|
|
|
import random |
|
import yaml |
|
import time |
|
from munch import Munch |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
import librosa |
|
import click |
|
import shutil |
|
import warnings |
|
|
|
warnings.simplefilter("ignore") |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
from meldataset import build_dataloader |
|
|
|
from Utils.ASR.models import ASRCNN |
|
from Utils.JDC.model import JDCNet |
|
from Utils.PLBERT.util import load_plbert |
|
|
|
from models import * |
|
from losses import * |
|
from utils import * |
|
|
|
from Modules.slmadv import SLMAdversarialLoss |
|
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule |
|
|
|
from optimizers import build_optimizer |
|
|
|
|
|
|
|
class MyDataParallel(torch.nn.DataParallel): |
|
def __getattr__(self, name): |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
return getattr(self.module, name) |
|
|
|
|
|
import logging |
|
from logging import StreamHandler |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.DEBUG) |
|
handler = StreamHandler() |
|
handler.setLevel(logging.DEBUG) |
|
logger.addHandler(handler) |
|
|
|
|
|
@click.command() |
|
@click.option("-p", "--config_path", default="Configs/config.yml", type=str) |
|
def main(config_path): |
|
config = yaml.safe_load(open(config_path)) |
|
|
|
log_dir = config["log_dir"] |
|
if not osp.exists(log_dir): |
|
os.makedirs(log_dir, exist_ok=True) |
|
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) |
|
writer = SummaryWriter(log_dir + "/tensorboard") |
|
|
|
|
|
file_handler = logging.FileHandler(osp.join(log_dir, "train.log")) |
|
file_handler.setLevel(logging.DEBUG) |
|
file_handler.setFormatter( |
|
logging.Formatter("%(levelname)s:%(asctime)s: %(message)s") |
|
) |
|
logger.addHandler(file_handler) |
|
|
|
batch_size = config.get("batch_size", 10) |
|
|
|
epochs = config.get("epochs_2nd", 200) |
|
save_freq = config.get("save_freq", 2) |
|
log_interval = config.get("log_interval", 10) |
|
saving_epoch = config.get("save_freq", 2) |
|
|
|
data_params = config.get("data_params", None) |
|
sr = config["preprocess_params"].get("sr", 24000) |
|
train_path = data_params["train_data"] |
|
val_path = data_params["val_data"] |
|
root_path = data_params["root_path"] |
|
min_length = data_params["min_length"] |
|
OOD_data = data_params["OOD_data"] |
|
|
|
max_len = config.get("max_len", 200) |
|
|
|
loss_params = Munch(config["loss_params"]) |
|
diff_epoch = loss_params.diff_epoch |
|
joint_epoch = loss_params.joint_epoch |
|
|
|
optimizer_params = Munch(config["optimizer_params"]) |
|
|
|
train_list, val_list = get_data_path_list(train_path, val_path) |
|
device = "cuda" |
|
|
|
train_dataloader = build_dataloader( |
|
train_list, |
|
root_path, |
|
OOD_data=OOD_data, |
|
min_length=min_length, |
|
batch_size=batch_size, |
|
num_workers=2, |
|
dataset_config={}, |
|
device=device, |
|
) |
|
|
|
val_dataloader = build_dataloader( |
|
val_list, |
|
root_path, |
|
OOD_data=OOD_data, |
|
min_length=min_length, |
|
batch_size=batch_size, |
|
validation=True, |
|
num_workers=0, |
|
device=device, |
|
dataset_config={}, |
|
) |
|
|
|
|
|
ASR_config = config.get("ASR_config", False) |
|
ASR_path = config.get("ASR_path", False) |
