import os import os.path as osp import re import sys import yaml import shutil import numpy as np import torch import click import warnings warnings.simplefilter("ignore") # load packages import random import yaml from munch import Munch import numpy as np import torch from torch import nn import torch.nn.functional as F import torchaudio import librosa from models import * from meldataset import build_dataloader from utils import * from losses import * from optimizers import build_optimizer import time from accelerate import Accelerator from accelerate.utils import LoggerType from accelerate import DistributedDataParallelKwargs from torch.utils.tensorboard import SummaryWriter import logging from accelerate.logging import get_logger logger = get_logger(__name__, log_level="DEBUG") @click.command() @click.option("-p", "--config_path", default="Configs/config.yml", type=str) def main(config_path): config = yaml.safe_load(open(config_path)) log_dir = config["log_dir"] if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True) shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path))) ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator( project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs] ) if accelerator.is_main_process: writer = SummaryWriter(log_dir + "/tensorboard") # write logs file_handler = logging.FileHandler(osp.join(log_dir, "train.log")) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter( logging.Formatter("%(levelname)s:%(asctime)s: %(message)s") ) logger.logger.addHandler(file_handler) batch_size = config.get("batch_size", 10) device = accelerator.device epochs = config.get("epochs_1st", 200) save_freq = config.get("save_freq", 2) log_interval = config.get("log_interval", 10) saving_epoch = config.get("save_freq", 2) data_params = config.get("data_params", None) sr = config["preprocess_params"].get("sr", 24000) train_path = data_params["train_data"] val_path = data_params["val_data"] root_path = data_params["root_path"] min_length = data_params["min_length"] OOD_data = data_params["OOD_data"] max_len = config.get("max_len", 200) # load data train_list, val_list = get_data_path_list(train_path, val_path) train_dataloader = build_dataloader( train_list, root_path, OOD_data=OOD_data, min_length=min_length, batch_size=batch_size, num_workers=2, dataset_config={}, device=device, ) val_dataloader = build_dataloader( val_list, root_path, OOD_data=OOD_data, min_length=min_length, batch_size=batch_size, validation=True, num_workers=0, device=device, dataset_config={}, ) with accelerator.main_process_first(): # load pretrained ASR model ASR_config = config.get("ASR_config", False) ASR_path = config.get("ASR_path", False) text_aligner = load_ASR_models(ASR_path, ASR_config) # load pretrained F0 model F0_path = config.get("F0_path", False) pitch_extractor = load_F0_models(F0_path) # load BERT model from Utils.PLBERT.util import load_plbert BERT_path = config.get("PLBERT_dir", False) plbert = load_plbert(BERT_path) scheduler_params = { "max_lr": float(config["optimizer_params"].get("lr", 1e-4)), "pct_start": float(config["optimizer_params"].get("pct_start", 0.0)), "epochs": epochs, "steps_per_epoch": len(train_dataloader), } model_params = recursive_munch(config["model_params"]) multispeaker = model_params.multispeaker model = build_model(model_params, text_aligner, pitch_extractor, plbert) best_loss = float("inf") # best test loss loss_train_record = list([]) loss_test_record = list([]) loss_params = Munch(config["loss_params"]) TMA_epoch = loss_params.TMA_epoch for k in model: model[k] = accelerator.prepare(model[k]) train_dataloader, val_dataloader = accelerator.prepare( train_dataloader, val_dataloader ) _ = [model[key].to(device) for key in model] # initialize optimizers after preparing models for compatibility with FSDP optimizer = build_optimizer( {key: model[key].parameters() for key in model}, scheduler_params_dict={key: scheduler_params.copy() for key in model}, lr=float(config["optimizer_params"].get("lr", 1e-4)), ) for k, v in optimizer.optimizers.items(): optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k]) optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k]) with accelerator.main_process_first(): if config.get("pretrained_model", "") != "": model, optimizer, start_epoch, iters = load_checkpoint( model, optimizer, config["pretrained_model"], load_only_params=config.get("load_only_params", True), ) else: start_epoch = 0 iters = 0 # in case not distributed try: n_down = model.text_aligner.module.n_down except: n_down = model.text_aligner.n_down # wrapped losses for compatibility with mixed precision stft_loss = MultiResolutionSTFTLoss().to(device) gl = GeneratorLoss(model.mpd, model.msd).to(device) dl = DiscriminatorLoss(model.mpd, model.msd).to(device) wl = WavLMLoss(model_params.slm.model, model.wd, sr, model_params.slm.sr).to(device) for epoch in range(start_epoch, epochs): running_loss = 0 start_time = time.time() _ = [model[key].train() for key in model] for i, batch in enumerate(train_dataloader): waves = batch[0] batch = [b.to(device) for b in batch[1:]] texts, input_lengths, _, _, mels, mel_input_length, _ = batch with torch.no_grad(): mask = length_to_mask(mel_input_length // (2**n_down)).to("cuda") text_mask = length_to_mask(input_lengths).to(texts.device) ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) s2s_attn = s2s_attn.transpose(-1, -2) s2s_attn = s2s_attn[..., 1:] s2s_attn = s2s_attn.transpose(-1, -2) with torch.no_grad(): attn_mask = ( (~mask) .unsqueeze(-1) .expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]) .float() .transpose(-1, -2) ) attn_mask = ( attn_mask.float() * (~text_mask) .unsqueeze(-1) .expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]) .float() ) attn_mask = attn_mask < 1 s2s_attn.masked_fill_(attn_mask, 0.0) with torch.no_grad(): mask_ST = mask_from_lens( s2s_attn, input_lengths, mel_input_length // (2**n_down) ) s2s_attn_mono = maximum_path(s2s_attn, mask_ST) # encode t_en = model.text_encoder(texts, input_lengths, text_mask) # 50% of chance of using monotonic version if bool(random.getrandbits(1)): asr = t_en @ s2s_attn else: asr = t_en @ s2s_attn_mono # get clips mel_input_length_all = accelerator.gather( mel_input_length ) # for balanced load mel_len = min( [int(mel_input_length_all.min().item() / 2 - 1), max_len // 2] ) mel_len_st = int(mel_input_length.min().item() / 2 - 1) en = [] gt = [] wav = [] st = [] for bib in range(len(mel_input_length)): mel_length = int(mel_input_length[bib].item() / 2) random_start = np.random.randint(0, mel_length - mel_len) en.append(asr[bib, :, random_start : random_start + mel_len]) gt.append( mels[bib, :, (random_start * 2) : ((random_start + mel_len) * 2)] ) y = waves[bib][ (random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300 ] wav.append(torch.from_numpy(y).to(device)) # style reference (better to be different from the GT) random_start = np.random.randint(0, mel_length - mel_len_st) st.append( mels[bib, :, (random_start * 2) : ((random_start + mel_len_st) * 2)] ) en = torch.stack(en) gt = torch.stack(gt).detach() st = torch.stack(st).detach() wav = torch.stack(wav).float().detach() # clip too short to be used by the style encoder if gt.shape[-1] < 80: continue with torch.no_grad(): real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach() F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) s = model.style_encoder( st.unsqueeze(1) if multispeaker else gt.unsqueeze(1) ) y_rec = model.decoder(en, F0_real, real_norm, s) # discriminator loss if epoch >= TMA_epoch: optimizer.zero_grad() d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean() accelerator.backward(d_loss) optimizer.step("msd") optimizer.step("mpd") else: d_loss = 0 # generator loss optimizer.zero_grad() loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) if epoch >= TMA_epoch: # start TMA training loss_s2s = 0 for _s2s_pred, _text_input, _text_length in zip( s2s_pred, texts, input_lengths ): loss_s2s += F.cross_entropy( _s2s_pred[:_text_length], _text_input[:_text_length] ) loss_s2s /= texts.size(0) loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10 loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean() loss_slm = wl(wav.detach(), y_rec).mean() g_loss = ( loss_params.lambda_mel * loss_mel + loss_params.lambda_mono * loss_mono + loss_params.lambda_s2s * loss_s2s + loss_params.lambda_gen * loss_gen_all + loss_params.lambda_slm * loss_slm ) else: loss_s2s = 0 loss_mono = 0 loss_gen_all = 0 loss_slm = 0 g_loss = loss_mel running_loss += accelerator.gather(loss_mel).mean().item() accelerator.backward(g_loss) optimizer.step("text_encoder") optimizer.step("style_encoder") optimizer.step("decoder") if epoch >= TMA_epoch: optimizer.step("text_aligner") optimizer.step("pitch_extractor") iters = iters + 1 if (i + 1) % log_interval == 0 and