|
import gradio as gr |
|
import os |
|
|
|
from util.instantmesh import generate_mvs, make3d, preprocess, check_input_image |
|
from util.text_img import generate_image, check_prompt |
|
|
|
_CITE_ = r""" |
|
```bibtex |
|
@article{xu2024instantmesh, |
|
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, |
|
author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, |
|
journal={arXiv preprint arXiv:2404.07191}, |
|
year={2024} |
|
} |
|
``` |
|
""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("Text to Image Generator"): |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
prompt = gr.Textbox(label="Enter a discription of a shoe") |
|
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality, bad quality, sketches, legs") |
|
scale = gr.Slider(label="Control Image Scale", minimum=0.1, maximum=1.0, step=0.1, value=0.5) |
|
control_image = gr.Image(label="Enter an image of a shoe, that you want to use as a reference", type='numpy') |
|
gr.Examples( |
|
examples=[ |
|
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) |
|
], |
|
inputs=[control_image], |
|
label="Examples", |
|
cache_examples=False, |
|
) |
|
button_gen = gr.Button("Generate Image") |
|
with gr.Column(): |
|
gen_image = gr.Image(label="Generated Image", show_download_button=True, show_label=False) |
|
|
|
gen_image = gr.State() |
|
|
|
button_gen.click(check_prompt, inputs=[prompt]).success(generate_image, inputs=[prompt, negative_prompt, control_image, scale], outputs=[gen_image]) |
|
|
|
with gr.Tab("Image to 3D Model Generator"): |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gen_image = gr.Image( |
|
label="Generated Image", |
|
image_mode="RGBA", |
|
|
|
|
|
type="pil", |
|
elem_id="content_image", |
|
) |
|
processed_image = gr.Image( |
|
label="Processed Image", |
|
image_mode="RGBA", |
|
|
|
|
|
type="pil", |
|
interactive=False |
|
) |
|
with gr.Row(): |
|
with gr.Group(): |
|
do_remove_background = gr.Checkbox( |
|
label="Remove Background", value=True |
|
) |
|
sample_seed = gr.Number(value=42, label="Seed Value", precision=0) |
|
|
|
sample_steps = gr.Slider( |
|
label="Sample Steps", |
|
minimum=30, |
|
maximum=75, |
|
value=75, |
|
step=5 |
|
) |
|
|
|
with gr.Row(): |
|
submit = gr.Button("Generate", elem_id="generate", variant="primary") |
|
|
|
with gr.Column(): |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(): |
|
mv_show_images = gr.Image( |
|
label="Generated Multi-views", |
|
type="pil", |
|
width=379, |
|
interactive=False |
|
) |
|
|
|
with gr.Row(): |
|
output_model_obj = gr.Model3D( |
|
label="Output Model (OBJ Format)", |
|
interactive=False, |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''') |
|
|
|
gr.Markdown(_CITE_) |
|
|
|
mv_images = gr.State() |
|
|
|
submit.click(fn=check_input_image, inputs=[gen_image]).success( |
|
fn=preprocess, |
|
inputs=[gen_image, do_remove_background], |
|
outputs=[processed_image], |
|
).success( |
|
fn=generate_mvs, |
|
inputs=[processed_image, sample_steps, sample_seed], |
|
outputs=[mv_images, mv_show_images] |
|
).success( |
|
fn=make3d, |
|
inputs=[mv_images], |
|
outputs=[output_model_obj] |
|
) |
|
|
|
demo.launch() |