|
text_aligner = load_ASR_models(ASR_path, ASR_config) |
|
|
|
|
|
F0_path = config.get("F0_path", False) |
|
pitch_extractor = load_F0_models(F0_path) |
|
|
|
|
|
BERT_path = config.get("PLBERT_dir", False) |
|
plbert = load_plbert(BERT_path) |
|
|
|
|
|
model_params = recursive_munch(config["model_params"]) |
|
multispeaker = model_params.multispeaker |
|
model = build_model(model_params, text_aligner, pitch_extractor, plbert) |
|
_ = [model[key].to(device) for key in model] |
|
|
|
|
|
for key in model: |
|
if key != "mpd" and key != "msd" and key != "wd": |
|
model[key] = MyDataParallel(model[key]) |
|
|
|
start_epoch = 0 |
|
iters = 0 |
|
|
|
load_pretrained = config.get("pretrained_model", "") != "" and config.get( |
|
"second_stage_load_pretrained", False |
|
) |
|
|
|
if not load_pretrained: |
|
if config.get("first_stage_path", "") != "": |
|
first_stage_path = osp.join( |
|
log_dir, config.get("first_stage_path", "first_stage.pth") |
|
) |
|
print("Loading the first stage model at %s ..." % first_stage_path) |
|
model, _, start_epoch, iters = load_checkpoint( |
|
model, |
|
None, |
|
first_stage_path, |
|
load_only_params=True, |
|
ignore_modules=[ |
|
"bert", |
|
"bert_encoder", |
|
"predictor", |
|
"predictor_encoder", |
|
"msd", |
|
"mpd", |
|
"wd", |
|
"diffusion", |
|
], |
|
) |
|
|
|
|
|
diff_epoch += start_epoch |
|
joint_epoch += start_epoch |
|
epochs += start_epoch |
|
|
|
model.predictor_encoder = copy.deepcopy(model.style_encoder) |
|
else: |
|
raise ValueError("You need to specify the path to the first stage model.") |
|
|
|
gl = GeneratorLoss(model.mpd, model.msd).to(device) |
|
dl = DiscriminatorLoss(model.mpd, model.msd).to(device) |
|
wl = WavLMLoss(model_params.slm.model, model.wd, sr, model_params.slm.sr).to(device) |
|
|
|
gl = MyDataParallel(gl) |
|
dl = MyDataParallel(dl) |
|
wl = MyDataParallel(wl) |
|
|
|
sampler = DiffusionSampler( |
|
model.diffusion.diffusion, |
|
sampler=ADPM2Sampler(), |
|
sigma_schedule=KarrasSchedule( |
|
sigma_min=0.0001, sigma_max=3.0, rho=9.0 |
|
), |
|
clamp=False, |
|
) |
|
|
|
scheduler_params = { |
|
"max_lr": optimizer_params.lr, |
|
"pct_start": float(0), |
|
"epochs": epochs, |
|
"steps_per_epoch": len(train_dataloader), |
|
} |
|
scheduler_params_dict = {key: scheduler_params.copy() for key in model} |
|
scheduler_params_dict["bert"]["max_lr"] = optimizer_params.bert_lr * 2 |
|
scheduler_params_dict["decoder"]["max_lr"] = optimizer_params.ft_lr * 2 |
|
scheduler_params_dict["style_encoder"]["max_lr"] = optimizer_params.ft_lr * 2 |
|
|
|
optimizer = build_optimizer( |
|
{key: model[key].parameters() for key in model}, |
|
scheduler_params_dict=scheduler_params_dict, |
|
lr=optimizer_params.lr, |
|
) |
|
|
|
|
|
for g in optimizer.optimizers["bert"].param_groups: |
|
g["betas"] = (0.9, 0.99) |
|
g["lr"] = optimizer_params.bert_lr |
|
g["initial_lr"] = optimizer_params.bert_lr |
|
g["min_lr"] = 0 |
|
g["weight_decay"] = 0.01 |
|
|
|
|
|
for module in ["decoder", "style_encoder"]: |
|
for g in optimizer.optimizers[module].param_groups: |
|
g["betas"] = (0.0, 0.99) |
|
g["lr"] = optimizer_params.ft_lr |
|
g["initial_lr"] = optimizer_params.ft_lr |
|
g["min_lr"] = 0 |
|
g["weight_decay"] = 1e-4 |
