Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import torch | |
import gradio as gr | |
from vtoonify_model import Model | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
return parser.parse_args() | |
DESCRIPTION = ''' | |
<div align=center> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Portrait Style Transfer with <a href="https://github.com/williamyang1991/VToonify">VToonify</a> | |
</h1> | |
<p>For faster inference without waiting in queue, you may duplicate the space and use the GPU setting. | |
<br/> | |
<a href="https://huggingface.co/spaces/PKUWilliamYang/VToonify?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
<p/> | |
<video id="video" width=50% controls="" preload="none" poster="https://repository-images.githubusercontent.com/534480768/53715b0f-a2df-4daa-969c-0e74c102d339"> | |
<source id="mp4" src="https://user-images.githubusercontent.com/18130694/189483939-0fc4a358-fb34-43cc-811a-b22adb820d57.mp4 | |
" type="video/mp4"> | |
</videos> | |
</div> | |
''' | |
FOOTER = '<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=williamyang1991/VToonify" /></div>' | |
ARTICLE = r""" | |
If VToonify is helpful, please help to β the <a href='https://github.com/williamyang1991/VToonify' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/williamyang1991/VToonify?style=social)](https://github.com/williamyang1991/VToonify) | |
--- | |
π **Citation** | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@article{yang2022Vtoonify, | |
title={VToonify: Controllable High-Resolution Portrait Video Style Transfer}, | |
author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change}, | |
journal={ACM Transactions on Graphics (TOG)}, | |
volume={41}, | |
number={6}, | |
articleno={203}, | |
pages={1--15}, | |
year={2022}, | |
publisher={ACM New York, NY, USA}, | |
doi={10.1145/3550454.3555437}, | |
} | |
``` | |
π **License** | |
This project is licensed under <a rel="license" href="https://github.com/williamyang1991/VToonify/blob/main/LICENSE.md">S-Lab License 1.0</a>. | |
Redistribution and use for non-commercial purposes should follow this license. | |
π§ **Contact** | |
If you have any questions, please feel free to reach me out at <b>williamyang@pku.edu.cn</b>. | |
""" | |
def update_slider(choice: str) -> dict: | |
if type(choice) == str and choice.endswith('-d'): | |
return gr.Slider.update(maximum=1, minimum=0, value=0.5) | |
else: | |
return gr.Slider.update(maximum=0.5, minimum=0.5, value=0.5) | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def set_example_video(example: list) -> dict: | |
return gr.Video.update(value=example[0]), | |
sample_video = ['./vtoonify/data/529_2.mp4','./vtoonify/data/7154235.mp4','./vtoonify/data/651.mp4','./vtoonify/data/908.mp4'] | |
sample_vid = gr.Video(label='Video file') #for displaying the example | |
example_videos = gr.components.Dataset(components=[sample_vid], samples=[[path] for path in sample_video], type='values', label='Video Examples') | |
def main(): | |
args = parse_args() | |
args.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print('*** Now using %s.'%(args.device)) | |
model = Model(device=args.device) | |
with gr.Blocks(theme=args.theme, css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Box(): | |
gr.Markdown('''## Step 1(Select Style) | |
- Select **Style Type**. | |
- Type with `-d` means it supports style degree adjustment. | |
- Type without `-d` usually has better toonification quality. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown('''Select Style Type''') | |
with gr.Row(): | |
style_type = gr.Radio(label='Style Type', | |
choices=['cartoon1','cartoon1-d','cartoon2-d','cartoon3-d', | |
'cartoon4','cartoon4-d','cartoon5-d','comic1-d', | |
'comic2-d','arcane1','arcane1-d','arcane2', 'arcane2-d', | |
'caricature1','caricature2','pixar','pixar-d', | |
'illustration1-d', 'illustration2-d', 'illustration3-d', 'illustration4-d', 'illustration5-d', | |
] | |
) | |
exstyle = gr.Variable() | |
with gr.Row(): | |
loadmodel_button = gr.Button('Load Model') | |
with gr.Row(): | |
load_info = gr.Textbox(label='Process Information', interactive=False, value='No model loaded.') | |
with gr.Column(): | |
gr.Markdown('''Reference Styles | |
![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/style.jpg)''') | |
with gr.Box(): | |
gr.Markdown('''## Step 2 (Preprocess Input Image / Video) | |
- Drop an image/video containing a near-frontal face to the **Input Image**/**Input Video**. | |
- Hit the **Rescale Image**/**Rescale First Frame** button. | |
- Rescale the input to make it best fit the model. | |
- The final image result will be based on this **Rescaled Face**. Use padding parameters to adjust the background space. | |
- **<font color=red>Solution to [Error: no face detected!]</font>**: VToonify uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. You can try several times or use other images until a face is detected, then switch back to the original image. | |
