+
self.log("test/psnr_input_gt", torch.Tensor(psnr_input_list).mean(), prog_bar=True)
|
300 |
+
self.log("test/psnr_input_rec", torch.Tensor(psnr_rec_list).mean(), prog_bar=True)
|
301 |
+
self.log("test/psnr_rec_gt", torch.Tensor(psnr_list).mean(), prog_bar=True)
|
302 |
+
|
303 |
+
def on_test_epoch_end(self):
|
304 |
+
mean = self.psum / self.count
|
305 |
+
mean_min = self.psum_min / self.len_dset
|
306 |
+
mean_max = self.psum_max / self.len_dset
|
307 |
+
var = (self.psum_sq / self.count) - (mean ** 2)
|
308 |
+
std = torch.sqrt(var)
|
309 |
+
|
310 |
+
print("mean min: {}".format(mean_min))
|
311 |
+
print("mean max: {}".format(mean_max))
|
312 |
+
print("mean: {}".format(mean))
|
313 |
+
print("std: {}".format(std))
|
314 |
+
|
315 |
+
latent = np.concatenate(self.latent_list)
|
316 |
+
q75, q25 = np.percentile(latent.reshape(-1), [75 ,25])
|
317 |
+
median = np.median(latent.reshape(-1))
|
318 |
+
iqr = q75 - q25
|
319 |
+
norm_iqr = iqr * 0.7413
|
320 |
+
print("Norm IQR: {}".format(norm_iqr))
|
321 |
+
print("Inverse Norm IQR: {}".format(1/norm_iqr))
|
322 |
+
print("Median: {}".format(median))
|
323 |
+
|
324 |
+
def loss(self, inputs, reconstructions, vq_loss, prefix, batch=None):
|
325 |
+
reconstructions = reconstructions.contiguous()
|
326 |
+
rec_loss = F.mse_loss(inputs.contiguous(), reconstructions)
|
327 |
+
loss = self.lossconfig.rec_weight * rec_loss + self.lossconfig.vq_weight * vq_loss
|
328 |
+
|
329 |
+
ret_dict = {
|
330 |
+
prefix+'mean_rec_loss': torch.abs(inputs.contiguous() - reconstructions.contiguous()).mean().detach(),
|
331 |
+
prefix+'rec_loss': rec_loss,
|
332 |
+
prefix+'vq_loss': vq_loss,
|
333 |
+
prefix+'loss': loss,
|
334 |
+
}
|
335 |
+
|
336 |
+
render_weight = self.lossconfig.get("render_weight", 0)
|
337 |
+
tv_weight = self.lossconfig.get("tv_weight", 0)
|
338 |
+
l1_weight = self.lossconfig.get("l1_weight", 0)
|
339 |
+
latent_tv_weight = self.lossconfig.get("latent_tv_weight", 0)
|
340 |
+
latent_l1_weight = self.lossconfig.get("latent_l1_weight", 0)
|
341 |
+
|
342 |
+
triplane_rec = self.unrollout(reconstructions)
|
343 |
+
if render_weight > 0 and batch is not None:
|
344 |
+
rgb_rendered, target = self.render_triplane_eg3d_decoder_sample_pixel(triplane_rec, batch['batch_rays'], batch['img'])
|
345 |
+
render_loss = F.mse(rgb_rendered, target)
|
346 |
+
loss += render_weight * render_loss
|
347 |
+
ret_dict[prefix + 'render_loss'] = render_loss
|
348 |
+
if tv_weight > 0:
|
349 |
+
tvloss_y = torch.abs(triplane_rec[:, :, :-1] - triplane_rec[:, :, 1:]).mean()
|
350 |
+
tvloss_x = torch.abs(triplane_rec[:, :, :, :-1] - triplane_rec[:, :, :, 1:]).mean()
|
351 |
+
tvloss = tvloss_y + tvloss_x
|
352 |
+
loss += tv_weight * tvloss
|
353 |
+
ret_dict[prefix + 'tv_loss'] = tvloss
|
354 |
+
if l1_weight > 0:
|
355 |
+
l1 = (triplane_rec ** 2).mean()
|
356 |
+
loss += l1_weight * l1
|
357 |
+
ret_dict[prefix + 'l1_loss'] = l1
|
358 |
+
|
359 |
+
ret_dict[prefix+'loss'] = loss
|
360 |
+
|
361 |
+
return loss, ret_dict
|
362 |
+
|
363 |
+
def create_eg3d_decoder(self, decoder_ckpt):
|
364 |
+
triplane_decoder = Renderer_TriPlane(**self.renderer_config)
|
365 |
+
pretrain_pth = torch.load(decoder_ckpt, map_location='cpu')
|
366 |
+
pretrain_pth = {
|
367 |
+
'.'.join(k.split('.')[1:]): v for k, v in pretrain_pth.items()
|
368 |
+
}
|
369 |
+
# import pdb; pdb.set_trace()
|
370 |
+
triplane_decoder.load_state_dict(pretrain_pth)
|
371 |
+
render_kwargs = {
|
372 |
+
'depth_resolution': 128,
|
373 |
+
'disparity_space_sampling': False,
|
374 |
+
'box_warp': 2.4,
|
375 |
+
'depth_resolution_importance': 128,
|
376 |
+
'clamp_mode': 'softplus',
|
377 |
+
'white_back': True,
|
378 |
+
'det': True
|
379 |
+
}
|
380 |
+
return triplane_decoder, render_kwargs
|
381 |
+
|
382 |
+
def render_triplane_eg3d_decoder(self, triplane, batch_rays, target):
|
383 |
+
ray_o = batch_rays[:, 0]
|
384 |
+
ray_d = batch_rays[:, 1]
|
385 |
+
psnr_list = []
|
386 |
+
rec_img_list = []
|
387 |
+
res = triplane.shape[-2]
|
388 |
+
for i in range(ray_o.shape[0]):
|
389 |
+
with torch.no_grad():
|
390 |
+
render_out = self.triplane_decoder(triplane.reshape(1, 3, -1, res, res),
|
391 |
+
ray_o[i:i+1], ray_d[i:i+1], self.triplane_render_kwargs, whole_img=True, tvloss=False)
|
392 |
+
rec_img = render_out['rgb_marched'].permute(0, 2, 3, 1)
|
393 |
+
psnr = mse2psnr(img2mse(rec_img[0], target[i]))
|
394 |
+
psnr_list.append(psnr)
|
395 |
+
rec_img_list.append(rec_img)
|
396 |
+
return torch.cat(rec_img_list, 0), psnr_list
|
397 |
+
|
398 |
+
def render_triplane_eg3d_decoder_sample_pixel(self, triplane, batch_rays, target, sample_num=1024):
|
399 |
+
assert batch_rays.shape[1] == 1
|
400 |
+
sel = torch.randint(batch_rays.shape[-2], [sample_num])
|
401 |
+
ray_o = batch_rays[:, 0, 0, sel]
|
402 |
+
ray_d = batch_rays[:, 0, 1, sel]
|
403 |
+
res = triplane.shape[-2]
|
404 |
+
render_out = self.triplane_decoder(triplane.reshape(triplane.shape[0], 3, -1, res, res),
|
405 |
+
ray_o, ray_d, self.triplane_render_kwargs, whole_img=False, tvloss=False)
|
406 |
+
rec_img = render_out['rgb_marched']
|
407 |
+
target = target.reshape(triplane.shape[0], -1, 3)[:, sel, :]
|
408 |
+
return rec_img, target
|
409 |
+
|
410 |
+
def configure_optimizers(self):
|
411 |
+
lr = self.learning_rate
|
412 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
413 |
+
list(self.decoder.parameters())+
|
414 |
+
list(self.quant_conv.parameters())+
|
415 |
+
list(self.post_quant_conv.parameters())+
|
416 |
+
list(self.vector_quantizer.parameters()),
|
417 |
+
lr=lr)
|
418 |
+
return opt_ae
|
3DTopia/module/model_2d.py
ADDED
@@ -0,0 +1,2206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from utility.initialize import instantiate_from_config
|
9 |
+
from .nn_2d import LinearAttention
|
10 |
+
|
11 |
+
|
12 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
+
"""
|
14 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
+
From Fairseq.
|
16 |
+
Build sinusoidal embeddings.
|
17 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
+
"""
|
20 |
+
assert len(timesteps.shape) == 1
|
21 |
+
|
22 |
+
half_dim = embedding_dim // 2
|
23 |
+
emb = math.log(10000) / (half_dim - 1)
|
24 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
+
emb = emb.to(device=timesteps.device)
|
26 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
+
if embedding_dim % 2 == 1: # zero pad
|
29 |
+
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
+
return emb
|
31 |
+
|
32 |
+
|
33 |
+
def nonlinearity(x):
|
34 |
+
# swish
|
35 |
+
return x*torch.sigmoid(x)
|
36 |
+
|
37 |
+
|
38 |
+
def Normalize(in_channels, num_groups=32):
|
39 |
+
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
+
|
41 |
+
|
42 |
+
class Upsample(nn.Module):
|
43 |
+
def __init__(self, in_channels, with_conv):
|
44 |
+
super().__init__()
|
45 |
+
self.with_conv = with_conv
|
46 |
+
if self.with_conv:
|
47 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
+
in_channels,
|
49 |
+
kernel_size=3,
|
50 |
+
stride=1,
|
51 |
+
padding=1)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
+
if self.with_conv:
|
56 |
+
x = self.conv(x)
|
57 |
+
return x
|
58 |
+
|
59 |
+
|
60 |
+
class Downsample(nn.Module):
|
61 |
+
def __init__(self, in_channels, with_conv):
|
62 |
+
super().__init__()
|
63 |
+
self.with_conv = with_conv
|
64 |
+
if self.with_conv:
|
65 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
+
in_channels,
|
68 |
+
kernel_size=3,
|
69 |
+
stride=2,
|
70 |
+
padding=0)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
if self.with_conv:
|
74 |
+
pad = (0,1,0,1)
|
75 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
+
x = self.conv(x)
|
77 |
+
else:
|
78 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class ResnetBlock(nn.Module):
|
83 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
+
dropout, temb_channels=512):
|
85 |
+
super().__init__()
|
86 |
+
self.in_channels = in_channels
|
87 |
+
out_channels = in_channels if out_channels is None else out_channels
|
88 |
+
self.out_channels = out_channels
|
89 |
+
self.use_conv_shortcut = conv_shortcut
|
90 |
+
|
91 |
+
self.norm1 = Normalize(in_channels)
|
92 |
+
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
+
out_channels,
|
94 |
+
kernel_size=3,
|
95 |
+
stride=1,
|
96 |
+
padding=1)
|
97 |
+
if temb_channels > 0:
|
98 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
+
out_channels)
|
100 |
+
self.norm2 = Normalize(out_channels)
|
101 |
+
self.dropout = torch.nn.Dropout(dropout)
|
102 |
+
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
+
out_channels,
|
104 |
+
kernel_size=3,
|
105 |
+
stride=1,
|
106 |
+
padding=1)
|
107 |
+
if self.in_channels != self.out_channels:
|
108 |
+
if self.use_conv_shortcut:
|
109 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
+
out_channels,
|
111 |
+
kernel_size=3,
|
112 |
+
stride=1,
|
113 |
+
padding=1)
|
114 |
+
else:
|
115 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
+
out_channels,
|
117 |
+
kernel_size=1,
|
118 |
+
stride=1,
|
119 |
+
padding=0)
|
120 |
+
|
121 |
+
def forward(self, x, temb):
|
122 |
+
h = x
|
123 |
+
h = self.norm1(h)
|
124 |
+
h = nonlinearity(h)
|
125 |
+
h = self.conv1(h)
|
126 |
+
|
127 |
+
if temb is not None:
|
128 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
+
|
130 |
+
h = self.norm2(h)
|
131 |
+
h = nonlinearity(h)
|
132 |
+
h = self.dropout(h)
|
133 |
+
h = self.conv2(h)
|
134 |
+
|
135 |
+
if self.in_channels != self.out_channels:
|
136 |
+
if self.use_conv_shortcut:
|
137 |
+
x = self.conv_shortcut(x)
|
138 |
+
else:
|
139 |
+
x = self.nin_shortcut(x)
|
140 |
+
|
141 |
+
return x+h
|
142 |
+
|
143 |
+
|
144 |
+
class LinAttnBlock(LinearAttention):
|
145 |
+
"""to match AttnBlock usage"""
|
146 |
+
def __init__(self, in_channels):
|
147 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
+
|
149 |
+
|
150 |
+
class AttnBlock(nn.Module):
|
151 |
+
def __init__(self, in_channels):
|
152 |
+
super().__init__()
|
153 |
+
self.in_channels = in_channels
|
154 |
+
|
155 |
+
self.norm = Normalize(in_channels)
|
156 |
+
self.q = torch.nn.Conv2d(in_channels,
|
157 |
+
in_channels,
|
158 |
+
kernel_size=1,
|
159 |
+
stride=1,
|
160 |
+
padding=0)
|
161 |
+
self.k = torch.nn.Conv2d(in_channels,
|
162 |
+
in_channels,
|
163 |
+
kernel_size=1,
|
164 |
+
stride=1,
|
165 |
+
padding=0)
|
166 |
+
self.v = torch.nn.Conv2d(in_channels,
|
167 |
+
in_channels,
|
168 |
+
kernel_size=1,
|
169 |
+
stride=1,
|
170 |
+
padding=0)
|
171 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
+
in_channels,
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0)
|
176 |
+
|
177 |
+
|
178 |
+
def forward(self, x):
|
179 |
+
h_ = x
|
180 |
+
h_ = self.norm(h_)
|
181 |
+
q = self.q(h_)
|
182 |
+
k = self.k(h_)
|
183 |
+
v = self.v(h_)
|
184 |
+
|
185 |
+
# compute attention
|
186 |
+
b,c,h,w = q.shape
|
187 |
+
q = q.reshape(b,c,h*w)
|
188 |
+
q = q.permute(0,2,1) # b,hw,c
|
189 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
+
w_ = w_ * (int(c)**(-0.5))
|
192 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
+
|
194 |
+
# attend to values
|
195 |
+
v = v.reshape(b,c,h*w)
|
196 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
+
h_ = h_.reshape(b,c,h,w)
|
199 |
+
|
200 |
+
h_ = self.proj_out(h_)
|
201 |
+
|
202 |
+
return x+h_
|
203 |
+
|
204 |
+
|
205 |
+
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
+
assert attn_type in ["vanilla", "linear", "none", "vanilla_groupconv", "crossattention"], f'attn_type {attn_type} unknown'
|
207 |
+
# print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
+
if attn_type == "vanilla":
|
209 |
+
return AttnBlock(in_channels)