|
|
|
|
|
if load_pretrained: |
|
model, optimizer, start_epoch, iters = load_checkpoint( |
|
model, |
|
optimizer, |
|
config["pretrained_model"], |
|
load_only_params=config.get("load_only_params", True), |
|
) |
|
|
|
n_down = model.text_aligner.n_down |
|
|
|
best_loss = float("inf") |
|
loss_train_record = list([]) |
|
loss_test_record = list([]) |
|
iters = 0 |
|
|
|
criterion = nn.L1Loss() |
|
torch.cuda.empty_cache() |
|
|
|
stft_loss = MultiResolutionSTFTLoss().to(device) |
|
|
|
print("BERT", optimizer.optimizers["bert"]) |
|
print("decoder", optimizer.optimizers["decoder"]) |
|
|
|
start_ds = False |
|
|
|
running_std = [] |
|
|
|
slmadv_params = Munch(config["slmadv_params"]) |
|
slmadv = SLMAdversarialLoss( |
|
model, |
|
wl, |
|
sampler, |
|
slmadv_params.min_len, |
|
slmadv_params.max_len, |
|
batch_percentage=slmadv_params.batch_percentage, |
|
skip_update=slmadv_params.iter, |
|
sig=slmadv_params.sig, |
|
) |
|
|
|
for epoch in range(start_epoch, epochs): |
|
running_loss = 0 |
|
start_time = time.time() |
|
|
|
_ = [model[key].eval() for key in model] |
|
|
|
model.predictor.train() |
|
model.bert_encoder.train() |
|
model.bert.train() |
|
model.msd.train() |
|
model.mpd.train() |
|
|
|
if epoch >= diff_epoch: |
|
start_ds = True |
|
|
|
for i, batch in enumerate(train_dataloader): |
|
waves = batch[0] |
|
batch = [b.to(device) for b in batch[1:]] |
|
( |
|
texts, |
|
input_lengths, |
|
ref_texts, |
|
ref_lengths, |
|
mels, |
|
mel_input_length, |
|
ref_mels, |
|
) = batch |
|
|
|
with torch.no_grad(): |
|
mask = length_to_mask(mel_input_length // (2**n_down)).to(device) |
|
mel_mask = length_to_mask(mel_input_length).to(device) |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
|
|
try: |
|
_, _, s2s_attn = model.text_aligner(mels, mask, texts) |
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
s2s_attn = s2s_attn[..., 1:] |
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
except: |
|
continue |
|
|
|
mask_ST = mask_from_lens( |
|
s2s_attn, input_lengths, mel_input_length // (2**n_down) |
|
) |
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) |
|
|
|
|
|
t_en = model.text_encoder(texts, input_lengths, text_mask) |
|
asr = t_en @ s2s_attn_mono |
|
|
|
d_gt = s2s_attn_mono.sum(axis=-1).detach() |
|
|
|
|
|
if multispeaker and epoch >= diff_epoch: |
|
ref_ss = model.style_encoder(ref_mels.unsqueeze(1)) |
|
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1)) |
|
ref = torch.cat([ref_ss, ref_sp], dim=1) |
|
|
|
|
|
|
|
ss = [] |
|
gs = [] |
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
mel = mels[bib, :, : mel_input_length[bib]] |
|
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) |
|
ss.append(s) |
|
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) |
|
gs.append(s) |
|
|
|
s_dur = torch.stack(ss).squeeze() |
|
gs = torch.stack(gs).squeeze() |
|
s_trg = torch.cat([gs, s_dur], dim=-1).detach() |
|
|
|
bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) |
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) |
|
|
|
|
|
if epoch >= diff_epoch: |
|
num_steps = np.random.randint(3, 5) |
|
|
|
if model_params.diffusion.dist.estimate_sigma_data: |
|
model.diffusion.module.diffusion.sigma_data = ( |