- For video input, further hit the **Rescale Video** button. | |
- The final video result will be based on this **Rescaled Video**. To avoid overload, video is cut to at most **100/300** frames for CPU/GPU, respectively. | |
''') | |
with gr.Row(): | |
with gr.Box(): | |
with gr.Column(): | |
gr.Markdown('''Choose the padding parameters. | |
![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/rescale.jpg)''') | |
with gr.Row(): | |
top = gr.Slider(128, | |
256, | |
value=200, | |
step=8, | |
label='top') | |
with gr.Row(): | |
bottom = gr.Slider(128, | |
256, | |
value=200, | |
step=8, | |
label='bottom') | |
with gr.Row(): | |
left = gr.Slider(128, | |
256, | |
value=200, | |
step=8, | |
label='left') | |
with gr.Row(): | |
right = gr.Slider(128, | |
256, | |
value=200, | |
step=8, | |
label='right') | |
with gr.Box(): | |
with gr.Column(): | |
gr.Markdown('''Input''') | |
with gr.Row(): | |
input_image = gr.Image(label='Input Image', | |
type='filepath') | |
with gr.Row(): | |
preprocess_image_button = gr.Button('Rescale Image') | |
with gr.Row(): | |
input_video = gr.Video(label='Input Video', | |
mirror_webcam=False, | |
type='filepath') | |
with gr.Row(): | |
preprocess_video0_button = gr.Button('Rescale First Frame') | |
preprocess_video1_button = gr.Button('Rescale Video') | |
with gr.Box(): | |
with gr.Column(): | |
gr.Markdown('''View''') | |
with gr.Row(): | |
input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
with gr.Row(): | |
aligned_face = gr.Image(label='Rescaled Face', | |
type='numpy', | |
interactive=False) | |
instyle = gr.Variable() | |
with gr.Row(): | |
aligned_video = gr.Video(label='Rescaled Video', | |
type='mp4', | |
interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
paths = ['./vtoonify/data/pexels-andrea-piacquadio-733872.jpg','./vtoonify/data/i5R8hbZFDdc.jpg','./vtoonify/data/yRpe13BHdKw.jpg','./vtoonify/data/ILip77SbmOE.jpg','./vtoonify/data/077436.jpg','./vtoonify/data/081680.jpg'] | |
example_images = gr.Dataset(components=[input_image], | |
samples=[[path] for path in paths], | |
label='Image Examples') | |
with gr.Column(): | |
#example_videos = gr.Dataset(components=[input_video], samples=[['./vtoonify/data/529.mp4']], type='values') | |
#to render video example on mouse hover/click | |
example_videos.render() | |
#to load sample video into input_video upon clicking on it | |
def load_examples(video): | |
#print("****** inside load_example() ******") | |
#print("in_video is : ", video[0]) | |
return video[0] | |
example_videos.click(load_examples, example_videos, input_video) | |
with gr.Box(): | |
gr.Markdown('''## Step 3 (Generate Style Transferred Image/Video)''') | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(''' | |
- Adjust **Style Degree**. | |
- Hit **Toonify!** to toonify one frame. Hit **VToonify!** to toonify full video. | |
- Estimated time on 1600x1440 video of 300 frames: 1 hour (CPU); 2 mins (GPU) | |
''') | |
style_degree = gr.Slider(0, | |
1, | |
value=0.5, | |
step=0.05, | |
label='Style Degree') | |
with gr.Column(): | |
gr.Markdown('''![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/degree.jpg) | |
''') | |
with gr.Row(): | |
output_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
result_face = gr.Image(label='Result Image', | |
type='numpy', | |
interactive=False) | |
with gr.Row(): | |
toonify_button = gr.Button('Toonify!') | |
with gr.Column(): | |
with gr.Row(): | |
result_video = gr.Video(label='Result Video', | |
type='mp4', | |
interactive=False) | |
with gr.Row(): | |
vtoonify_button = gr.Button('VToonify!') | |
gr.Markdown(ARTICLE) | |
gr.Markdown(FOOTER) | |
loadmodel_button.click(fn=model.load_model, | |
inputs=[style_type], | |
outputs=[exstyle, load_info], api_name="load-model") | |
style_type.change(fn=update_slider, | |
inputs=style_type, | |
outputs=style_degree) | |
preprocess_image_button.click(fn=model.detect_and_align_image, | |
inputs=[input_image, top, bottom, left, right], | |
outputs=[aligned_face, instyle, input_info], api_name="scale-image") | |
preprocess_video0_button.click(fn=model.detect_and_align_video, | |
inputs=[input_video, top, bottom, left, right], | |
outputs=[aligned_face, instyle, input_info], api_name="scale-first-frame") | |
preprocess_video1_button.click(fn=model.detect_and_align_full_video, | |
inputs=[input_video, top, bottom, left, right], | |
outputs=[aligned_video, instyle, input_info], api_name="scale-video") | |
toonify_button.click(fn=model.image_toonify, | |
inputs=[aligned_face, instyle, exstyle, style_degree, style_type], | |
outputs=[result_face, output_info], api_name="toonify-image") | |
vtoonify_button.click(fn=model.video_tooniy, | |
inputs=[aligned_video, instyle, exstyle, style_degree, style_type], | |
outputs=[result_video, output_info], api_name="toonify-video") | |
example_images.click(fn=set_example_image, | |
inputs=example_images, | |
outputs=example_images.components) | |
demo.queue() | |
demo.launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |