VToonify / vtoonify /style_transfer.py
saimemrekanat's picture
face detect test
bdd706c
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import argparse
import numpy as np
import cv2
import dlib
import torch
from torchvision import transforms
import torch.nn.functional as F
from tqdm import tqdm
from model.vtoonify import VToonify
from model.bisenet.model import BiSeNet
from model.encoder.align_all_parallel import align_face
from util import save_image, load_image, visualize, load_psp_standalone, get_video_crop_parameter, tensor2cv2
class TestOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(description="Style Transfer")
self.parser.add_argument("--content", type=str, default='./data/077436.jpg', help="path of the content image/video")
self.parser.add_argument("--style_id", type=int, default=26, help="the id of the style image")
self.parser.add_argument("--style_degree", type=float, default=0.5, help="style degree for VToonify-D")
self.parser.add_argument("--color_transfer", action="store_true", help="transfer the color of the style")
self.parser.add_argument("--ckpt", type=str, default='./checkpoint/vtoonify_d_cartoon/vtoonify_s_d.pt', help="path of the saved model")
self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images")
self.parser.add_argument("--scale_image", action="store_true", help="resize and crop the image to best fit the model")
self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder")
self.parser.add_argument("--exstyle_path", type=str, default=None, help="path of the extrinsic style code")
self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
self.parser.add_argument("--video", action="store_true", help="if true, video stylization; if false, image stylization")
self.parser.add_argument("--cpu", action="store_true", help="if true, only use cpu")
self.parser.add_argument("--backbone", type=str, default='dualstylegan', help="dualstylegan | toonify")
self.parser.add_argument("--padding", type=int, nargs=4, default=[200,200,200,200], help="left, right, top, bottom paddings to the face center")
self.parser.add_argument("--batch_size", type=int, default=4, help="batch size of frames when processing video")
self.parser.add_argument("--parsing_map_path", type=str, default=None, help="path of the refined parsing map of the target video")
def parse(self):
self.opt = self.parser.parse_args()
if self.opt.exstyle_path is None:
self.opt.exstyle_path = os.path.join(os.path.dirname(self.opt.ckpt), 'exstyle_code.npy')
args = vars(self.opt)
print('Load options')
for name, value in sorted(args.items()):
print('%s: %s' % (str(name), str(value)))
return self.opt
if __name__ == "__main__":
parser = TestOptions()
args = parser.parse()
print('*'*98)
device = "cpu" if args.cpu else "cuda"
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
])
vtoonify = VToonify(backbone = args.backbone)
vtoonify.load_state_dict(torch.load(args.ckpt, map_location=lambda storage, loc: storage)['g_ema'])
vtoonify.to(device)
parsingpredictor = BiSeNet(n_classes=19)
parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
parsingpredictor.to(device).eval()
modelname = './checkpoint/shape_predictor_68_face_landmarks.dat'
if not os.path.exists(modelname):
import wget, bz2
wget.download('http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', modelname+'.bz2')
zipfile = bz2.BZ2File(modelname+'.bz2')
data = zipfile.read()
open(modelname, 'wb').write(data)
landmarkpredictor = dlib.shape_predictor(modelname)
pspencoder = load_psp_standalone(args.style_encoder_path, device)
if args.backbone == 'dualstylegan':
exstyles = np.load(args.exstyle_path, allow_pickle='TRUE').item()
stylename = list(exstyles.keys())[args.style_id]
exstyle = torch.tensor(exstyles[stylename]).to(device)
with torch.no_grad():
exstyle = vtoonify.zplus2wplus(exstyle)
if args.video and args.parsing_map_path is not None:
x_p_hat = torch.tensor(np.load(args.parsing_map_path))
print('Load models successfully!')