|
s_trg.std(axis=-1).mean().item() |
|
) |
|
running_std.append(model.diffusion.module.diffusion.sigma_data) |
|
|
|
if multispeaker: |
|
s_preds = sampler( |
|
noise=torch.randn_like(s_trg).unsqueeze(1).to(device), |
|
embedding=bert_dur, |
|
embedding_scale=1, |
|
features=ref, |
|
embedding_mask_proba=0.1, |
|
num_steps=num_steps, |
|
).squeeze(1) |
|
loss_diff = model.diffusion( |
|
s_trg.unsqueeze(1), embedding=bert_dur, features=ref |
|
).mean() |
|
loss_sty = F.l1_loss( |
|
s_preds, s_trg.detach() |
|
) |
|
else: |
|
s_preds = sampler( |
|
noise=torch.randn_like(s_trg).unsqueeze(1).to(device), |
|
embedding=bert_dur, |
|
embedding_scale=1, |
|
embedding_mask_proba=0.1, |
|
num_steps=num_steps, |
|
).squeeze(1) |
|
loss_diff = model.diffusion.module.diffusion( |
|
s_trg.unsqueeze(1), embedding=bert_dur |
|
).mean() |
|
loss_sty = F.l1_loss( |
|
s_preds, s_trg.detach() |
|
) |
|
else: |
|
loss_sty = 0 |
|
loss_diff = 0 |
|
|
|
d, p = model.predictor(d_en, s_dur, input_lengths, s2s_attn_mono, text_mask) |
|
|
|
mel_len = min(int(mel_input_length.min().item() / 2 - 1), max_len // 2) |
|
mel_len_st = int(mel_input_length.min().item() / 2 - 1) |
|
en = [] |
|
gt = [] |
|
st = [] |
|
p_en = [] |
|
wav = [] |
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item() / 2) |
|
|
|
random_start = np.random.randint(0, mel_length - mel_len) |
|
en.append(asr[bib, :, random_start : random_start + mel_len]) |
|
p_en.append(p[bib, :, random_start : random_start + mel_len]) |
|
gt.append( |
|
mels[bib, :, (random_start * 2) : ((random_start + mel_len) * 2)] |
|
) |
|
|
|
y = waves[bib][ |
|
(random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300 |
|
] |
|
wav.append(torch.from_numpy(y).to(device)) |
|
|
|
|
|
random_start = np.random.randint(0, mel_length - mel_len_st) |
|
st.append( |
|
mels[bib, :, (random_start * 2) : ((random_start + mel_len_st) * 2)] |
|
) |
|
|
|
wav = torch.stack(wav).float().detach() |
|
|
|
en = torch.stack(en) |
|
p_en = torch.stack(p_en) |
|
gt = torch.stack(gt).detach() |
|
st = torch.stack(st).detach() |
|
|
|
if gt.size(-1) < 80: |
|
continue |
|
|
|
s_dur = model.predictor_encoder( |
|
st.unsqueeze(1) if multispeaker else gt.unsqueeze(1) |
|
) |
|
s = model.style_encoder( |
|
st.unsqueeze(1) if multispeaker else gt.unsqueeze(1) |
|
) |
|
|
|
with torch.no_grad(): |
|
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) |
|
F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze() |
|
|
|
asr_real = model.text_aligner.get_feature(gt) |
|
|
|
N_real = log_norm(gt.unsqueeze(1)).squeeze(1) |
|
|
|
y_rec_gt = wav.unsqueeze(1) |
|
y_rec_gt_pred = model.decoder(en, F0_real, N_real, s) |
|
|
|
if epoch >= joint_epoch: |
|
|
|
wav = y_rec_gt |
|
else: |
|
|
|
wav = y_rec_gt_pred |
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur) |
|
|
|
y_rec = model.decoder(en, F0_fake, N_fake, s) |
|
|
|
loss_F0_rec = (F.smooth_l1_loss(F0_real, F0_fake)) / 10 |
|
loss_norm_rec = F.smooth_l1_loss(N_real, N_fake) |
|
|
|
if start_ds: |
|
optimizer.zero_grad() |
|
d_loss = dl(wav.detach(), y_rec.detach()).mean() |
|
d_loss.backward() |
|
optimizer.step("msd") |
|
optimizer.step("mpd") |
|
else: |
|
d_loss = 0 |
|
|
|
|
|