|
210 |
+
elif attn_type == 'vanilla_groupconv':
|
211 |
+
return AttnBlock_GroupConv(in_channels)
|
212 |
+
elif attn_type == 'crossattention':
|
213 |
+
num_heads = 8
|
214 |
+
return TriplaneAttentionBlock(in_channels, num_heads, in_channels // num_heads, True)
|
215 |
+
elif attn_type == "none":
|
216 |
+
return nn.Identity(in_channels)
|
217 |
+
else:
|
218 |
+
return LinAttnBlock(in_channels)
|
219 |
+
|
220 |
+
|
221 |
+
class Model(nn.Module):
|
222 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
223 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
224 |
+
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
225 |
+
super().__init__()
|
226 |
+
if use_linear_attn: attn_type = "linear"
|
227 |
+
self.ch = ch
|
228 |
+
self.temb_ch = self.ch*4
|
229 |
+
self.num_resolutions = len(ch_mult)
|
230 |
+
self.num_res_blocks = num_res_blocks
|
231 |
+
self.resolution = resolution
|
232 |
+
self.in_channels = in_channels
|
233 |
+
|
234 |
+
self.use_timestep = use_timestep
|
235 |
+
if self.use_timestep:
|
236 |
+
# timestep embedding
|
237 |
+
self.temb = nn.Module()
|
238 |
+
self.temb.dense = nn.ModuleList([
|
239 |
+
torch.nn.Linear(self.ch,
|
240 |
+
self.temb_ch),
|
241 |
+
torch.nn.Linear(self.temb_ch,
|
242 |
+
self.temb_ch),
|
243 |
+
])
|
244 |
+
|
245 |
+
# downsampling
|
246 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
247 |
+
self.ch,
|
248 |
+
kernel_size=3,
|
249 |
+
stride=1,
|
250 |
+
padding=1)
|
251 |
+
|
252 |
+
curr_res = resolution
|
253 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
254 |
+
self.down = nn.ModuleList()
|
255 |
+
for i_level in range(self.num_resolutions):
|
256 |
+
block = nn.ModuleList()
|
257 |
+
attn = nn.ModuleList()
|
258 |
+
block_in = ch*in_ch_mult[i_level]
|
259 |
+
block_out = ch*ch_mult[i_level]
|
260 |
+
for i_block in range(self.num_res_blocks):
|
261 |
+
block.append(ResnetBlock(in_channels=block_in,
|
262 |
+
out_channels=block_out,
|
263 |
+
temb_channels=self.temb_ch,
|
264 |
+
dropout=dropout))
|
265 |
+
block_in = block_out
|
266 |
+
if curr_res in attn_resolutions:
|
267 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
268 |
+
down = nn.Module()
|
269 |
+
down.block = block
|
270 |
+
down.attn = attn
|
271 |
+
if i_level != self.num_resolutions-1:
|
272 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
273 |
+
curr_res = curr_res // 2
|
274 |
+
self.down.append(down)
|
275 |
+
|
276 |
+
# middle
|
277 |
+
self.mid = nn.Module()
|
278 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
279 |
+
out_channels=block_in,
|
280 |
+
temb_channels=self.temb_ch,
|
281 |
+
dropout=dropout)
|
282 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
283 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
284 |
+
out_channels=block_in,
|
285 |
+
temb_channels=self.temb_ch,
|
286 |
+
dropout=dropout)
|
287 |
+
|
288 |
+
# upsampling
|
289 |
+
self.up = nn.ModuleList()
|
290 |
+
for i_level in reversed(range(self.num_resolutions)):
|
291 |
+
block = nn.ModuleList()
|
292 |
+
attn = nn.ModuleList()
|
293 |
+
block_out = ch*ch_mult[i_level]
|
294 |
+
skip_in = ch*ch_mult[i_level]
|
295 |
+
for i_block in range(self.num_res_blocks+1):
|
296 |
+
if i_block == self.num_res_blocks:
|
297 |
+
skip_in = ch*in_ch_mult[i_level]
|
298 |
+
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
299 |
+
out_channels=block_out,
|
300 |
+
temb_channels=self.temb_ch,
|
301 |
+
dropout=dropout))
|
302 |
+
block_in = block_out
|
303 |
+
if curr_res in attn_resolutions:
|
304 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
305 |
+
up = nn.Module()
|
306 |
+
up.block = block
|
307 |
+
up.attn = attn
|
308 |
+
if i_level != 0:
|
309 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
310 |
+
curr_res = curr_res * 2
|
311 |
+
self.up.insert(0, up) # prepend to get consistent order
|
312 |
+
|
313 |
+
# end
|
314 |
+
self.norm_out = Normalize(block_in)
|
315 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
316 |
+
out_ch,
|
317 |
+
kernel_size=3,
|
318 |
+
stride=1,
|
319 |
+
padding=1)
|
320 |
+
|
321 |
+
def forward(self, x, t=None, context=None):
|
322 |
+
#assert x.shape[2] == x.shape[3] == self.resolution
|
323 |
+
if context is not None:
|
324 |
+
# assume aligned context, cat along channel axis
|
325 |
+
x = torch.cat((x, context), dim=1)
|
326 |
+
if self.use_timestep:
|
327 |
+
# timestep embedding
|
328 |
+
assert t is not None
|
329 |
+
temb = get_timestep_embedding(t, self.ch)
|
330 |
+
temb = self.temb.dense[0](temb)
|
331 |
+
temb = nonlinearity(temb)
|
332 |
+
temb = self.temb.dense[1](temb)
|
333 |
+
else:
|
334 |
+
temb = None
|
335 |
+
|
336 |
+
# downsampling
|
337 |
+
hs = [self.conv_in(x)]
|
338 |
+
for i_level in range(self.num_resolutions):
|
339 |
+
for i_block in range(self.num_res_blocks):
|
340 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
341 |
+
if len(self.down[i_level].attn) > 0:
|
342 |
+
h = self.down[i_level].attn[i_block](h)
|
343 |
+
hs.append(h)
|
344 |
+
if i_level != self.num_resolutions-1:
|
345 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
346 |
+
|
347 |
+
# middle
|
348 |
+
h = hs[-1]
|
349 |
+
h = self.mid.block_1(h, temb)
|
350 |
+
h = self.mid.attn_1(h)
|
351 |
+
h = self.mid.block_2(h, temb)
|
352 |
+
|
353 |
+
# upsampling
|
354 |
+
for i_level in reversed(range(self.num_resolutions)):
|
355 |
+
for i_block in range(self.num_res_blocks+1):
|
356 |
+
h = self.up[i_level].block[i_block](
|
357 |
+
torch.cat([h, hs.pop()], dim=1), temb)
|
358 |
+
if len(self.up[i_level].attn) > 0:
|
359 |
+
h = self.up[i_level].attn[i_block](h)
|
360 |
+
if i_level != 0:
|
361 |
+
h = self.up[i_level].upsample(h)
|
362 |
+
|
363 |
+
# end
|
364 |
+
h = self.norm_out(h)
|
365 |
+
h = nonlinearity(h)
|
366 |
+
h = self.conv_out(h)
|
367 |
+
return h
|
368 |
+
|
369 |
+
def get_last_layer(self):
|
370 |
+
return self.conv_out.weight
|
371 |
+
|
372 |
+
|
373 |
+
class Encoder(nn.Module):
|
374 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
375 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
376 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
377 |
+
**ignore_kwargs):
|
378 |
+
super().__init__()
|
379 |
+
if use_linear_attn: attn_type = "linear"
|
380 |
+
self.ch = ch
|
381 |
+
self.temb_ch = 0
|
382 |
+
self.num_resolutions = len(ch_mult)
|
383 |
+
self.num_res_blocks = num_res_blocks
|
384 |
+
self.resolution = resolution
|
385 |
+
self.in_channels = in_channels
|
386 |
+
|
387 |
+
# downsampling
|
388 |
+
self.conv_in = torch.nn.Conv2d(in_channels,
|
389 |
+
self.ch,
|
390 |
+
kernel_size=3,
|
391 |
+
stride=1,
|
392 |
+
padding=1)
|
393 |
+
|
394 |
+
curr_res = resolution
|
395 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
396 |
+
self.in_ch_mult = in_ch_mult
|
397 |
+
self.down = nn.ModuleList()
|
398 |
+
for i_level in range(self.num_resolutions):
|
399 |
+
block = nn.ModuleList()
|
400 |
+
attn = nn.ModuleList()
|
401 |
+
block_in = ch*in_ch_mult[i_level]
|
402 |
+
block_out = ch*ch_mult[i_level]
|
403 |
+
for i_block in range(self.num_res_blocks):
|
404 |
+
block.append(ResnetBlock(in_channels=block_in,
|
405 |
+
out_channels=block_out,
|
406 |
+
temb_channels=self.temb_ch,
|
407 |
+
dropout=dropout))
|
408 |
+
block_in = block_out
|
409 |
+
if curr_res in attn_resolutions:
|
410 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
411 |
+
down = nn.Module()
|
412 |
+
down.block = block
|
413 |
+
down.attn = attn
|
414 |
+
if i_level != self.num_resolutions-1:
|
415 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
416 |
+
curr_res = curr_res // 2
|
417 |
+
self.down.append(down)
|
418 |
+
|
419 |
+
# middle
|
420 |
+
self.mid = nn.Module()
|
421 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
422 |
+
out_channels=block_in,
|
423 |
+
temb_channels=self.temb_ch,
|
424 |
+
dropout=dropout)
|
425 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
426 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
427 |
+
out_channels=block_in,
|
428 |
+
temb_channels=self.temb_ch,
|
429 |
+
dropout=dropout)
|
430 |
+
|
431 |
+
# end
|
432 |
+
self.norm_out = Normalize(block_in)
|
433 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
434 |
+
2*z_channels if double_z else z_channels,
|
435 |
+
kernel_size=3,
|
436 |
+
stride=1,
|
437 |
+
padding=1)
|
438 |
+
|
439 |
+
def forward(self, x):
|
440 |
+
# timestep embedding
|
441 |
+
temb = None
|
442 |
+
|
443 |
+
# downsampling
|
444 |
+
hs = [self.conv_in(x)]
|
445 |
+
for i_level in range(self.num_resolutions):
|
446 |
+
for i_block in range(self.num_res_blocks):
|
447 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
448 |
+
if len(self.down[i_level].attn) > 0:
|
449 |
+
h = self.down[i_level].attn[i_block](h)
|
450 |
+
hs.append(h)
|
451 |
+
if i_level != self.num_resolutions-1:
|
452 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
453 |
+
|
454 |
+
# middle
|
455 |
+
h = hs[-1]
|
456 |
+
h = self.mid.block_1(h, temb)
|
457 |
+
h = self.mid.attn_1(h)
|
458 |
+
h = self.mid.block_2(h, temb)
|
459 |
+
|
460 |
+
# end
|
461 |
+
h = self.norm_out(h)
|
462 |
+
h = nonlinearity(h)
|
463 |
+
h = self.conv_out(h)
|
464 |
+
return h
|
465 |
+
|
466 |
+
|
467 |
+
class Decoder(nn.Module):
|
468 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
469 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
470 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
471 |
+
attn_type="vanilla", **ignorekwargs):
|
472 |
+
super().__init__()
|
473 |
+
if use_linear_attn: attn_type = "linear"
|
474 |
+
self.ch = ch
|
475 |
+
self.temb_ch = 0
|
476 |
+
self.num_resolutions = len(ch_mult)
|
477 |
+
self.num_res_blocks = num_res_blocks
|
478 |
+
self.resolution = resolution
|
479 |
+
self.in_channels = in_channels
|
480 |
+
self.give_pre_end = give_pre_end
|
481 |
+
self.tanh_out = tanh_out
|
482 |
+
|
483 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
484 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
485 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
486 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
487 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
488 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
489 |
+
# self.z_shape, np.prod(self.z_shape)))
|
490 |
+
|
491 |
+
# z to block_in
|
492 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
493 |
+
block_in,
|
494 |
+
kernel_size=3,
|
495 |
+
stride=1,
|
496 |
+
padding=1)
|
497 |
+
|
498 |
+
# middle
|
499 |
+
self.mid = nn.Module()
|
500 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
501 |
+
out_channels=block_in,
|
502 |
+
temb_channels=self.temb_ch,
|
503 |
+
dropout=dropout)
|
504 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
505 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
506 |
+
out_channels=block_in,
|
507 |
+
temb_channels=self.temb_ch,
|
508 |
+
dropout=dropout)
|
509 |
+
|
510 |
+
# upsampling
|
511 |
+
self.up = nn.ModuleList()
|
512 |
+
for i_level in reversed(range(self.num_resolutions)):
|
513 |
+
block = nn.ModuleList()
|
514 |
+
attn = nn.ModuleList()
|
515 |
+
block_out = ch*ch_mult[i_level]
|
516 |
+
for i_block in range(self.num_res_blocks+1):
|
517 |
+
block.append(ResnetBlock(in_channels=block_in,
|
518 |
+
out_channels=block_out,
|
519 |
+
temb_channels=self.temb_ch,
|
520 |
+
dropout=dropout))
|
521 |
+
block_in = block_out
|
522 |
+
if curr_res in attn_resolutions:
|
523 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
524 |
+
up = nn.Module()
|
525 |
+
up.block = block
|
526 |
+
up.attn = attn
|
527 |
+
if i_level != 0:
|
528 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
529 |
+
curr_res = curr_res * 2
|
530 |
+
self.up.insert(0, up) # prepend to get consistent order
|
531 |
+
|
532 |
+
# end
|
533 |
+
self.norm_out = Normalize(block_in)
|
534 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
535 |
+
out_ch,
|
536 |
+
kernel_size=3,
|
537 |
+
stride=1,
|
538 |
+
padding=1)
|
539 |
+
|
540 |
+
def forward(self, z):
|
541 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
542 |
+
self.last_z_shape = z.shape
|
543 |
+
|
544 |
+
# timestep embedding
|
545 |
+
temb = None
|
546 |
+
|
547 |
+
# z to block_in
|
548 |
+
h = self.conv_in(z)
|
549 |
+
|
550 |
+
# middle
|
551 |
+
h = self.mid.block_1(h, temb)
|
552 |
+
h = self.mid.attn_1(h)
|
553 |
+
h = self.mid.block_2(h, temb)
|
554 |
+
|
555 |
+
# upsampling
|
556 |
+
for i_level in reversed(range(self.num_resolutions)):
|
557 |
+
for i_block in range(self.num_res_blocks+1):
|
558 |
+
h = self.up[i_level].block[i_block](h, temb)
|
559 |
+
if len(self.up[i_level].attn) > 0:
|
560 |
+
h = self.up[i_level].attn[i_block](h)
|
561 |
+
if i_level != 0:
|
562 |
+
h = self.up[i_level].upsample(h)
|
563 |
+
|
564 |
+
# end
|
565 |
+
if self.give_pre_end:
|
566 |
+
return h
|
567 |
+
|
568 |
+
h = self.norm_out(h)
|
569 |
+
h = nonlinearity(h)
|
570 |
+
h = self.conv_out(h)
|
571 |
+
if self.tanh_out:
|
572 |
+
h = torch.tanh(h)
|
573 |
+
return h
|
574 |
+
|
575 |
+
|
576 |
+
class SimpleDecoder(nn.Module):
|
577 |
+
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
578 |
+
super().__init__()
|
579 |
+
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
580 |
+
ResnetBlock(in_channels=in_channels,
|
581 |
+
out_channels=2 * in_channels,
|
582 |
+
temb_channels=0, dropout=0.0),
|
583 |
+
ResnetBlock(in_channels=2 * in_channels,
|
584 |
+
out_channels=4 * in_channels,
|
585 |
+
temb_channels=0, dropout=0.0),
|
586 |
+
ResnetBlock(in_channels=4 * in_channels,
|
587 |
+
out_channels=2 * in_channels,
|
588 |
+
temb_channels=0, dropout=0.0),
|
589 |
+
nn.Conv2d(2*in_channels, in_channels, 1),
|
590 |
+
Upsample(in_channels, with_conv=True)])
|
591 |
+
# end
|
592 |
+
self.norm_out = Normalize(in_channels)
|
593 |
+
self.conv_out = torch.nn.Conv2d(in_channels,
|
594 |
+
out_channels,
|
595 |
+
kernel_size=3,
|
596 |
+
stride=1,
|
597 |
+
padding=1)
|
598 |
+
|
599 |
+
def forward(self, x):
|
600 |
+
for i, layer in enumerate(self.model):
|
601 |
+
if i in [1,2,3]:
|
602 |
+
x = layer(x, None)
|
603 |
+
else:
|
604 |
+
x = layer(x)
|
605 |
+
|
606 |
+
h = self.norm_out(x)
|
607 |
+
h = nonlinearity(h)
|
608 |
+
x = self.conv_out(h)
|
609 |
+
return x
|
610 |
+
|
611 |
+
|
612 |
+
class UpsampleDecoder(nn.Module):
|
613 |
+
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
614 |
+
ch_mult=(2,2), dropout=0.0):
|
615 |
+
super().__init__()
|
616 |
+
# upsampling
|
617 |
+
self.temb_ch = 0
|
618 |
+
self.num_resolutions = len(ch_mult)
|
619 |
+
self.num_res_blocks = num_res_blocks
|
620 |
+
block_in = in_channels
|
621 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
622 |
+
self.res_blocks = nn.ModuleList()
|
623 |
+
self.upsample_blocks = nn.ModuleList()
|
624 |
+
for i_level in range(self.num_resolutions):
|
625 |
+
res_block = []
|
626 |
+
block_out = ch * ch_mult[i_level]
|
627 |
+
for i_block in range(self.num_res_blocks + 1):
|
628 |
+
res_block.append(ResnetBlock(in_channels=block_in,
|
629 |
+
out_channels=block_out,
|
630 |
+
temb_channels=self.temb_ch,
|
631 |
+
dropout=dropout))
|
632 |
+
block_in = block_out
|
633 |
+
self.res_blocks.append(nn.ModuleList(res_block))
|
634 |
+
if i_level != self.num_resolutions - 1:
|
635 |
+
self.upsample_blocks.append(Upsample(block_in, True))
|
636 |
+
curr_res = curr_res * 2
|
637 |
+
|
638 |
+
# end
|
639 |
+
self.norm_out = Normalize(block_in)
|
640 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
641 |
+
out_channels,
|
642 |
+
kernel_size=3,
|
643 |
+
stride=1,
|
644 |
+
padding=1)
|
645 |
+
|
646 |
+
def forward(self, x):
|
647 |
+
# upsampling
|
648 |
+
h = x
|
649 |
+
for k, i_level in enumerate(range(self.num_resolutions)):
|
650 |
+
for i_block in range(self.num_res_blocks + 1):
|
651 |
+
h = self.res_blocks[i_level][i_block](h, None)
|
652 |
+
if i_level != self.num_resolutions - 1:
|
653 |
+
h = self.upsample_blocks[k](h)
|
654 |
+
h = self.norm_out(h)
|
655 |
+
h = nonlinearity(h)
|
656 |
+
h = self.conv_out(h)
|
657 |
+
return h
|
658 |
+
|
659 |
+
|
660 |
+
class LatentRescaler(nn.Module):
|
661 |
+
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
662 |
+
super().__init__()
|
663 |
+
# residual block, interpolate, residual block
|
664 |
+
self.factor = factor
|
665 |
+
self.conv_in = nn.Conv2d(in_channels,
|
666 |
+
mid_channels,
|
667 |
+
kernel_size=3,
|
668 |
+
stride=1,
|
669 |
+
padding=1)
|
670 |
+
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
+
out_channels=mid_channels,
|
672 |
+
temb_channels=0,
|
673 |
+
dropout=0.0) for _ in range(depth)])
|
674 |
+
self.attn = AttnBlock(mid_channels)
|
675 |
+
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
676 |
+
out_channels=mid_channels,
|
677 |
+
temb_channels=0,
|
678 |
+
dropout=0.0) for _ in range(depth)])
|
679 |
+
|
680 |
+
self.conv_out = nn.Conv2d(mid_channels,
|
681 |
+
out_channels,
|
682 |
+
kernel_size=1,
|
683 |
+
)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
x = self.conv_in(x)
|
687 |
+
for block in self.res_block1:
|
688 |
+
x = block(x, None)
|
689 |
+
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
690 |
+
x = self.attn(x)
|
691 |
+
for block in self.res_block2:
|
692 |
+
x = block(x, None)
|
693 |
+
x = self.conv_out(x)
|
694 |
+
return x
|
695 |
+
|
696 |
+
|
697 |
+
class MergedRescaleEncoder(nn.Module):
|
698 |
+
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
699 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
700 |
+
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
701 |
+
super().__init__()
|
702 |
+
intermediate_chn = ch * ch_mult[-1]
|
703 |
+
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
704 |
+
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
705 |
+
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
706 |
+
out_ch=None)
|
707 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
708 |
+
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
709 |
+
|
710 |
+
def forward(self, x):
|
711 |
+
x = self.encoder(x)
|
712 |
+
x = self.rescaler(x)
|
713 |
+
return x
|
714 |
+
|
715 |
+
|
716 |
+
class MergedRescaleDecoder(nn.Module):
|
717 |
+
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
718 |
+
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
719 |
+
super().__init__()
|
720 |
+
tmp_chn = z_channels*ch_mult[-1]
|
721 |
+
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
722 |
+
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
723 |
+
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
724 |
+
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
725 |
+
out_channels=tmp_chn, depth=rescale_module_depth)
|
726 |
+
|
727 |
+
def forward(self, x):
|
728 |
+
x = self.rescaler(x)
|
729 |
+
x = self.decoder(x)
|
730 |
+
return x
|
731 |
+
|
732 |
+
|
733 |
+
class Upsampler(nn.Module):
|
734 |
+
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
735 |
+
super().__init__()
|
736 |
+
assert out_size >= in_size
|
737 |
+
num_blocks = int(np.log2(out_size//in_size))+1
|
738 |
+
factor_up = 1.+ (out_size % in_size)
|
739 |
+
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
740 |
+
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
741 |
+
out_channels=in_channels)
|
742 |
+
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
743 |
+
attn_resolutions=[], in_channels=None, ch=in_channels,
|
744 |
+
ch_mult=[ch_mult for _ in range(num_blocks)])
|
745 |
+
|
746 |
+
def forward(self, x):
|
747 |
+
x = self.rescaler(x)
|
748 |
+
x = self.decoder(x)
|
749 |
+
return x
|
750 |
+
|
751 |
+
|
752 |
+
class Resize(nn.Module):
|
753 |
+
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
754 |
+
super().__init__()
|
755 |
+
self.with_conv = learned
|
756 |
+
self.mode = mode
|
757 |
+
if self.with_conv:
|
758 |
+
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
759 |
+
raise NotImplementedError()
|
760 |
+
assert in_channels is not None
|
761 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
762 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
763 |
+
in_channels,
|
764 |
+
kernel_size=4,
|
765 |
+
stride=2,
|
766 |
+
padding=1)
|
767 |
+
|
768 |
+
def forward(self, x, scale_factor=1.0):
|
769 |
+
if scale_factor==1.0:
|
770 |
+
return x
|
771 |
+
else:
|
772 |
+
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
773 |
+
return x
|
774 |
+
|
775 |
+
class FirstStagePostProcessor(nn.Module):
|
776 |
+
|
777 |
+
def __init__(self, ch_mult:list, in_channels,
|
778 |
+
pretrained_model:nn.Module=None,
|
779 |
+
reshape=False,
|
780 |
+
n_channels=None,
|
781 |
+
dropout=0.,
|
782 |
+
pretrained_config=None):
|
783 |
+
super().__init__()
|
784 |
+
if pretrained_config is None:
|
785 |
+
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
786 |
+
self.pretrained_model = pretrained_model
|
787 |
+
else:
|
788 |
+
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
789 |
+
self.instantiate_pretrained(pretrained_config)
|
790 |
+
|
791 |
+
self.do_reshape = reshape
|
792 |
+
|
793 |
+
if n_channels is None:
|
794 |
+
n_channels = self.pretrained_model.encoder.ch
|
795 |
+
|
796 |
+
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
797 |
+
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
798 |
+
stride=1,padding=1)
|
799 |
+
|
800 |
+
blocks = []
|
801 |
+
downs = []
|
802 |
+
ch_in = n_channels
|
803 |
+
for m in ch_mult:
|
804 |
+
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
805 |
+
ch_in = m * n_channels
|
806 |
+
downs.append(Downsample(ch_in, with_conv=False))
|
807 |
+
|
808 |
+
self.model = nn.ModuleList(blocks)
|
809 |
+
self.downsampler = nn.ModuleList(downs)
|
810 |
+
|
811 |
+
|
812 |
+
def instantiate_pretrained(self, config):
|
813 |
+
model = instantiate_from_config(config)
|
814 |
+
self.pretrained_model = model.eval()
|
815 |
+
# self.pretrained_model.train = False
|
816 |
+
for param in self.pretrained_model.parameters():
|
817 |
+
param.requires_grad = False
|
818 |
+
|
819 |
+
|
820 |
+
@torch.no_grad()
|
821 |
+
def encode_with_pretrained(self,x):
|
822 |
+
c = self.pretrained_model.encode(x)
|
823 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
824 |
+
c = c.mode()
|
825 |
+
return c
|
826 |
+
|
827 |
+
def forward(self,x):
|
828 |
+
z_fs = self.encode_with_pretrained(x)
|
829 |
+
z = self.proj_norm(z_fs)
|
830 |
+
z = self.proj(z)
|
831 |
+
z = nonlinearity(z)
|
832 |
+
|
833 |
+
for submodel, downmodel in zip(self.model,self.downsampler):
|
834 |
+
z = submodel(z,temb=None)
|
835 |
+
z = downmodel(z)
|
836 |
+
|
837 |
+
if self.do_reshape:
|
838 |
+
z = rearrange(z,'b c h w -> b (h w) c')
|
839 |
+
return z
|
840 |
+
|
841 |
+
|
842 |
+
class DiagonalGaussianDistribution(object):
|
843 |
+
def __init__(self, parameters, deterministic=False):
|
844 |
+
self.parameters = parameters
|
845 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
846 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
847 |
+
self.deterministic = deterministic
|
848 |
+
self.std = torch.exp(0.5 * self.logvar)
|
849 |
+
self.var = torch.exp(self.logvar)
|
850 |
+
if self.deterministic:
|
851 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
852 |
+
|
853 |
+
def sample(self):
|
854 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
855 |
+
return x
|
856 |
+
|
857 |
+
def kl(self, other=None):
|
858 |
+
if self.deterministic:
|
859 |
+
return torch.Tensor([0.])