filename = args.content
basename = os.path.basename(filename).split('.')[0]
scale = 1
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
print('Processing ' + os.path.basename(filename) + ' with vtoonify_' + args.backbone[0])
if args.video:
cropname = os.path.join(args.output_path, basename + '_input.mp4')
savename = os.path.join(args.output_path, basename + '_vtoonify_' + args.backbone[0] + '.mp4')
video_cap = cv2.VideoCapture(filename)
num = int(video_cap.get(7))
first_valid_frame = True
batch_frames = []
for i in tqdm(range(num)):
success, frame = video_cap.read()
if success == False:
assert('load video frames error')
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# We proprocess the video by detecting the face in the first frame,
# and resizing the frame so that the eye distance is 64 pixels.
# Centered on the eyes, we crop the first frame to almost 400x400 (based on args.padding).
# All other frames use the same resizing and cropping parameters as the first frame.
if first_valid_frame:
if args.scale_image:
paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding)
if paras is None:
continue
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
# for HR video, we apply gaussian blur to the frames to avoid flickers caused by bilinear downsampling
# this can also prevent over-sharp stylization results.
if scale <= 0.75:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
if scale <= 0.375:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
else:
H, W = frame.shape[0], frame.shape[1]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter(cropname, fourcc, video_cap.get(5), (W, H))
videoWriter2 = cv2.VideoWriter(savename, fourcc, video_cap.get(5), (4*W, 4*H))
# For each video, we detect and align the face in the first frame for pSp to obtain the style code.
# This style code is used for all other frames.
with torch.no_grad():
I = align_face(frame, landmarkpredictor)
I = transform(I).unsqueeze(dim=0).to(device)
s_w = pspencoder(I)
s_w = vtoonify.zplus2wplus(s_w)
if vtoonify.backbone == 'dualstylegan':
if args.color_transfer:
s_w = exstyle
else:
s_w[:,:7] = exstyle[:,:7]
first_valid_frame = False
elif args.scale_image:
if scale <= 0.75:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
if scale <= 0.375:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
batch_frames += [transform(frame).unsqueeze(dim=0).to(device)]
if len(batch_frames) == args.batch_size or (i+1) == num:
x = torch.cat(batch_frames, dim=0)
batch_frames = []
with torch.no_grad():
# parsing network works best on 512x512 images, so we predict parsing maps on upsmapled frames
# followed by downsampling the parsing maps
if args.video and args.parsing_map_path is not None:
x_p = x_p_hat[i+1-x.size(0):i+1].to(device)
else:
x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
scale_factor=0.5, recompute_scale_factor=False).detach()
# we give parsing maps lower weight (1/16)
inputs = torch.cat((x, x_p/16.), dim=1)
# d_s has no effect when backbone is toonify
y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree)
y_tilde = torch.clamp(y_tilde, -1, 1)
for k in range(y_tilde.size(0)):
videoWriter2.write(tensor2cv2(y_tilde[k].cpu()))
videoWriter.release()
videoWriter2.release()
video_cap.release()
else:
cropname = os.path.join(args.output_path, basename + '_input.jpg')
savename = os.path.join(args.output_path, basename + '_vtoonify_' + args.backbone[0] + '.jpg')
frame = cv2.imread(filename)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# We detect the face in the image, and resize the image so that the eye distance is 64 pixels.
# Centered on the eyes, we crop the image to almost 400x400 (based on args.padding).
if args.scale_image:
paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding)
if paras is not None:
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
if scale <= 0.75:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
if scale <= 0.375:
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
with torch.no_grad():
I = align_face(frame, landmarkpredictor)
I = transform(I).unsqueeze(dim=0).to(device)
s_w = pspencoder(I)
s_w = vtoonify.zplus2wplus(s_w)
if vtoonify.backbone == 'dualstylegan':
if args.color_transfer:
s_w = exstyle
else:
s_w[:,:7] = exstyle[:,:7]
x = transform(frame).unsqueeze(dim=0).to(device)
# parsing network works best on 512x512 images, so we predict parsing maps on upsmapled frames
# followed by downsampling the parsing maps
x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
scale_factor=0.5, recompute_scale_factor=False).detach()
# we give parsing maps lower weight (1/16)
inputs = torch.cat((x, x_p/16.), dim=1)
# d_s has no effect when backbone is toonify
y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree)
y_tilde = torch.clamp(y_tilde, -1, 1)
cv2.imwrite(cropname, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
save_image(y_tilde[0].cpu(), savename)
print('Transfer style successfully!')