optimizer.zero_grad() |
|
|
|
loss_mel = stft_loss(y_rec, wav) |
|
if start_ds: |
|
loss_gen_all = gl(wav, y_rec).mean() |
|
else: |
|
loss_gen_all = 0 |
|
loss_lm = wl(wav.detach().squeeze(), y_rec.squeeze()).mean() |
|
|
|
loss_ce = 0 |
|
loss_dur = 0 |
|
for _s2s_pred, _text_input, _text_length in zip(d, (d_gt), input_lengths): |
|
_s2s_pred = _s2s_pred[:_text_length, :] |
|
_text_input = _text_input[:_text_length].long() |
|
_s2s_trg = torch.zeros_like(_s2s_pred) |
|
for p in range(_s2s_trg.shape[0]): |
|
_s2s_trg[p, : _text_input[p]] = 1 |
|
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) |
|
|
|
loss_dur += F.l1_loss( |
|
_dur_pred[1 : _text_length - 1], _text_input[1 : _text_length - 1] |
|
) |
|
loss_ce += F.binary_cross_entropy_with_logits( |
|
_s2s_pred.flatten(), _s2s_trg.flatten() |
|
) |
|
|
|
loss_ce /= texts.size(0) |
|
loss_dur /= texts.size(0) |
|
|
|
g_loss = ( |
|
loss_params.lambda_mel * loss_mel |
|
+ loss_params.lambda_F0 * loss_F0_rec |
|
+ loss_params.lambda_ce * loss_ce |
|
+ loss_params.lambda_norm * loss_norm_rec |
|
+ loss_params.lambda_dur * loss_dur |
|
+ loss_params.lambda_gen * loss_gen_all |
|
+ loss_params.lambda_slm * loss_lm |
|
+ loss_params.lambda_sty * loss_sty |
|
+ loss_params.lambda_diff * loss_diff |
|
) |
|
|
|
running_loss += loss_mel.item() |
|
g_loss.backward() |
|
if torch.isnan(g_loss): |
|
from IPython.core.debugger import set_trace |
|
|
|
set_trace() |
|
|
|
optimizer.step("bert_encoder") |
|
optimizer.step("bert") |
|
optimizer.step("predictor") |
|
optimizer.step("predictor_encoder") |
|
|
|
if epoch >= diff_epoch: |
|
optimizer.step("diffusion") |
|
|
|
if epoch >= joint_epoch: |
|
optimizer.step("style_encoder") |
|
optimizer.step("decoder") |
|
|
|
|
|
if np.random.rand() < 0.5: |
|
use_ind = True |
|
else: |
|
use_ind = False |
|
|
|
if use_ind: |
|
ref_lengths = input_lengths |
|
ref_texts = texts |
|
|
|
slm_out = slmadv( |
|
i, |
|
y_rec_gt, |
|
y_rec_gt_pred, |
|
waves, |
|
mel_input_length, |
|
ref_texts, |
|
ref_lengths, |
|
use_ind, |
|
s_trg.detach(), |
|
ref if multispeaker else None, |
|
) |
|
|
|
if slm_out is None: |
|
continue |
|
|
|
d_loss_slm, loss_gen_lm, y_pred = slm_out |
|
|
|
|
|
optimizer.zero_grad() |
|
loss_gen_lm.backward() |
|
|
|
|
|
if d_loss_slm != 0: |
|
optimizer.zero_grad() |
|
d_loss_slm.backward(retain_graph=True) |
|
optimizer.step("wd") |
|
|
|
|
|
total_norm = {} |
|
for key in model.keys(): |
|
total_norm[key] = 0 |
|
parameters = [ |
|
p |
|
for p in model[key].parameters() |
|
if p.grad is not None and p.requires_grad |
|
] |
|
for p in parameters: |
|
param_norm = p.grad.detach().data.norm(2) |
|
total_norm[key] += param_norm.item() ** 2 |
|
total_norm[key] = total_norm[key] ** 0.5 |
|
|
|
|
|
if total_norm["predictor"] > slmadv_params.thresh: |
|
for key in model.keys(): |
|
for p in model[key].parameters(): |
|
if p.grad is not None: |
|
p.grad *= 1 / total_norm["predictor"] |
|
|
|
for p in model.predictor.duration_proj.parameters(): |
|
if p.grad is not None: |
|
p.grad *= slmadv_params.scale |
|
|
|
for p in model.predictor.lstm.parameters(): |
|
if p.grad is not None: |
|
p.grad *= slmadv_params.scale |
|
|
|
for p in model.diffusion.parameters(): |
