|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The ray sampler is a module that takes in camera matrices and resolution and batches of rays. |
|
Expects cam2world matrices that use the OpenCV camera coordinate system conventions. |
|
""" |
|
|
|
import torch |
|
|
|
class RaySampler(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None |
|
|
|
|
|
def forward(self, cam2world_matrix, intrinsics, render_size): |
|
""" |
|
Create batches of rays and return origins and directions. |
|
|
|
cam2world_matrix: (N, 4, 4) |
|
intrinsics: (N, 3, 3) |
|
render_size: int |
|
|
|
ray_origins: (N, M, 3) |
|
ray_dirs: (N, M, 2) |
|
""" |
|
|
|
dtype = cam2world_matrix.dtype |
|
device = cam2world_matrix.device |
|
N, M = cam2world_matrix.shape[0], render_size**2 |
|
cam_locs_world = cam2world_matrix[:, :3, 3] |
|
fx = intrinsics[:, 0, 0] |
|
fy = intrinsics[:, 1, 1] |
|
cx = intrinsics[:, 0, 2] |
|
cy = intrinsics[:, 1, 2] |
|
sk = intrinsics[:, 0, 1] |
|
|
|
uv = torch.stack(torch.meshgrid( |
|
torch.arange(render_size, dtype=dtype, device=device), |
|
torch.arange(render_size, dtype=dtype, device=device), |
|
indexing='ij', |
|
)) |
|
uv = uv.flip(0).reshape(2, -1).transpose(1, 0) |
|
uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1) |
|
|
|
x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size) |
|
y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size) |
|
z_cam = torch.ones((N, M), dtype=dtype, device=device) |
|
|
|
x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam |
|
y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam |
|
|
|
cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1).to(dtype) |
|
|
|
_opencv2blender = torch.tensor([ |
|
[1, 0, 0, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, -1, 0], |
|
[0, 0, 0, 1], |
|
], dtype=dtype, device=device).unsqueeze(0).repeat(N, 1, 1) |
|
|
|
cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender) |
|
|
|
world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3] |
|
|
|
ray_dirs = world_rel_points - cam_locs_world[:, None, :] |
|
ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2).to(dtype) |
|
|
|
ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1) |
|
|
|
return ray_origins, ray_dirs |
|
|
|
|
|
class OrthoRaySampler(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None |
|
|
|
|
|
def forward(self, cam2world_matrix, ortho_scale, render_size): |
|
""" |
|
Create batches of rays and return origins and directions. |
|
|
|
cam2world_matrix: (N, 4, 4) |
|
ortho_scale: float |
|
render_size: int |
|
|
|
ray_origins: (N, M, 3) |
|
ray_dirs: (N, M, 3) |
|
""" |
|
|
|
N, M = cam2world_matrix.shape[0], render_size**2 |
|
|
|
uv = torch.stack(torch.meshgrid( |
|
torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device), |
|
torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device), |
|
indexing='ij', |
|
)) |
|
uv = uv.flip(0).reshape(2, -1).transpose(1, 0) |
|
uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1) |
|
|
|
x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size) |
|
y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size) |
|
z_cam = torch.zeros((N, M), device=cam2world_matrix.device) |
|
|
|
x_lift = (x_cam - 0.5) * ortho_scale |
|
y_lift = (y_cam - 0.5) * ortho_scale |
|
|
|
cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1) |
|
|
|
_opencv2blender = torch.tensor([ |
|
[1, 0, 0, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, -1, 0], |
|
[0, 0, 0, 1], |
|
], dtype=torch.float32, device=cam2world_matrix.device).unsqueeze(0).repeat(N, 1, 1) |
|
|
|
cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender) |
|
|
|
ray_origins = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3] |
|
|
|
ray_dirs_cam = torch.stack([ |
|
torch.zeros((N, M), device=cam2world_matrix.device), |
|
torch.zeros((N, M), device=cam2world_matrix.device), |
|
torch.ones((N, M), device=cam2world_matrix.device), |
|
], dim=-1) |
|
ray_dirs = torch.bmm(cam2world_matrix[:, :3, :3], ray_dirs_cam.permute(0, 2, 1)).permute(0, 2, 1) |
|
|
|
return ray_origins, ray_dirs |
|
|