|
860 |
+
else:
|
861 |
+
if other is None:
|
862 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
863 |
+
+ self.var - 1.0 - self.logvar,
|
864 |
+
dim=[1, 2, 3])
|
865 |
+
else:
|
866 |
+
return 0.5 * torch.sum(
|
867 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
868 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
869 |
+
dim=[1, 2, 3])
|
870 |
+
|
871 |
+
def nll(self, sample, dims=[1,2,3]):
|
872 |
+
if self.deterministic:
|
873 |
+
return torch.Tensor([0.])
|
874 |
+
logtwopi = np.log(2.0 * np.pi)
|
875 |
+
return 0.5 * torch.sum(
|
876 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
877 |
+
dim=dims)
|
878 |
+
|
879 |
+
def mode(self):
|
880 |
+
return self.mean
|
881 |
+
|
882 |
+
|
883 |
+
class ResnetBlock_GroupConv(nn.Module):
|
884 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
885 |
+
dropout, temb_channels=512):
|
886 |
+
super().__init__()
|
887 |
+
self.in_channels = in_channels
|
888 |
+
out_channels = in_channels if out_channels is None else out_channels
|
889 |
+
self.out_channels = out_channels
|
890 |
+
self.use_conv_shortcut = conv_shortcut
|
891 |
+
|
892 |
+
self.norm1 = Normalize(in_channels * 3, 32 * 3)
|
893 |
+
self.conv1 = torch.nn.Conv2d(in_channels * 3,
|
894 |
+
out_channels * 3,
|
895 |
+
kernel_size=3,
|
896 |
+
stride=1,
|
897 |
+
padding=1,
|
898 |
+
groups=3)
|
899 |
+
if temb_channels > 0:
|
900 |
+
self.temb_proj = torch.nn.Linear(temb_channels,
|
901 |
+
out_channels)
|
902 |
+
self.norm2 = Normalize(out_channels * 3, 32 * 3)
|
903 |
+
self.dropout = torch.nn.Dropout(dropout)
|
904 |
+
self.conv2 = torch.nn.Conv2d(out_channels * 3,
|
905 |
+
out_channels * 3,
|
906 |
+
kernel_size=3,
|
907 |
+
stride=1,
|
908 |
+
padding=1,
|
909 |
+
groups=3)
|
910 |
+
if self.in_channels != self.out_channels:
|
911 |
+
if self.use_conv_shortcut:
|
912 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels * 3,
|
913 |
+
out_channels * 3,
|
914 |
+
kernel_size=3,
|
915 |
+
stride=1,
|
916 |
+
padding=1,
|
917 |
+
groups=3)
|
918 |
+
else:
|
919 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels * 3,
|
920 |
+
out_channels * 3,
|
921 |
+
kernel_size=1,
|
922 |
+
stride=1,
|
923 |
+
padding=0,
|
924 |
+
groups=3)
|
925 |
+
|
926 |
+
def forward(self, x, temb):
|
927 |
+
h = x
|
928 |
+
h = self.norm1(h)
|
929 |
+
h = nonlinearity(h)
|
930 |
+
h = self.conv1(h)
|
931 |
+
|
932 |
+
assert temb is None
|
933 |
+
if temb is not None:
|
934 |
+
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
935 |
+
|
936 |
+
h = self.norm2(h)
|
937 |
+
h = nonlinearity(h)
|
938 |
+
h = self.dropout(h)
|
939 |
+
h = self.conv2(h)
|
940 |
+
|
941 |
+
if self.in_channels != self.out_channels:
|
942 |
+
if self.use_conv_shortcut:
|
943 |
+
x = self.conv_shortcut(x)
|
944 |
+
else:
|
945 |
+
x = self.nin_shortcut(x)
|
946 |
+
|
947 |
+
return x+h
|
948 |
+
|
949 |
+
|
950 |
+
def rollout(triplane):
|
951 |
+
res = triplane.shape[-1]
|
952 |
+
ch = triplane.shape[1]
|
953 |
+
triplane = triplane.reshape(-1, 3, ch//3, res, res).permute(0, 2, 3, 1, 4).reshape(-1, ch//3, res, 3 * res)
|
954 |
+
return triplane
|
955 |
+
|
956 |
+
def unrollout(triplane):
|
957 |
+
res = triplane.shape[-2]
|
958 |
+
ch = 3 * triplane.shape[1]
|
959 |
+
triplane = triplane.reshape(-1, ch//3, res, 3, res).permute(0, 3, 1, 2, 4).reshape(-1, ch, res, res)
|
960 |
+
return triplane
|
961 |
+
|
962 |
+
class Upsample_GroupConv(nn.Module):
|
963 |
+
def __init__(self, in_channels, with_conv):
|
964 |
+
super().__init__()
|
965 |
+
self.with_conv = with_conv
|
966 |
+
if self.with_conv:
|
967 |
+
self.conv = torch.nn.Conv2d(in_channels * 3,
|
968 |
+
in_channels * 3,
|
969 |
+
kernel_size=3,
|
970 |
+
stride=1,
|
971 |
+
padding=1,
|
972 |
+
groups=3)
|
973 |
+
|
974 |
+
def forward(self, x):
|
975 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
976 |
+
if self.with_conv:
|
977 |
+
x = self.conv(x)
|
978 |
+
return x
|
979 |
+
|
980 |
+
|
981 |
+
class Downsample_GroupConv(nn.Module):
|
982 |
+
def __init__(self, in_channels, with_conv):
|
983 |
+
super().__init__()
|
984 |
+
self.with_conv = with_conv
|
985 |
+
if self.with_conv:
|
986 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
987 |
+
self.conv = torch.nn.Conv2d(in_channels * 3,
|
988 |
+
in_channels * 3,
|
989 |
+
kernel_size=3,
|
990 |
+
stride=2,
|
991 |
+
padding=0,
|
992 |
+
groups=3)
|
993 |
+
|
994 |
+
def forward(self, x):
|
995 |
+
if self.with_conv:
|
996 |
+
pad = (0,1,0,1)
|
997 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
998 |
+
x = self.conv(x)
|
999 |
+
else:
|
1000 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
1001 |
+
return x
|
1002 |
+
|
1003 |
+
class AttnBlock_GroupConv(nn.Module):
|
1004 |
+
def __init__(self, in_channels):
|
1005 |
+
super().__init__()
|
1006 |
+
self.in_channels = in_channels
|
1007 |
+
|
1008 |
+
self.norm = Normalize(in_channels)
|
1009 |
+
self.q = torch.nn.Conv2d(in_channels,
|
1010 |
+
in_channels,
|
1011 |
+
kernel_size=1,
|
1012 |
+
stride=1,
|
1013 |
+
padding=0)
|
1014 |
+
self.k = torch.nn.Conv2d(in_channels,
|
1015 |
+
in_channels,
|
1016 |
+
kernel_size=1,
|
1017 |
+
stride=1,
|
1018 |
+
padding=0)
|
1019 |
+
self.v = torch.nn.Conv2d(in_channels,
|
1020 |
+
in_channels,
|
1021 |
+
kernel_size=1,
|
1022 |
+
stride=1,
|
1023 |
+
padding=0)
|
1024 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
1025 |
+
in_channels,
|
1026 |
+
kernel_size=1,
|
1027 |
+
stride=1,
|
1028 |
+
padding=0)
|
1029 |
+
|
1030 |
+
|
1031 |
+
def forward(self, x, temp=None):
|
1032 |
+
x = rollout(x)
|
1033 |
+
h_ = x
|
1034 |
+
h_ = self.norm(h_)
|
1035 |
+
q = self.q(h_)
|
1036 |
+
k = self.k(h_)
|
1037 |
+
v = self.v(h_)
|
1038 |
+
|
1039 |
+
# compute attention
|
1040 |
+
b,c,h,w = q.shape
|
1041 |
+
q = q.reshape(b,c,h*w)
|
1042 |
+
q = q.permute(0,2,1) # b,hw,c
|
1043 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
1044 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
1045 |
+
w_ = w_ * (int(c)**(-0.5))
|
1046 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
1047 |
+
|
1048 |
+
# attend to values
|
1049 |
+
v = v.reshape(b,c,h*w)
|
1050 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
1051 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
1052 |
+
h_ = h_.reshape(b,c,h,w)
|
1053 |
+
|
1054 |
+
h_ = self.proj_out(h_)
|
1055 |
+
|
1056 |
+
return unrollout(x+h_)
|
1057 |
+
|
1058 |
+
|
1059 |
+
from torch import nn, einsum
|
1060 |
+
from inspect import isfunction
|
1061 |
+
from einops import rearrange, repeat
|
1062 |
+
|
1063 |
+
def exists(val):
|
1064 |
+
return val is not None
|
1065 |
+
|
1066 |
+
def default(val, d):
|
1067 |
+
if exists(val):
|
1068 |
+
return val
|
1069 |
+
return d() if isfunction(d) else d
|
1070 |
+
|
1071 |
+
def checkpoint(func, inputs, params, flag):
|
1072 |
+
"""
|
1073 |
+
Evaluate a function without caching intermediate activations, allowing for
|
1074 |
+
reduced memory at the expense of extra compute in the backward pass.
|
1075 |
+
:param func: the function to evaluate.
|
1076 |
+
:param inputs: the argument sequence to pass to `func`.
|
1077 |
+
:param params: a sequence of parameters `func` depends on but does not
|
1078 |
+
explicitly take as arguments.
|
1079 |
+
:param flag: if False, disable gradient checkpointing.