|
if p.grad is not None: |
|
p.grad *= slmadv_params.scale |
|
|
|
optimizer.step("bert_encoder") |
|
optimizer.step("bert") |
|
optimizer.step("predictor") |
|
optimizer.step("diffusion") |
|
else: |
|
d_loss_slm, loss_gen_lm = 0, 0 |
|
|
|
iters = iters + 1 |
|
|
|
if (i + 1) % log_interval == 0: |
|
logger.info( |
|
"Epoch [%d/%d], Step [%d/%d], Loss: %.5f, Disc Loss: %.5f, Dur Loss: %.5f, CE Loss: %.5f, Norm Loss: %.5f, F0 Loss: %.5f, LM Loss: %.5f, Gen Loss: %.5f, Sty Loss: %.5f, Diff Loss: %.5f, DiscLM Loss: %.5f, GenLM Loss: %.5f" |
|
% ( |
|
epoch + 1, |
|
epochs, |
|
i + 1, |
|
len(train_list) // batch_size, |
|
running_loss / log_interval, |
|
d_loss, |
|
loss_dur, |
|
loss_ce, |
|
loss_norm_rec, |
|
loss_F0_rec, |
|
loss_lm, |
|
loss_gen_all, |
|
loss_sty, |
|
loss_diff, |
|
d_loss_slm, |
|
loss_gen_lm, |
|
) |
|
) |
|
|
|
writer.add_scalar("train/mel_loss", running_loss / log_interval, iters) |
|
writer.add_scalar("train/gen_loss", loss_gen_all, iters) |
|
writer.add_scalar("train/d_loss", d_loss, iters) |
|
writer.add_scalar("train/ce_loss", loss_ce, iters) |
|
writer.add_scalar("train/dur_loss", loss_dur, iters) |
|
writer.add_scalar("train/slm_loss", loss_lm, iters) |
|
writer.add_scalar("train/norm_loss", loss_norm_rec, iters) |
|
writer.add_scalar("train/F0_loss", loss_F0_rec, iters) |
|
writer.add_scalar("train/sty_loss", loss_sty, iters) |
|
writer.add_scalar("train/diff_loss", loss_diff, iters) |
|
writer.add_scalar("train/d_loss_slm", d_loss_slm, iters) |
|
writer.add_scalar("train/gen_loss_slm", loss_gen_lm, iters) |
|
|
|
running_loss = 0 |
|
|
|
print("Time elasped:", time.time() - start_time) |
|
|
|
loss_test = 0 |
|
loss_align = 0 |
|
loss_f = 0 |
|
_ = [model[key].eval() for key in model] |
|
|
|
with torch.no_grad(): |
|
iters_test = 0 |
|
for batch_idx, batch in enumerate(val_dataloader): |
|
optimizer.zero_grad() |
|
|
|
try: |
|
waves = batch[0] |
|
batch = [b.to(device) for b in batch[1:]] |
|
( |
|
texts, |
|
input_lengths, |
|
ref_texts, |
|
ref_lengths, |
|
mels, |
|
mel_input_length, |
|
ref_mels, |
|
) = batch |
|
with torch.no_grad(): |
|
mask = length_to_mask(mel_input_length // (2**n_down)).to( |
|
"cuda" |
|
) |
|
text_mask = length_to_mask(input_lengths).to(texts.device) |
|
|
|
_, _, s2s_attn = model.text_aligner(mels, mask, texts) |
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
s2s_attn = s2s_attn[..., 1:] |
|
s2s_attn = s2s_attn.transpose(-1, -2) |
|
|
|
mask_ST = mask_from_lens( |
|
s2s_attn, input_lengths, mel_input_length // (2**n_down) |
|
) |
|
s2s_attn_mono = maximum_path(s2s_attn, mask_ST) |
|
|
|
|
|
t_en = model.text_encoder(texts, input_lengths, text_mask) |
|
asr = t_en @ s2s_attn_mono |
|
|
|
d_gt = s2s_attn_mono.sum(axis=-1).detach() |
|
|
|
ss = [] |
|
gs = [] |
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
mel = mels[bib, :, : mel_input_length[bib]] |
|
s = model.predictor_encoder(mel.unsqueeze(0).unsqueeze(1)) |
|
ss.append(s) |
|
s = model.style_encoder(mel.unsqueeze(0).unsqueeze(1)) |
|
gs.append(s) |
|
|
|
s = torch.stack(ss).squeeze() |
|
gs = torch.stack(gs).squeeze() |
|
s_trg = torch.cat([s, gs], dim=-1).detach() |
|
|
|
bert_dur = model.bert(texts, attention_mask=(~text_mask).int()) |