accelerator.is_main_process: log_print( "Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f" % ( epoch + 1, epochs, i + 1, len(train_list) // batch_size, running_loss / log_interval, loss_gen_all, d_loss, loss_mono, loss_s2s, loss_slm, ), logger, ) writer.add_scalar("train/mel_loss", running_loss / log_interval, iters) writer.add_scalar("train/gen_loss", loss_gen_all, iters) writer.add_scalar("train/d_loss", d_loss, iters) writer.add_scalar("train/mono_loss", loss_mono, iters) writer.add_scalar("train/s2s_loss", loss_s2s, iters) writer.add_scalar("train/slm_loss", loss_slm, iters) running_loss = 0 print("Time elasped:", time.time() - start_time) loss_test = 0 _ = [model[key].eval() for key in model] with torch.no_grad(): iters_test = 0 for batch_idx, batch in enumerate(val_dataloader): optimizer.zero_grad() waves = batch[0] batch = [b.to(device) for b in batch[1:]] texts, input_lengths, _, _, mels, mel_input_length, _ = batch with torch.no_grad(): mask = length_to_mask(mel_input_length // (2**n_down)).to("cuda") ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts) s2s_attn = s2s_attn.transpose(-1, -2) s2s_attn = s2s_attn[..., 1:] s2s_attn = s2s_attn.transpose(-1, -2) text_mask = length_to_mask(input_lengths).to(texts.device) attn_mask = ( (~mask) .unsqueeze(-1) .expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]) .float() .transpose(-1, -2) ) attn_mask = ( attn_mask.float() * (~text_mask) .unsqueeze(-1) .expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]) .float() ) attn_mask = attn_mask < 1 s2s_attn.masked_fill_(attn_mask, 0.0) # encode t_en = model.text_encoder(texts, input_lengths, text_mask) asr = t_en @ s2s_attn # get clips mel_input_length_all = accelerator.gather( mel_input_length ) # for balanced load mel_len = min( [int(mel_input_length.min().item() / 2 - 1), max_len // 2] ) en = [] gt = [] wav = [] for bib in range(len(mel_input_length)): mel_length = int(mel_input_length[bib].item() / 2) random_start = np.random.randint(0, mel_length - mel_len) en.append(asr[bib, :, random_start : random_start + mel_len]) gt.append( mels[ bib, :, (random_start * 2) : ((random_start + mel_len) * 2) ] ) y = waves[bib][ (random_start * 2) * 300 : ((random_start + mel_len) * 2) * 300 ] wav.append(torch.from_numpy(y).to("cuda")) wav = torch.stack(wav).float().detach() en = torch.stack(en) gt = torch.stack(gt).detach() F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1)) s = model.style_encoder(gt.unsqueeze(1)) real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) y_rec = model.decoder(en, F0_real, real_norm, s) loss_mel = stft_loss(y_rec.squeeze(), wav.detach()) loss_test += accelerator.gather(loss_mel).mean().item() iters_test += 1 if accelerator.is_main_process: print("Epochs:", epoch + 1) log_print( "Validation loss: %.3f" % (loss_test / iters_test) + "\n\n\n\n", logger ) print("\n\n\n") writer.add_scalar("eval/mel_loss", loss_test / iters_test, epoch + 1) attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze()) writer.add_figure("eval/attn", attn_image, epoch) with torch.no_grad(): for bib in range(len(asr)): mel_length = int(mel_input_length[bib].item()) gt = mels[bib, :, :mel_length].unsqueeze(0) en = asr[bib, :, : mel_length // 2].unsqueeze(0) F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1)) F0_real = F0_real.unsqueeze(0) s = model.style_encoder(gt.unsqueeze(1)) real_norm = log_norm(gt.unsqueeze(1)).squeeze(1) y_rec = model.decoder(en, F0_real, real_norm, s) writer.add_audio( "eval/y" + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr, ) if epoch == 0: writer.add_audio( "gt/y" + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr, ) if bib >= 6: break if epoch % saving_epoch == 0: if (loss_test / iters_test) < best_loss: best_loss = loss_test / iters_test print("Saving..") state = { "net": {key: model[key].state_dict() for key in model}, "optimizer": optimizer.state_dict(), "iters": iters, "val_loss": loss_test / iters_test, "epoch": epoch, } save_path = osp.join(log_dir, "epoch_1st_%05d.pth" % epoch) torch.save(state, save_path) if accelerator.is_main_process: print("Saving..") state = { "net": {key: model[key].state_dict() for key in model}, "optimizer": optimizer.state_dict(), "iters": iters, "val_loss": loss_test / iters_test, "epoch": epoch, } save_path = osp.join(log_dir, config.get("first_stage_path", "first_stage.pth")) torch.save(state, save_path) if __name__ == "__main__": main()