|
1080 |
+
"""
|
1081 |
+
if flag:
|
1082 |
+
args = tuple(inputs) + tuple(params)
|
1083 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
1084 |
+
else:
|
1085 |
+
return func(*inputs)
|
1086 |
+
|
1087 |
+
class CheckpointFunction(torch.autograd.Function):
|
1088 |
+
@staticmethod
|
1089 |
+
def forward(ctx, run_function, length, *args):
|
1090 |
+
ctx.run_function = run_function
|
1091 |
+
ctx.input_tensors = list(args[:length])
|
1092 |
+
ctx.input_params = list(args[length:])
|
1093 |
+
|
1094 |
+
with torch.no_grad():
|
1095 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
1096 |
+
return output_tensors
|
1097 |
+
|
1098 |
+
@staticmethod
|
1099 |
+
def backward(ctx, *output_grads):
|
1100 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
1101 |
+
with torch.enable_grad():
|
1102 |
+
# Fixes a bug where the first op in run_function modifies the
|
1103 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
1104 |
+
# Tensors.
|
1105 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
1106 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
1107 |
+
input_grads = torch.autograd.grad(
|
1108 |
+
output_tensors,
|
1109 |
+
ctx.input_tensors + ctx.input_params,
|
1110 |
+
output_grads,
|
1111 |
+
allow_unused=True,
|
1112 |
+
)
|
1113 |
+
del ctx.input_tensors
|
1114 |
+
del ctx.input_params
|
1115 |
+
del output_tensors
|
1116 |
+
return (None, None) + input_grads
|
1117 |
+
|
1118 |
+
class CrossAttention(nn.Module):
|
1119 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
1120 |
+
super().__init__()
|
1121 |
+
inner_dim = dim_head * heads
|
1122 |
+
context_dim = default(context_dim, query_dim)
|
1123 |
+
|
1124 |
+
self.scale = dim_head ** -0.5
|
1125 |
+
self.heads = heads
|
1126 |
+
|
1127 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
1128 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
1129 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
1130 |
+
|
1131 |
+
self.to_out = nn.Sequential(
|
1132 |
+
nn.Linear(inner_dim, query_dim),
|
1133 |
+
nn.Dropout(dropout)
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
def forward(self, x, context=None, mask=None):
|
1137 |
+
h = self.heads
|
1138 |
+
|
1139 |
+
x = x.permute(0, 2, 1)
|
1140 |
+
context = context.permute(0, 2, 1)
|
1141 |
+
|
1142 |
+
q = self.to_q(x)
|
1143 |
+
context = default(context, x)
|
1144 |
+
k = self.to_k(context)
|
1145 |
+
v = self.to_v(context)
|
1146 |
+
|
1147 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
1148 |
+
|
1149 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
1150 |
+
|
1151 |
+
if exists(mask):
|
1152 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
1153 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
1154 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
1155 |
+
sim.masked_fill_(~mask, max_neg_value)
|
1156 |
+
|
1157 |
+
# attention, what we cannot get enough of
|
1158 |
+
attn = sim.softmax(dim=-1)
|
1159 |
+
|
1160 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
1161 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
1162 |
+
return self.to_out(out).permute(0, 2, 1)
|
1163 |
+
|
1164 |
+
def normalization(channels):
|
1165 |
+
"""
|
1166 |
+
Make a standard normalization layer.
|
1167 |
+
:param channels: number of input channels.
|
1168 |
+
:return: an nn.Module for normalization.
|
1169 |
+
"""
|
1170 |
+
return GroupNorm32(32, channels)
|
1171 |
+
|
1172 |
+
class GroupNorm32(nn.GroupNorm):
|
1173 |
+
def forward(self, x):
|
1174 |
+
return super().forward(x.float()).type(x.dtype)
|
1175 |
+
|
1176 |
+
class TriplaneAttentionBlock(nn.Module):
|
1177 |
+
def __init__(
|
1178 |
+
self,
|
1179 |
+
channels,
|
1180 |
+
num_heads=1,
|
1181 |
+
num_head_channels=-1,
|
1182 |
+
use_checkpoint=False,
|
1183 |
+
use_new_attention_order=False,
|
1184 |
+
):
|
1185 |
+
super().__init__()
|
1186 |
+
self.channels = channels
|
1187 |
+
if num_head_channels == -1:
|
1188 |
+
self.num_heads = num_heads
|
1189 |
+
else:
|
1190 |
+
assert (
|
1191 |
+
channels % num_head_channels == 0
|
1192 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
1193 |
+
self.num_heads = channels // num_head_channels
|
1194 |
+
self.use_checkpoint = use_checkpoint
|
1195 |
+
self.norm = normalization(channels)
|
1196 |
+
|
1197 |
+
self.plane1_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
1198 |
+
self.plane2_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
1199 |
+
self.plane3_ca = CrossAttention(channels, channels, self.num_heads, num_head_channels)
|
1200 |
+
|
1201 |
+
def forward(self, x, temp=None):
|
1202 |
+
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
1203 |
+
#return pt_checkpoint(self._forward, x) # pytorch
|
1204 |
+
|
1205 |
+
def _forward(self, x):
|
1206 |
+
x = rollout(x)
|
1207 |
+
|
1208 |
+
b, c, *spatial = x.shape
|
1209 |
+
res = x.shape[-2]
|
1210 |
+
plane1 = x[..., :res].reshape(b, c, -1)
|
1211 |
+
plane2 = x[..., res:res*2].reshape(b, c, -1)
|
1212 |
+
plane3 = x[..., 2*res:3*res].reshape(b, c, -1)
|
1213 |
+
x = x.reshape(b, c, -1)
|
1214 |
+
|
1215 |
+
plane1_output = self.plane1_ca(self.norm(plane1), self.norm(x))
|
1216 |
+
plane2_output = self.plane2_ca(self.norm(plane2), self.norm(x))
|
1217 |
+
plane3_output = self.plane3_ca(self.norm(plane3), self.norm(x))
|
1218 |
+
|
1219 |
+
h = torch.cat([plane1_output, plane2_output, plane3_output], -1)
|
1220 |
+
|
1221 |
+
x = (x + h).reshape(b, c, *spatial)
|
1222 |
+
|
1223 |
+
return unrollout(x)
|
1224 |
+
|
1225 |
+
|
1226 |
+
class Encoder_GroupConv(nn.Module):
|
1227 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
1228 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
1229 |
+
resolution, z_channels, double_z=True, use_linear_attn=False,
|
1230 |
+
attn_type="vanilla_groupconv", mid_layers=1,
|
1231 |
+
**ignore_kwargs):
|
1232 |
+
super().__init__()
|
1233 |
+
assert not use_linear_attn
|
1234 |
+
self.ch = ch
|
1235 |
+
self.temb_ch = 0
|
1236 |
+
self.num_resolutions = len(ch_mult)
|
1237 |
+
self.num_res_blocks = num_res_blocks
|
1238 |
+
self.resolution = resolution
|
1239 |
+
self.in_channels = in_channels
|
1240 |
+
|
1241 |
+
# downsampling
|
1242 |
+
# self.conv_in = torch.nn.Conv2d(in_channels,
|
1243 |
+
# self.ch,
|
1244 |
+
# kernel_size=3,
|
1245 |
+
# stride=1,
|
1246 |
+
# padding=1)
|
1247 |
+
self.conv_in = torch.nn.Conv2d(in_channels * 3,
|
1248 |
+
self.ch * 3,
|
1249 |
+
kernel_size=3,
|
1250 |
+
stride=1,
|
1251 |
+
padding=1,
|
1252 |
+
groups=3)
|
1253 |
+
|
1254 |
+
curr_res = resolution
|
1255 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
1256 |
+
self.in_ch_mult = in_ch_mult
|
1257 |
+
self.down = nn.ModuleList()
|
1258 |
+
for i_level in range(self.num_resolutions):
|
1259 |
+
block = nn.ModuleList()
|
1260 |
+
attn = nn.ModuleList()
|
1261 |
+
block_in = ch*in_ch_mult[i_level]
|
1262 |
+
block_out = ch*ch_mult[i_level]
|
1263 |
+
for i_block in range(self.num_res_blocks):
|
1264 |
+
block.append(ResnetBlock_GroupConv(in_channels=block_in,
|
1265 |
+
out_channels=block_out,
|
1266 |
+
temb_channels=self.temb_ch,
|
1267 |
+
dropout=dropout))
|
1268 |
+
block_in = block_out
|
1269 |
+
if curr_res in attn_resolutions:
|
1270 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
1271 |
+
down = nn.Module()
|
1272 |
+
down.block = block
|
1273 |
+
down.attn = attn
|
1274 |
+
if i_level != self.num_resolutions-1:
|
1275 |
+
down.downsample = Downsample_GroupConv(block_in, resamp_with_conv)
|
1276 |
+
curr_res = curr_res // 2
|
1277 |
+
self.down.append(down)
|
1278 |
+
|
1279 |
+
# middle
|
1280 |
+
self.attn_type = attn_type
|
1281 |
+
self.mid = nn.Module()
|
1282 |
+
if attn_type == 'crossattention':
|
1283 |
+
self.mid.block_1 = nn.ModuleList()
|
1284 |
+
for _ in range(mid_layers):
|
1285 |
+
self.mid.block_1.append(
|
1286 |
+
ResnetBlock_GroupConv(in_channels=block_in,
|
1287 |
+
out_channels=block_in,
|
1288 |
+
temb_channels=self.temb_ch,
|
1289 |
+
dropout=dropout)
|
1290 |
+
)
|
1291 |
+
self.mid.block_1.append(
|
1292 |
+
make_attn(block_in, attn_type=attn_type)
|
1293 |
+
)
|
1294 |
+
else:
|
1295 |
+
self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in,
|
1296 |
+
out_channels=block_in,
|
1297 |
+
temb_channels=self.temb_ch,
|
1298 |
+
dropout=dropout)
|
1299 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
1300 |
+
self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in,
|
1301 |
+
out_channels=block_in,
|
1302 |
+
temb_channels=self.temb_ch,
|
1303 |
+
dropout=dropout)
|
1304 |
+
|
1305 |
+
# end
|
1306 |
+
self.norm_out = Normalize(block_in * 3, 32 * 3)
|
1307 |
+
self.conv_out = torch.nn.Conv2d(block_in * 3,
|
1308 |
+
2*z_channels * 3 if double_z else z_channels * 3,
|
1309 |
+
kernel_size=3,
|
1310 |
+
stride=1,
|
1311 |
+
padding=1)
|
1312 |
+
|
1313 |
+
def forward(self, x):
|
1314 |
+
# timestep embedding
|
1315 |
+
temb = None
|
1316 |
+
|
1317 |
+
x = unrollout(x)
|
1318 |
+
|
1319 |
+
# downsampling
|
1320 |
+
hs = [self.conv_in(x)]
|
1321 |
+
for i_level in range(self.num_resolutions):
|
1322 |
+
for i_block in range(self.num_res_blocks):
|
1323 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
1324 |
+
if len(self.down[i_level].attn) > 0:
|
1325 |
+
h = self.down[i_level].attn[i_block](h)
|
1326 |
+
hs.append(h)
|
1327 |
+
if i_level != self.num_resolutions-1:
|
1328 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
1329 |
+
|
1330 |
+
# middle
|
1331 |
+
h = hs[-1]
|
1332 |
+
if self.attn_type == 'crossattention':
|
1333 |
+
for m in self.mid.block_1:
|
1334 |
+
h = m(h, temb)
|
1335 |
+
else:
|
1336 |
+
h = self.mid.block_1(h, temb)
|
1337 |
+
h = self.mid.attn_1(h)
|
1338 |
+
h = self.mid.block_2(h, temb)
|
1339 |
+
|
1340 |
+
# end
|
1341 |
+
h = self.norm_out(h)
|
1342 |
+
h = nonlinearity(h)
|
1343 |
+
h = self.conv_out(h)
|
1344 |
+
|
1345 |
+
h = rollout(h)
|
1346 |
+
|
1347 |
+
return h
|
1348 |
+
|
1349 |
+
class Decoder_GroupConv(nn.Module):
|
1350 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
1351 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
1352 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
1353 |
+
attn_type="vanilla_groupconv", mid_layers=1, **ignorekwargs):
|
1354 |
+
super().__init__()
|
1355 |
+
assert not use_linear_attn
|
1356 |
+
self.ch = ch
|
1357 |
+
self.temb_ch = 0
|
1358 |
+
self.num_resolutions = len(ch_mult)
|
1359 |
+
self.num_res_blocks = num_res_blocks
|
1360 |
+
self.resolution = resolution
|
1361 |
+
self.in_channels = in_channels
|
1362 |
+
self.give_pre_end = give_pre_end
|
1363 |
+
self.tanh_out = tanh_out
|
1364 |
+
|
1365 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
1366 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
1367 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
1368 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
1369 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
1370 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
1371 |
+
# self.z_shape, np.prod(self.z_shape)))
|
1372 |
+
|
1373 |
+
# z to block_in
|
1374 |
+
self.conv_in = torch.nn.Conv2d(z_channels * 3,
|
1375 |
+
block_in * 3,
|
1376 |
+
kernel_size=3,
|
1377 |
+
stride=1,
|
1378 |
+
padding=1,
|
1379 |
+
groups=3)
|
1380 |
+
|
1381 |
+
# middle
|
1382 |
+
self.mid = nn.Module()
|
1383 |
+
self.attn_type = attn_type
|
1384 |
+
if attn_type == 'crossattention':
|
1385 |
+
self.mid.block_1 = nn.ModuleList()
|
1386 |
+
for _ in range(mid_layers):
|
1387 |
+
self.mid.block_1.append(
|
1388 |
+
ResnetBlock_GroupConv(in_channels=block_in,
|
1389 |
+
out_channels=block_in,
|
1390 |
+
temb_channels=self.temb_ch,
|
1391 |
+
dropout=dropout)
|
1392 |
+
)
|
1393 |
+
self.mid.block_1.append(
|
1394 |
+
make_attn(block_in, attn_type=attn_type)
|
1395 |
+
)
|
1396 |
+
else:
|
1397 |
+
self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in,
|
1398 |
+
out_channels=block_in,
|
1399 |
+
temb_channels=self.temb_ch,
|
1400 |
+
dropout=dropout)
|
1401 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
1402 |
+
self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in,
|
1403 |
+
out_channels=block_in,
|
1404 |
+
temb_channels=self.temb_ch,
|
1405 |
+
dropout=dropout)
|
1406 |
+
|
1407 |
+
# upsampling
|
1408 |
+
self.up = nn.ModuleList()
|
1409 |
+
for i_level in reversed(range(self.num_resolutions)):
|
1410 |
+
block = nn.ModuleList()
|
1411 |
+
attn = nn.ModuleList()
|
1412 |
+
block_out = ch*ch_mult[i_level]
|
1413 |
+
for i_block in range(self.num_res_blocks+1):
|
1414 |
+
block.append(ResnetBlock_GroupConv(in_channels=block_in,
|
1415 |
+
out_channels=block_out,
|
1416 |
+
temb_channels=self.temb_ch,
|
1417 |
+
dropout=dropout))
|
1418 |
+
block_in = block_out
|
1419 |
+
if curr_res in attn_resolutions:
|
1420 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
1421 |
+
up = nn.Module()
|
1422 |
+
up.block = block
|
1423 |
+
up.attn = attn
|
1424 |
+
if i_level != 0:
|
1425 |
+
up.upsample = Upsample_GroupConv(block_in, resamp_with_conv)
|
1426 |
+
curr_res = curr_res * 2
|
1427 |
+
self.up.insert(0, up) # prepend to get consistent order
|
1428 |
+
|
1429 |
+
# end
|
1430 |
+
self.norm_out = Normalize(block_in * 3, 32 * 3)
|
1431 |
+
self.conv_out = torch.nn.Conv2d(block_in * 3,
|
1432 |
+
out_ch * 3,
|
1433 |
+
kernel_size=3,
|
1434 |
+
stride=1,
|
1435 |
+
padding=1,
|
1436 |
+
groups=3)
|
1437 |
+
|
1438 |
+
def forward(self, z):
|
1439 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
1440 |
+
self.last_z_shape = z.shape
|
1441 |
+
|
1442 |
+
z = unrollout(z)
|
1443 |
+
|
1444 |
+
# timestep embedding
|
1445 |
+
temb = None
|
1446 |
+
|
1447 |
+
# z to block_in
|
1448 |
+
h = self.conv_in(z)
|
1449 |
+
|
1450 |
+
# middle
|
1451 |
+
if self.attn_type == 'crossattention':
|
1452 |
+
for m in self.mid.block_1:
|
1453 |
+
h = m(h, temb)
|
1454 |
+
else:
|
1455 |
+
h = self.mid.block_1(h, temb)
|
1456 |
+
h = self.mid.attn_1(h)
|
1457 |
+
h = self.mid.block_2(h, temb)
|
1458 |
+
|
1459 |
+
# upsampling
|
1460 |
+
for i_level in reversed(range(self.num_resolutions)):
|
1461 |
+
for i_block in range(self.num_res_blocks+1):
|
1462 |
+
h = self.up[i_level].block[i_block](h, temb)
|
1463 |
+
if len(self.up[i_level].attn) > 0:
|
1464 |
+
h = self.up[i_level].attn[i_block](h)
|
1465 |
+
if i_level != 0:
|
1466 |
+
h = self.up[i_level].upsample(h)
|
1467 |
+
|
1468 |
+
# end
|
1469 |
+
if self.give_pre_end:
|
1470 |
+
return h
|
1471 |
+
|
1472 |
+
h = self.norm_out(h)
|
1473 |
+
h = nonlinearity(h)
|
1474 |
+
h = self.conv_out(h)
|
1475 |
+
if self.tanh_out:
|
1476 |
+
h = torch.tanh(h)
|
1477 |
+
|
1478 |
+
h = rollout(h)
|
1479 |
+
|
1480 |
+
return h
|
1481 |
+
|
1482 |
+
|
1483 |
+
|
1484 |
+
# not success attempts
|
1485 |
+
class CrossAttnFuseBlock_GroupConv(nn.Module):
|
1486 |
+
def __init__(self, in_channels):
|
1487 |
+
super().__init__()
|
1488 |
+
self.in_channels = in_channels
|
1489 |
+
|
1490 |
+
self.norm = Normalize(in_channels)
|
1491 |
+
self.q0 = torch.nn.Conv2d(in_channels,
|
1492 |
+
in_channels,
|
1493 |
+
kernel_size=1,
|
1494 |
+
stride=1,
|
1495 |
+
padding=0)
|
1496 |
+
self.k0 = torch.nn.Conv2d(in_channels,
|
1497 |
+
in_channels,
|
1498 |
+
kernel_size=1,
|
1499 |
+
stride=1,
|
1500 |
+
padding=0)
|
1501 |
+
self.v0 = torch.nn.Conv2d(in_channels,
|
1502 |
+
in_channels,
|
1503 |
+
kernel_size=1,
|
1504 |
+
stride=1,
|
1505 |
+
padding=0)
|
1506 |
+
self.q1 = torch.nn.Conv2d(in_channels,
|
1507 |
+
in_channels,
|
1508 |
+
kernel_size=1,
|
1509 |
+
stride=1,
|
1510 |
+
padding=0)
|
1511 |
+
self.k1 = torch.nn.Conv2d(in_channels,
|
1512 |
+
in_channels,
|
1513 |
+
kernel_size=1,
|
1514 |
+
stride=1,
|
1515 |
+
padding=0)
|
1516 |
+
self.v1 = torch.nn.Conv2d(in_channels,
|
1517 |
+
in_channels,
|
1518 |
+
kernel_size=1,
|
1519 |
+
stride=1,
|
1520 |
+
padding=0)
|
1521 |
+
self.q2 = torch.nn.Conv2d(in_channels,
|
1522 |
+
in_channels,
|
1523 |
+
kernel_size=1,
|
1524 |
+
stride=1,
|
1525 |
+
padding=0)
|
1526 |
+
self.k2 = torch.nn.Conv2d(in_channels,
|
1527 |
+
in_channels,
|
1528 |
+
kernel_size=1,
|
1529 |
+
stride=1,
|
1530 |
+
padding=0)
|
1531 |
+
self.v2 = torch.nn.Conv2d(in_channels,
|
1532 |
+
in_channels,
|
1533 |
+
kernel_size=1,
|
1534 |
+
stride=1,
|
1535 |
+
padding=0)
|
1536 |
+
self.proj_out0 = torch.nn.Conv2d(in_channels,
|
1537 |
+
in_channels,
|
1538 |
+
kernel_size=1,
|
1539 |
+
stride=1,
|
1540 |
+
padding=0)
|
1541 |
+
self.proj_out1 = torch.nn.Conv2d(in_channels,
|
1542 |
+
in_channels,
|
1543 |
+
kernel_size=1,
|
1544 |
+
stride=1,
|
1545 |
+
padding=0)
|
1546 |
+
self.proj_out2 = torch.nn.Conv2d(in_channels,
|
1547 |
+
in_channels,
|
1548 |
+
kernel_size=1,
|
1549 |
+
stride=1,
|
1550 |
+
padding=0)
|
1551 |
+
|
1552 |
+
self.fuse_out = torch.nn.Conv2d(in_channels * 3,
|
1553 |
+
in_channels,
|
1554 |
+
kernel_size=1,
|
1555 |
+
stride=1,
|
1556 |
+
padding=0)
|
1557 |
+
|
1558 |
+
def forward(self, x):
|
1559 |
+
x = rollout(x)
|
1560 |
+
|
1561 |
+
b, c, *spatial = x.shape
|
1562 |
+
res = x.shape[-2]
|
1563 |
+
plane1 = x[..., :res].reshape(b, c, res, res)
|
1564 |
+
plane2 = x[..., res:res*2].reshape(b, c, res, res)
|
1565 |
+
plane3 = x[..., 2*res:3*res].reshape(b, c, res, res)
|
1566 |
+
|
1567 |
+
# h_ = x
|
1568 |
+
# h_ = self.norm(h_)
|
1569 |
+
# q = self.q(h_)
|
1570 |
+
# k = self.k(h_)
|
1571 |
+
# v = self.v(h_)
|
1572 |
+
|
1573 |
+
q0 = self.q0(self.norm(plane2))
|
1574 |
+
k0 = self.k0(self.norm(plane2))
|
1575 |
+
v0 = self.v0(self.norm(plane2))
|
1576 |
+
|
1577 |
+
q1 = self.q1(self.norm(plane2))
|
1578 |
+
k1 = self.k1(self.norm(plane1))
|
1579 |
+
v1 = self.v1(self.norm(plane1))
|
1580 |
+
|
1581 |
+
q2 = self.q2(self.norm(plane2))
|
1582 |
+
k2 = self.k2(self.norm(plane3))
|
1583 |
+
v2 = self.v2(self.norm(plane3))
|
1584 |
+
|
1585 |
+
def compute_attention(q, k, v):
|
1586 |
+
# compute attention
|
1587 |
+
b,c,h,w = q.shape
|
1588 |
+
q = q.reshape(b,c,h*w)
|
1589 |
+
q = q.permute(0,2,1) # b,hw,c
|
1590 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
1591 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
1592 |
+
w_ = w_ * (int(c)**(-0.5))
|
1593 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
1594 |
+
# attend to values
|
1595 |
+
v = v.reshape(b,c,h*w)
|
1596 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
1597 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
1598 |
+
h_ = h_.reshape(b,c,h,w)
|
1599 |
+
|
1600 |
+
return h_
|
1601 |
+
|
1602 |
+
h0 = compute_attention(q0, k0, v0)
|
1603 |
+
h0 = self.proj_out0(h0)
|
1604 |
+
|
1605 |
+
h1 = compute_attention(q1, k1, v1)
|
1606 |
+
h1 = self.proj_out1(h1)
|
1607 |
+
|
1608 |
+
h2 = compute_attention(q2, k2, v2)
|
1609 |
+
h2 = self.proj_out2(h2)
|
1610 |
+
|
1611 |
+
fuse_out = self.fuse_out(
|
1612 |
+
torch.cat([h0, h1, h2], 1)
|
1613 |
+
)
|
1614 |
+
|
1615 |
+
return fuse_out
|
1616 |
+
|
1617 |
+
class CrossAttnDecodeBlock_GroupConv(nn.Module):
|
1618 |
+
def __init__(self, in_channels, h, w):
|
1619 |
+
super().__init__()
|
1620 |
+
self.in_channels = in_channels
|
1621 |
+
self.h = h
|
1622 |
+
self.w = w
|
1623 |
+
|
1624 |
+
self.norm = Normalize(in_channels)
|
1625 |
+
self.q0 = torch.nn.Conv2d(in_channels,
|
1626 |
+
in_channels,
|
1627 |
+
kernel_size=1,
|
1628 |
+
stride=1,
|
1629 |
+
padding=0)
|
1630 |
+
self.k0 = torch.nn.Conv2d(in_channels,
|
1631 |
+
in_channels,
|
1632 |
+
kernel_size=1,
|
1633 |
+
stride=1,
|
1634 |
+
padding=0)
|
1635 |
+
self.v0 = torch.nn.Conv2d(in_channels,
|
1636 |
+
in_channels,
|
1637 |
+
kernel_size=1,
|
1638 |
+
stride=1,
|
1639 |
+
padding=0)
|
1640 |
+
|
1641 |
+
self.q1 = torch.nn.Parameter(torch.randn(1, self.in_channels, h, w))
|
1642 |
+
self.q1.requires_grad = True
|
1643 |
+
|
1644 |
+
self.k1 = torch.nn.Conv2d(in_channels,
|
1645 |
+
in_channels,
|
1646 |
+
kernel_size=1,
|
1647 |
+
stride=1,
|
1648 |
+
padding=0)
|
1649 |
+
self.v1 = torch.nn.Conv2d(in_channels,
|
1650 |
+
in_channels,
|
1651 |
+
kernel_size=1,
|
1652 |
+
stride=1,
|
1653 |
+
padding=0)
|
1654 |
+
|
1655 |
+
self.q2 = torch.nn.Parameter(torch.randn(1, self.in_channels, h, w))
|
1656 |
+
self.q2.requires_grad = True
|
1657 |
+
|
1658 |
+
self.k2 = torch.nn.Conv2d(in_channels,
|
1659 |
+
in_channels,
|
1660 |
+
kernel_size=1,
|
1661 |
+
stride=1,
|
1662 |
+
padding=0)
|
1663 |
+
self.v2 = torch.nn.Conv2d(in_channels,
|
1664 |
+
in_channels,
|
1665 |
+
kernel_size=1,
|
1666 |
+
stride=1,
|
1667 |
+
padding=0)
|
1668 |
+
self.proj_out0 = torch.nn.Conv2d(in_channels,
|
1669 |
+
in_channels,
|
1670 |
+
kernel_size=1,
|
1671 |
+
stride=1,
|
1672 |
+
padding=0)
|
1673 |
+
self.proj_out1 = torch.nn.Conv2d(in_channels,
|
1674 |
+
in_channels,
|
1675 |
+
kernel_size=1,
|
1676 |
+
stride=1,
|
1677 |
+
padding=0)
|
1678 |
+
self.proj_out2 = torch.nn.Conv2d(in_channels,