|
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) |
|
d, p = model.predictor( |
|
d_en, s, input_lengths, s2s_attn_mono, text_mask |
|
) |
|
|
|
mel_len = int(mel_input_length.min().item() / 2 - 1) |
|
en = [] |
|
gt = [] |
|
p_en = [] |
|
wav = [] |
|
|
|
for bib in range(len(mel_input_length)): |
|
mel_length = int(mel_input_length[bib].item() / 2) |
|
|
|
random_start = np.random.randint(0, mel_length - mel_len) |
|
en.append(asr[bib, :, random_start : random_start + mel_len]) |
|
p_en.append(p[bib, :, random_start : random_start + mel_len]) |
|
|
|
gt.append( |
|
mels[ |
|
bib, |
|
:, |
|
(random_start * 2) : ((random_start + mel_len) * 2), |
|
] |
|
) |
|
|
|
y = waves[bib][ |
|
(random_start * 2) |
|
* 300 : ((random_start + mel_len) * 2) |
|
* 300 |
|
] |
|
wav.append(torch.from_numpy(y).to(device)) |
|
|
|
wav = torch.stack(wav).float().detach() |
|
|
|
en = torch.stack(en) |
|
p_en = torch.stack(p_en) |
|
gt = torch.stack(gt).detach() |
|
|
|
s = model.predictor_encoder(gt.unsqueeze(1)) |
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s) |
|
|
|
loss_dur = 0 |
|
for _s2s_pred, _text_input, _text_length in zip( |
|
d, (d_gt), input_lengths |
|
): |
|
_s2s_pred = _s2s_pred[:_text_length, :] |
|
_text_input = _text_input[:_text_length].long() |
|
_s2s_trg = torch.zeros_like(_s2s_pred) |
|
for bib in range(_s2s_trg.shape[0]): |
|
_s2s_trg[bib, : _text_input[bib]] = 1 |
|
_dur_pred = torch.sigmoid(_s2s_pred).sum(axis=1) |
|
loss_dur += F.l1_loss( |
|
_dur_pred[1 : _text_length - 1], |
|
_text_input[1 : _text_length - 1], |
|
) |
|
|
|
loss_dur /= texts.size(0) |
|
|
|
s = model.style_encoder(gt.unsqueeze(1)) |
|
|
|
y_rec = model.decoder(en, F0_fake, N_fake, s) |
|
loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) |
|
|
|
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) |
|
|
|
loss_F0 = F.l1_loss(F0_real, F0_fake) / 10 |
|
|
|
loss_test += (loss_mel).mean() |
|
loss_align += (loss_dur).mean() |
|
loss_f += (loss_F0).mean() |
|
|
|
iters_test += 1 |
|
except: |
|
continue |
|
|
|
print("Epochs:", epoch + 1) |
|
logger.info( |
|
"Validation loss: %.3f, Dur loss: %.3f, F0 loss: %.3f" |
|
% (loss_test / iters_test, loss_align / iters_test, loss_f / iters_test) |
|
+ "\n\n\n" |
|
) |
|
print("\n\n\n") |
|
writer.add_scalar("eval/mel_loss", loss_test / iters_test, epoch + 1) |
|
writer.add_scalar("eval/dur_loss", loss_test / iters_test, epoch + 1) |
|
writer.add_scalar("eval/F0_loss", loss_f / iters_test, epoch + 1) |
|
|
|
if epoch < joint_epoch: |
|
|
|
|
|
with torch.no_grad(): |
|
for bib in range(len(asr)): |
|
mel_length = int(mel_input_length[bib].item()) |
|
gt = mels[bib, :, :mel_length].unsqueeze(0) |
|
en = asr[bib, :, : mel_length // 2].unsqueeze(0) |
|
|
|
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) |
|
F0_real = F0_real.unsqueeze(0) |
|
s = model.style_encoder(gt.unsqueeze(1)) |
|
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) |
|
|
|
y_rec = model.decoder(en, F0_real, real_norm, s) |
|
|
|
writer.add_audio( |
|
"eval/y" + str(bib), |
|
y_rec.cpu().numpy().squeeze(), |
|
epoch, |
|
sample_rate=sr, |
|
) |
|
|
|
s_dur = model.predictor_encoder(gt.unsqueeze(1)) |
|
p_en = p[bib, :, : mel_length // 2].unsqueeze(0) |
|
|
|
F0_fake, N_fake = model.predictor.F0Ntrain(p_en, s_dur) |
|
|
|
y_pred = model.decoder(en, F0_fake, N_fake, s) |
|
|
|
writer.add_audio( |
|
"pred/y" + str(bib), |
|
y_pred.cpu().numpy().squeeze(), |
|
epoch, |
|
sample_rate=sr, |
|
) |
|
|
|
if epoch == 0: |
|
writer.add_audio( |
|
"gt/y" + str(bib), |
|
waves[bib].squeeze(), |
|
epoch, |
|
sample_rate=sr, |
|
) |
|
|
|
if bib >= 5: |
|
break |
|
else: |
|
|
|
with torch.no_grad(): |
|
|
|
if multispeaker and epoch >= diff_epoch: |
|
ref_ss = model.style_encoder(ref_mels.unsqueeze(1)) |
|
ref_sp = model.predictor_encoder(ref_mels.unsqueeze(1)) |
|
ref_s = torch.cat([ref_ss, ref_sp], dim=1) |
|
|
|
for bib in range(len(d_en)): |
|
if multispeaker: |
|
s_pred = sampler( |
|
noise=torch.randn((1, 256)).unsqueeze(1).to(texts.device), |
|
embedding=bert_dur[bib].unsqueeze(0), |
|
embedding_scale=1, |
|
features=ref_s[bib].unsqueeze( |
|
0 |
|
), |
|
num_steps=5, |
|
).squeeze(1) |
|
else: |
|
s_pred = sampler( |
|
noise=torch.randn((1, 256)).unsqueeze(1).to(texts.device), |
|
embedding=bert_dur[bib].unsqueeze(0), |
|
embedding_scale=1, |
|
num_steps=5, |
|
).squeeze(1) |
|
|
|
s = s_pred[:, 128:] |
|
ref = s_pred[:, :128] |
|
|
|
d = model.predictor.text_encoder( |
|
d_en[bib, :, : input_lengths[bib]].unsqueeze(0), |
|
s, |
|
input_lengths[bib, ...].unsqueeze(0), |
|
text_mask[bib, : input_lengths[bib]].unsqueeze(0), |
|
) |
|
|
|
x, _ = model.predictor.lstm(d) |
|
duration = model.predictor.duration_proj(x) |
|
|
|
duration = torch.sigmoid(duration).sum(axis=-1) |
|
pred_dur = torch.round(duration.squeeze()).clamp(min=1) |
|
|
|
pred_dur[-1] += 5 |
|
|
|
pred_aln_trg = torch.zeros( |
|
input_lengths[bib], int(pred_dur.sum().data) |
|
) |
|
c_frame = 0 |
|
for i in range(pred_aln_trg.size(0)): |
|
pred_aln_trg[i, c_frame : c_frame + int(pred_dur[i].data)] = 1 |
|
c_frame += int(pred_dur[i].data) |
|
|
|
|
|
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to( |
|
texts.device |
|
) |
|
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) |
|
out = model.decoder( |
|
( |
|
t_en[bib, :, : input_lengths[bib]].unsqueeze(0) |
|
@ pred_aln_trg.unsqueeze(0).to(texts.device) |
|
), |
|
F0_pred, |
|
N_pred, |
|
ref.squeeze().unsqueeze(0), |
|
) |
|
|
|
writer.add_audio( |
|
"pred/y" + str(bib), |
|
out.cpu().numpy().squeeze(), |
|
epoch, |
|
sample_rate=sr, |
|
) |
|
|
|
if bib >= 5: |
|
break |
|
|
|
if epoch % saving_epoch == 0: |
|
if (loss_test / iters_test) < best_loss: |
|
best_loss = loss_test / iters_test |
|
print("Saving..") |
|
state = { |
|
"net": {key: model[key].state_dict() for key in model}, |
|
"optimizer": optimizer.state_dict(), |
|
"iters": iters, |
|
"val_loss": loss_test / iters_test, |
|
"epoch": epoch, |
|
} |
|
save_path = osp.join(log_dir, "epoch_2nd_%05d.pth" % epoch) |
|
torch.save(state, save_path) |
|
|
|
|
|
if model_params.diffusion.dist.estimate_sigma_data: |
|
config["model_params"]["diffusion"]["dist"]["sigma_data"] = float( |
|
np.mean(running_std) |
|
) |
|
|
|
with open(osp.join(log_dir, osp.basename(config_path)), "w") as outfile: |
|
yaml.dump(config, outfile, default_flow_style=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|