|
1679 |
+
in_channels,
|
1680 |
+
kernel_size=1,
|
1681 |
+
stride=1,
|
1682 |
+
padding=0)
|
1683 |
+
|
1684 |
+
self.fuse_out = torch.nn.Conv2d(in_channels,
|
1685 |
+
in_channels,
|
1686 |
+
kernel_size=1,
|
1687 |
+
stride=1,
|
1688 |
+
padding=0)
|
1689 |
+
|
1690 |
+
def forward(self, x):
|
1691 |
+
# x = rollout(x)
|
1692 |
+
|
1693 |
+
b, c, *spatial = x.shape
|
1694 |
+
res = x.shape[-2]
|
1695 |
+
# plane1 = x[..., :res].reshape(b, c, res, res)
|
1696 |
+
# plane2 = x[..., res:res*2].reshape(b, c, res, res)
|
1697 |
+
# plane3 = x[..., 2*res:3*res].reshape(b, c, res, res)
|
1698 |
+
|
1699 |
+
# h_ = x
|
1700 |
+
# h_ = self.norm(h_)
|
1701 |
+
# q = self.q(h_)
|
1702 |
+
# k = self.k(h_)
|
1703 |
+
# v = self.v(h_)
|
1704 |
+
|
1705 |
+
q0 = self.q0(self.norm(x))
|
1706 |
+
k0 = self.k0(self.norm(x))
|
1707 |
+
v0 = self.v0(self.norm(x))
|
1708 |
+
|
1709 |
+
q1 = self.q1.repeat(b, 1, 1, 1)
|
1710 |
+
k1 = self.k1(self.norm(x))
|
1711 |
+
v1 = self.v1(self.norm(x))
|
1712 |
+
|
1713 |
+
q2 = self.q2.repeat(b, 1, 1, 1)
|
1714 |
+
k2 = self.k2(self.norm(x))
|
1715 |
+
v2 = self.v2(self.norm(x))
|
1716 |
+
|
1717 |
+
def compute_attention(q, k, v):
|
1718 |
+
# compute attention
|
1719 |
+
b,c,h,w = q.shape
|
1720 |
+
q = q.reshape(b,c,h*w)
|
1721 |
+
q = q.permute(0,2,1) # b,hw,c
|
1722 |
+
k = k.reshape(b,c,h*w) # b,c,hw
|
1723 |
+
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
1724 |
+
w_ = w_ * (int(c)**(-0.5))
|
1725 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
1726 |
+
# attend to values
|
1727 |
+
v = v.reshape(b,c,h*w)
|
1728 |
+
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
1729 |
+
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
1730 |
+
h_ = h_.reshape(b,c,h,w)
|
1731 |
+
return h_
|
1732 |
+
|
1733 |
+
h0 = compute_attention(q0, k0, v0)
|
1734 |
+
h0 = self.proj_out0(h0)
|
1735 |
+
|
1736 |
+
h1 = compute_attention(q1, k1, v1)
|
1737 |
+
h1 = self.proj_out1(h1)
|
1738 |
+
|
1739 |
+
h2 = compute_attention(q2, k2, v2)
|
1740 |
+
h2 = self.proj_out2(h2)
|
1741 |
+
|
1742 |
+
fuse_out = self.fuse_out(
|
1743 |
+
torch.cat([h1, h0, h2], -1)
|
1744 |
+
)
|
1745 |
+
|
1746 |
+
fuse_out = unrollout(fuse_out)
|
1747 |
+
|
1748 |
+
return fuse_out
|
1749 |
+
|
1750 |
+
class Encoder_GroupConv_LateFusion(nn.Module):
|
1751 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
1752 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
1753 |
+
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla_groupconv",
|
1754 |
+
**ignore_kwargs):
|
1755 |
+
super().__init__()
|
1756 |
+
assert not use_linear_attn
|
1757 |
+
self.ch = ch
|
1758 |
+
self.temb_ch = 0
|
1759 |
+
self.num_resolutions = len(ch_mult)
|
1760 |
+
self.num_res_blocks = num_res_blocks
|
1761 |
+
self.resolution = resolution
|
1762 |
+
self.in_channels = in_channels
|
1763 |
+
|
1764 |
+
# downsampling
|
1765 |
+
self.conv_in = torch.nn.Conv2d(in_channels * 3,
|
1766 |
+
self.ch * 3,
|
1767 |
+
kernel_size=3,
|
1768 |
+
stride=1,
|
1769 |
+
padding=1,
|
1770 |
+
groups=3)
|
1771 |
+
|
1772 |
+
curr_res = resolution
|
1773 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
1774 |
+
self.in_ch_mult = in_ch_mult
|
1775 |
+
self.down = nn.ModuleList()
|
1776 |
+
for i_level in range(self.num_resolutions):
|
1777 |
+
block = nn.ModuleList()
|
1778 |
+
attn = nn.ModuleList()
|
1779 |
+
block_in = ch*in_ch_mult[i_level]
|
1780 |
+
block_out = ch*ch_mult[i_level]
|
1781 |
+
for i_block in range(self.num_res_blocks):
|
1782 |
+
block.append(ResnetBlock_GroupConv(in_channels=block_in,
|
1783 |
+
out_channels=block_out,
|
1784 |
+
temb_channels=self.temb_ch,
|
1785 |
+
dropout=dropout))
|
1786 |
+
block_in = block_out
|
1787 |
+
if curr_res in attn_resolutions:
|
1788 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
1789 |
+
down = nn.Module()
|
1790 |
+
down.block = block
|
1791 |
+
down.attn = attn
|
1792 |
+
if i_level != self.num_resolutions-1:
|
1793 |
+
down.downsample = Downsample_GroupConv(block_in, resamp_with_conv)
|
1794 |
+
curr_res = curr_res // 2
|
1795 |
+
self.down.append(down)
|
1796 |
+
|
1797 |
+
# middle
|
1798 |
+
self.mid = nn.Module()
|
1799 |
+
self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in,
|
1800 |
+
out_channels=block_in,
|
1801 |
+
temb_channels=self.temb_ch,
|
1802 |
+
dropout=dropout)
|
1803 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
1804 |
+
self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in,
|
1805 |
+
out_channels=block_in,
|
1806 |
+
temb_channels=self.temb_ch,
|
1807 |
+
dropout=dropout)
|
1808 |
+
|
1809 |
+
# fuse to one plane
|
1810 |
+
self.fuse = CrossAttnFuseBlock_GroupConv(block_in)
|
1811 |
+
|
1812 |
+
# end
|
1813 |
+
self.norm_out = Normalize(block_in, 32)
|
1814 |
+
self.conv_out = torch.nn.Conv2d(block_in,
|
1815 |
+
2*z_channels if double_z else z_channels,
|
1816 |
+
kernel_size=3,
|
1817 |
+
stride=1,
|
1818 |
+
padding=1)
|
1819 |
+
|
1820 |
+
def forward(self, x):
|
1821 |
+
# timestep embedding
|
1822 |
+
temb = None
|
1823 |
+
|
1824 |
+
x = unrollout(x)
|
1825 |
+
|
1826 |
+
# downsampling
|
1827 |
+
hs = [self.conv_in(x)]
|
1828 |
+
for i_level in range(self.num_resolutions):
|
1829 |
+
for i_block in range(self.num_res_blocks):
|
1830 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
1831 |
+
if len(self.down[i_level].attn) > 0:
|
1832 |
+
h = self.down[i_level].attn[i_block](h)
|
1833 |
+
hs.append(h)
|
1834 |
+
if i_level != self.num_resolutions-1:
|
1835 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
1836 |
+
|
1837 |
+
# middle
|
1838 |
+
h = hs[-1]
|
1839 |
+
h = self.mid.block_1(h, temb)
|
1840 |
+
h = self.mid.attn_1(h)
|
1841 |
+
h = self.mid.block_2(h, temb)
|
1842 |
+
|
1843 |
+
h = self.fuse(h)
|
1844 |
+
|
1845 |
+
# end
|
1846 |
+
h = self.norm_out(h)
|
1847 |
+
h = nonlinearity(h)
|
1848 |
+
h = self.conv_out(h)
|
1849 |
+
|
1850 |
+
# h = rollout(h)
|
1851 |
+
|
1852 |
+
return h
|
1853 |
+
|
1854 |
+
class Decoder_GroupConv_LateFusion(nn.Module):
|
1855 |
+
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
1856 |
+
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
1857 |
+
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
1858 |
+
attn_type="vanilla_groupconv", **ignorekwargs):
|
1859 |
+
super().__init__()
|
1860 |
+
assert not use_linear_attn
|
1861 |
+
self.ch = ch
|
1862 |
+
self.temb_ch = 0
|
1863 |
+
self.num_resolutions = len(ch_mult)
|
1864 |
+
self.num_res_blocks = num_res_blocks
|
1865 |
+
self.resolution = resolution
|
1866 |
+
self.in_channels = in_channels
|
1867 |
+
self.give_pre_end = give_pre_end
|
1868 |
+
self.tanh_out = tanh_out
|
1869 |
+
|
1870 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
1871 |
+
in_ch_mult = (1,)+tuple(ch_mult)
|
1872 |
+
block_in = ch*ch_mult[self.num_resolutions-1]
|
1873 |
+
curr_res = resolution // 2**(self.num_resolutions-1)
|
1874 |
+
self.z_shape = (1,z_channels,curr_res,curr_res)
|
1875 |
+
# print("Working with z of shape {} = {} dimensions.".format(
|
1876 |
+
# self.z_shape, np.prod(self.z_shape)))
|
1877 |
+
|
1878 |
+
# z to block_in
|
1879 |
+
self.conv_in = torch.nn.Conv2d(z_channels,
|
1880 |
+
block_in,
|
1881 |
+
kernel_size=3,
|
1882 |
+
stride=1,
|
1883 |
+
padding=1)
|
1884 |
+
|
1885 |
+
# triplane decoder
|
1886 |
+
self.triplane_decoder = CrossAttnDecodeBlock_GroupConv(block_in, curr_res, curr_res)
|
1887 |
+
|
1888 |
+
# middle
|
1889 |
+
self.mid = nn.Module()
|
1890 |
+
self.mid.block_1 = ResnetBlock_GroupConv(in_channels=block_in,
|
1891 |
+
out_channels=block_in,
|
1892 |
+
temb_channels=self.temb_ch,
|
1893 |
+
dropout=dropout)
|
1894 |
+
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
1895 |
+
self.mid.block_2 = ResnetBlock_GroupConv(in_channels=block_in,
|
1896 |
+
out_channels=block_in,
|
1897 |
+
temb_channels=self.temb_ch,
|
1898 |
+
dropout=dropout)
|
1899 |
+
|
1900 |
+
# upsampling
|
1901 |
+
self.up = nn.ModuleList()
|
1902 |
+
for i_level in reversed(range(self.num_resolutions)):
|
1903 |
+
block = nn.ModuleList()
|
1904 |
+
attn = nn.ModuleList()
|
1905 |
+
block_out = ch*ch_mult[i_level]
|
1906 |
+
for i_block in range(self.num_res_blocks+1):
|
1907 |
+
block.append(ResnetBlock_GroupConv(in_channels=block_in,
|
1908 |
+
out_channels=block_out,
|
1909 |
+
temb_channels=self.temb_ch,
|
1910 |
+
dropout=dropout))
|
1911 |
+
block_in = block_out
|
1912 |
+
if curr_res in attn_resolutions:
|
1913 |
+
attn.append(make_attn(block_in, attn_type=attn_type))
|
1914 |
+
up = nn.Module()
|
1915 |
+
up.block = block
|
1916 |
+
up.attn = attn
|
1917 |
+
if i_level != 0:
|
1918 |
+
up.upsample = Upsample_GroupConv(block_in, resamp_with_conv)
|
1919 |
+
curr_res = curr_res * 2
|
1920 |
+
self.up.insert(0, up) # prepend to get consistent order
|
1921 |
+
|
1922 |
+
# end
|
1923 |
+
self.norm_out = Normalize(block_in * 3, 32 * 3)
|
1924 |
+
self.conv_out = torch.nn.Conv2d(block_in * 3,
|
1925 |
+
out_ch * 3,
|
1926 |
+
kernel_size=3,
|
1927 |
+
stride=1,
|
1928 |
+
padding=1,
|
1929 |
+
groups=3)
|
1930 |
+
|
1931 |
+
def forward(self, z):
|
1932 |
+
#assert z.shape[1:] == self.z_shape[1:]
|
1933 |
+
self.last_z_shape = z.shape
|
1934 |
+
|
1935 |
+
# timestep embedding
|
1936 |
+
temb = None
|
1937 |
+
|
1938 |
+
# z to block_in
|
1939 |
+
h = self.conv_in(z)
|
1940 |
+
|
1941 |
+
h = self.triplane_decoder(h)
|
1942 |
+
|
1943 |
+
# middle
|
1944 |
+
h = self.mid.block_1(h, temb)
|
1945 |
+
h = self.mid.attn_1(h)
|
1946 |
+
h = self.mid.block_2(h, temb)
|
1947 |
+
|
1948 |
+
# upsampling
|
1949 |
+
for i_level in reversed(range(self.num_resolutions)):
|
1950 |
+
for i_block in range(self.num_res_blocks+1):
|
1951 |
+
h = self.up[i_level].block[i_block](h, temb)
|
1952 |
+
if len(self.up[i_level].attn) > 0:
|
1953 |
+
h = self.up[i_level].attn[i_block](h)
|
1954 |
+
if i_level != 0:
|
1955 |
+
h = self.up[i_level].upsample(h)
|
1956 |
+
|
1957 |
+
# end
|
1958 |
+
if self.give_pre_end:
|
1959 |
+
return h
|
1960 |
+
|
1961 |
+
h = self.norm_out(h)
|
1962 |
+
h = nonlinearity(h)
|
1963 |
+
h = self.conv_out(h)
|
1964 |
+
if self.tanh_out:
|
1965 |
+
h = torch.tanh(h)
|
1966 |
+
|
1967 |
+
h = rollout(h)
|
1968 |
+
|
1969 |
+
return h
|
1970 |
+
|
1971 |
+
|
1972 |
+
# VIT Encoder and Decoder from https://github.com/thuanz123/enhancing-transformers/blob/main/enhancing/modules/stage1/layers.py
|
1973 |
+
# ------------------------------------------------------------------------------------
|
1974 |
+
# Enhancing Transformers
|
1975 |
+
# Copyright (c) 2022 Thuan H. Nguyen. All Rights Reserved.
|
1976 |
+
# Licensed under the MIT License [see LICENSE for details]
|
1977 |
+
# ------------------------------------------------------------------------------------
|
1978 |
+
# Modified from ViT-Pytorch (https://github.com/lucidrains/vit-pytorch)
|
1979 |
+
# Copyright (c) 2020 Phil Wang. All Rights Reserved.
|
1980 |
+
# ------------------------------------------------------------------------------------
|
1981 |
+
|
1982 |
+
import math
|
1983 |
+
import numpy as np
|
1984 |
+
from typing import Union, Tuple, List
|
1985 |
+
from collections import OrderedDict
|
1986 |
+
|
1987 |
+
import torch
|
1988 |
+
import torch.nn as nn
|
1989 |
+
import torch.nn.functional as F
|
1990 |
+
from einops import rearrange, repeat
|
1991 |
+
from einops.layers.torch import Rearrange
|
1992 |
+
|
1993 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size):
|
1994 |
+
"""
|
1995 |
+
grid_size: int or (int, int) of the grid height and width
|
1996 |
+
return:
|
1997 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
1998 |
+
"""
|
1999 |
+
grid_size = (grid_size, grid_size) if type(grid_size) != tuple else grid_size
|
2000 |
+
grid_h = np.arange(grid_size[0], dtype=np.float32)
|
2001 |
+
grid_w = np.arange(grid_size[1], dtype=np.float32)
|
2002 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
2003 |
+
grid = np.stack(grid, axis=0)
|
2004 |
+
|
2005 |
+
grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
|
2006 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
2007 |
+
|
2008 |
+
return pos_embed
|
2009 |
+
|
2010 |
+
|
2011 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
2012 |
+
assert embed_dim % 2 == 0
|
2013 |
+
|
2014 |
+
# use half of dimensions to encode grid_h
|
2015 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
2016 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
2017 |
+
|
2018 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
2019 |
+
return emb
|
2020 |
+
|
2021 |
+
|
2022 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
2023 |
+
"""
|
2024 |
+
embed_dim: output dimension for each position
|
2025 |
+
pos: a list of positions to be encoded: size (M,)
|
2026 |
+
out: (M, D)
|
2027 |
+
"""
|
2028 |
+
assert embed_dim % 2 == 0
|
2029 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
2030 |
+
omega /= embed_dim / 2.
|
2031 |
+
omega = 1. / 10000**omega # (D/2,)
|
2032 |
+
|
2033 |
+
pos = pos.reshape(-1) # (M,)
|
2034 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
2035 |
+
|
2036 |
+
emb_sin = np.sin(out) # (M, D/2)
|
2037 |
+
emb_cos = np.cos(out) # (M, D/2)
|
2038 |
+
|
2039 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
2040 |
+
return emb
|
2041 |
+
|
2042 |
+
|
2043 |
+
def init_weights(m):
|
2044 |
+
if isinstance(m, nn.Linear):
|
2045 |
+
# we use xavier_uniform following official JAX ViT:
|
2046 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
2047 |
+
if m.bias is not None:
|
2048 |
+
nn.init.constant_(m.bias, 0)
|
2049 |
+
elif isinstance(m, nn.LayerNorm):
|
2050 |
+
nn.init.constant_(m.bias, 0)
|
2051 |
+
nn.init.constant_(m.weight, 1.0)
|
2052 |
+
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
|
2053 |
+
w = m.weight.data
|
2054 |
+
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
2055 |
+
|
2056 |
+
|
2057 |
+
class PreNorm(nn.Module):
|
2058 |
+
def __init__(self, dim: int, fn: nn.Module) -> None:
|
2059 |
+
super().__init__()
|
2060 |
+
self.norm = nn.LayerNorm(dim)
|
2061 |
+
self.fn = fn
|
2062 |
+
|
2063 |
+
def forward(self, x: torch.FloatTensor, **kwargs) -> torch.FloatTensor:
|
2064 |
+
return self.fn(self.norm(x), **kwargs)
|
2065 |
+
|
2066 |
+
|
2067 |
+
class FeedForward(nn.Module):
|
2068 |
+
def __init__(self, dim: int, hidden_dim: int) -> None:
|
2069 |
+
super().__init__()
|
2070 |
+
self.net = nn.Sequential(
|
2071 |
+
nn.Linear(dim, hidden_dim),
|
2072 |
+
nn.Tanh(),
|
2073 |
+
nn.Linear(hidden_dim, dim)
|
2074 |
+
)
|
2075 |
+
|
2076 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
2077 |
+
return self.net(x)
|
2078 |
+
|
2079 |
+
|
2080 |
+
class Attention(nn.Module):
|
2081 |
+
def __init__(self, dim: int, heads: int = 8, dim_head: int = 64) -> None:
|
2082 |
+
super().__init__()
|
2083 |
+
inner_dim = dim_head * heads
|
2084 |
+
project_out = not (heads == 1 and dim_head == dim)
|
2085 |
+
|
2086 |
+
self.heads = heads
|
2087 |
+
self.scale = dim_head ** -0.5
|
2088 |
+
|
2089 |
+
self.attend = nn.Softmax(dim = -1)
|
2090 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
2091 |
+
|
2092 |
+
self.to_out = nn.Linear(inner_dim, dim) if project_out else nn.Identity()
|
2093 |
+
|
2094 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
2095 |
+
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
2096 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
2097 |
+
|
2098 |
+
attn = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
2099 |
+
attn = self.attend(attn)
|
2100 |
+
|
2101 |
+
out = torch.matmul(attn, v)
|
2102 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
2103 |
+
|
2104 |
+
return self.to_out(out)
|
2105 |
+
|
2106 |
+
|
2107 |
+
class Transformer(nn.Module):
|
2108 |
+
def __init__(self, dim: int, depth: int, heads: int, dim_head: int, mlp_dim: int) -> None:
|
2109 |
+
super().__init__()
|
2110 |
+
self.layers = nn.ModuleList([])
|
2111 |
+
for idx in range(depth):
|
2112 |
+
layer = nn.ModuleList([PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head)),
|
2113 |
+
PreNorm(dim, FeedForward(dim, mlp_dim))])
|
2114 |
+
self.layers.append(layer)
|
2115 |
+
self.norm = nn.LayerNorm(dim)
|
2116 |
+
|
2117 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
2118 |
+
for attn, ff in self.layers:
|
2119 |
+
x = attn(x) + x
|
2120 |
+
x = ff(x) + x
|
2121 |
+
|
2122 |
+
return self.norm(x)
|
2123 |
+
|
2124 |
+
|
2125 |
+
class ViTEncoder(nn.Module):
|
2126 |
+
def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int],
|
2127 |
+
dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 3, dim_head: int = 64) -> None:
|
2128 |
+
super().__init__()
|
2129 |
+
image_height, image_width = image_size if isinstance(image_size, tuple) \
|
2130 |
+
else (image_size, image_size)
|
2131 |
+
patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \
|
2132 |
+
else (patch_size, patch_size)
|
2133 |
+
|
2134 |
+
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
2135 |
+
en_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width))
|
2136 |
+
|
2137 |
+
self.num_patches = (image_height // patch_height) * (image_width // patch_width)
|
2138 |
+
self.patch_dim = channels * patch_height * patch_width
|
2139 |
+
|
2140 |
+
self.to_patch_embedding = nn.Sequential(
|
2141 |
+
nn.Conv2d(channels, dim, kernel_size=patch_size, stride=patch_size),
|
2142 |
+
Rearrange('b c h w -> b (h w) c'),
|
2143 |
+
)
|
2144 |
+
|
2145 |
+
self.patch_height = patch_height
|
2146 |
+
self.patch_width = patch_width
|
2147 |
+
self.image_height = image_height
|
2148 |
+
self.image_width = image_width
|
2149 |
+
self.dim = dim
|
2150 |
+
|
2151 |
+
self.en_pos_embedding = nn.Parameter(torch.from_numpy(en_pos_embedding).float().unsqueeze(0), requires_grad=False)
|
2152 |
+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
2153 |
+
|
2154 |
+
self.apply(init_weights)
|
2155 |
+
|
2156 |
+
def forward(self, img: torch.FloatTensor) -> torch.FloatTensor:
|
2157 |
+
x = self.to_patch_embedding(img)
|
2158 |
+
x = x + self.en_pos_embedding
|
2159 |
+
x = self.transformer(x)
|
2160 |
+
|
2161 |
+
x = Rearrange('b h w c -> b c h w')(x.reshape(-1, self.image_height // self.patch_height, self.image_width // self.patch_width, self.dim))
|
2162 |
+
|
2163 |
+
return x
|
2164 |
+
|
2165 |
+
|
2166 |
+
class ViTDecoder(nn.Module):
|
2167 |
+
def __init__(self, image_size: Union[Tuple[int, int], int], patch_size: Union[Tuple[int, int], int],
|
2168 |
+
dim: int, depth: int, heads: int, mlp_dim: int, channels: int = 3, dim_head: int = 64) -> None:
|
2169 |
+
super().__init__()
|
2170 |
+
image_height, image_width = image_size if isinstance(image_size, tuple) \
|
2171 |
+
else (image_size, image_size)
|
2172 |
+
patch_height, patch_width = patch_size if isinstance(patch_size, tuple) \
|
2173 |
+
else (patch_size, patch_size)
|
2174 |
+
|
2175 |
+
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
2176 |
+
de_pos_embedding = get_2d_sincos_pos_embed(dim, (image_height // patch_height, image_width // patch_width))
|
2177 |
+
|
2178 |
+
self.num_patches = (image_height // patch_height) * (image_width // patch_width)
|
2179 |
+
self.patch_dim = channels * patch_height * patch_width
|
2180 |
+
|
2181 |
+
self.patch_height = patch_height
|
2182 |
+
self.patch_width = patch_width
|
2183 |
+
self.image_height = image_height
|
2184 |
+
self.image_width = image_width
|
2185 |
+
self.dim = dim
|
2186 |
+
|
2187 |
+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
2188 |
+
self.de_pos_embedding = nn.Parameter(torch.from_numpy(de_pos_embedding).float().unsqueeze(0), requires_grad=False)
|
2189 |
+
self.to_pixel = nn.Sequential(
|
2190 |
+
Rearrange('b (h w) c -> b c h w', h=image_height // patch_height),
|
2191 |
+
nn.ConvTranspose2d(dim, channels, kernel_size=patch_size, stride=patch_size)
|
2192 |
+
)
|
2193 |
+
|
2194 |
+
self.apply(init_weights)
|
2195 |
+
|
2196 |
+
def forward(self, token: torch.FloatTensor) -> torch.FloatTensor:
|
2197 |
+
token = Rearrange('b c h w -> b (h w) c')(token)
|
2198 |
+
|
2199 |
+
x = token + self.de_pos_embedding
|
2200 |
+
x = self.transformer(x)
|
2201 |
+
x = self.to_pixel(x)
|
2202 |
+
|
2203 |
+
return x
|
2204 |
+
|
2205 |
+
def get_last_layer(self) -> nn.Parameter:
|
2206 |
+
return self.to_pixel[-1].weight
|