|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The renderer is a module that takes in rays, decides where to sample along each |
|
ray, and computes pixel colors using the volume rendering equation. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .ray_marcher import MipRayMarcher2 |
|
from . import math_utils |
|
|
|
|
|
def generate_planes(): |
|
""" |
|
Defines planes by the three vectors that form the "axes" of the |
|
plane. Should work with arbitrary number of planes and planes of |
|
arbitrary orientation. |
|
|
|
Bugfix reference: https://github.com/NVlabs/eg3d/issues/67 |
|
""" |
|
return torch.tensor([[[1, 0, 0], |
|
[0, 1, 0], |
|
[0, 0, 1]], |
|
[[1, 0, 0], |
|
[0, 0, 1], |
|
[0, 1, 0]], |
|
[[0, 0, 1], |
|
[0, 1, 0], |
|
[1, 0, 0]]], dtype=torch.float32) |
|
|
|
def project_onto_planes(planes, coordinates): |
|
""" |
|
Does a projection of a 3D point onto a batch of 2D planes, |
|
returning 2D plane coordinates. |
|
|
|
Takes plane axes of shape n_planes, 3, 3 |
|
# Takes coordinates of shape N, M, 3 |
|
# returns projections of shape N*n_planes, M, 2 |
|
""" |
|
N, M, C = coordinates.shape |
|
n_planes, _, _ = planes.shape |
|
coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) |
|
inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) |
|
projections = torch.bmm(coordinates, inv_planes) |
|
return projections[..., :2] |
|
|
|
def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): |
|
assert padding_mode == 'zeros' |
|
N, n_planes, C, H, W = plane_features.shape |
|
_, M, _ = coordinates.shape |
|
plane_features = plane_features.view(N*n_planes, C, H, W) |
|
dtype = plane_features.dtype |
|
|
|
coordinates = (2/box_warp) * coordinates |
|
|
|
projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) |
|
output_features = torch.nn.functional.grid_sample( |
|
plane_features, |
|
projected_coordinates.to(dtype), |
|
mode=mode, |
|
padding_mode=padding_mode, |
|
align_corners=False, |
|
).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) |
|
return output_features |
|
|
|
def sample_from_3dgrid(grid, coordinates): |
|
""" |
|
Expects coordinates in shape (batch_size, num_points_per_batch, 3) |
|
Expects grid in shape (1, channels, H, W, D) |
|
(Also works if grid has batch size) |
|
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) |
|
""" |
|
batch_size, n_coords, n_dims = coordinates.shape |
|
sampled_features = torch.nn.functional.grid_sample( |
|
grid.expand(batch_size, -1, -1, -1, -1), |
|
coordinates.reshape(batch_size, 1, 1, -1, n_dims), |
|
mode='bilinear', |
|
padding_mode='zeros', |
|
align_corners=False, |
|
) |
|
N, C, H, W, D = sampled_features.shape |
|
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) |
|
return sampled_features |
|
|
|
class ImportanceRenderer(torch.nn.Module): |
|
""" |
|
Modified original version to filter out-of-box samples as TensoRF does. |
|
|
|
Reference: |
|
TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277 |
|
""" |
|
def __init__(self): |
|
super().__init__() |
|
self.activation_factory = self._build_activation_factory() |
|
self.ray_marcher = MipRayMarcher2(self.activation_factory) |
|
self.plane_axes = generate_planes() |
|
|
|
def _build_activation_factory(self): |
|
def activation_factory(options: dict): |
|
if options['clamp_mode'] == 'softplus': |
|
return lambda x: F.softplus(x - 1) |
|
else: |
|
assert False, "Renderer only supports `clamp_mode`=`softplus`!" |
|
return activation_factory |
|
|
|
def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor, |
|
planes: torch.Tensor, decoder: nn.Module, rendering_options: dict): |
|
""" |
|
Additional filtering is applied to filter out-of-box samples. |
|
Modifications made by Zexin He. |
|
""" |
|
|
|
|
|
batch_size, num_rays, samples_per_ray, _ = depths.shape |
|
device = depths.device |
|
|
|
|
|
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) |
|
sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) |
|
|
|
|
|
mask_inbox = \ |
|
(rendering_options['sampler_bbox_min'] <= sample_coordinates) & \ |
|
(sample_coordinates <= rendering_options['sampler_bbox_max']) |
|
mask_inbox = mask_inbox.all(-1) |
|
|
|
|
|
_out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options) |
|
|
|
|
|
SAFE_GUARD = 3 |
|
DATA_TYPE = _out['sigma'].dtype |
|
colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE) |
|
densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD |
|
colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox] |
|
|
|
|
|
colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1]) |
|
densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1]) |
|
|
|
return colors_pass, densities_pass |
|
|
|
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options): |
|
|
|
|
|
if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto': |
|
ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) |
|
is_ray_valid = ray_end > ray_start |
|
if torch.any(is_ray_valid).item(): |
|
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() |
|
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() |
|
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) |
|
else: |
|
|
|
depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) |
|
|
|
|
|
colors_coarse, densities_coarse = self._forward_pass( |
|
depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins, |
|
planes=planes, decoder=decoder, rendering_options=rendering_options) |
|
|
|
|
|
N_importance = rendering_options['depth_resolution_importance'] |
|
if N_importance > 0: |
|
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) |
|
|
|
depths_fine = self.sample_importance(depths_coarse, weights, N_importance) |
|
|
|
colors_fine, densities_fine = self._forward_pass( |
|
depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins, |
|
planes=planes, decoder=decoder, rendering_options=rendering_options) |
|
|
|
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, |
|
depths_fine, colors_fine, densities_fine) |
|
|
|
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) |
|
else: |
|
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) |
|
|
|
return rgb_final, depth_final, weights.sum(2) |
|
|
|
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): |
|
plane_axes = self.plane_axes.to(planes.device) |
|
sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) |
|
|
|
out = decoder(sampled_features, sample_directions) |
|
if options.get('density_noise', 0) > 0: |
|
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] |
|
return out |
|
|
|
def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options): |
|
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options) |
|
out['sigma'] = self.activation_factory(options)(out['sigma']) |
|
return out |
|
|
|
def sort_samples(self, all_depths, all_colors, all_densities): |
|
_, indices = torch.sort(all_depths, dim=-2) |
|
all_depths = torch.gather(all_depths, -2, indices) |
|
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) |
|
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) |
|
return all_depths, all_colors, all_densities |
|
|
|
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2, normals1=None, normals2=None): |
|
all_depths = torch.cat([depths1, depths2], dim = -2) |
|
all_colors = torch.cat([colors1, colors2], dim = -2) |
|
all_densities = torch.cat([densities1, densities2], dim = -2) |
|
|
|
if normals1 is not None and normals2 is not None: |
|
all_normals = torch.cat([normals1, normals2], dim = -2) |
|
else: |
|
all_normals = None |
|
|
|
_, indices = torch.sort(all_depths, dim=-2) |
|
all_depths = torch.gather(all_depths, -2, indices) |
|
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) |
|
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) |
|
|
|
if all_normals is not None: |
|
all_normals = torch.gather(all_normals, -2, indices.expand(-1, -1, -1, all_normals.shape[-1])) |
|
return all_depths, all_colors, all_normals, all_densities |
|
|
|
return all_depths, all_colors, all_densities |
|
|
|
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): |
|
""" |
|
Return depths of approximately uniformly spaced samples along rays. |
|
""" |
|
N, M, _ = ray_origins.shape |
|
if disparity_space_sampling: |
|
depths_coarse = torch.linspace(0, |
|
1, |
|
depth_resolution, |
|
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) |
|
depth_delta = 1/(depth_resolution - 1) |
|
depths_coarse += torch.rand_like(depths_coarse) * depth_delta |
|
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) |
|
else: |
|
if type(ray_start) == torch.Tensor: |
|
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) |
|
depth_delta = (ray_end - ray_start) / (depth_resolution - 1) |
|
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] |
|
else: |
|
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) |
|
depth_delta = (ray_end - ray_start)/(depth_resolution - 1) |
|
depths_coarse += torch.rand_like(depths_coarse) * depth_delta |
|
|
|
return depths_coarse |
|
|
|
def sample_importance(self, z_vals, weights, N_importance): |
|
""" |
|
Return depths of importance sampled points along rays. See NeRF importance sampling for more. |
|
""" |
|
with torch.no_grad(): |
|
batch_size, num_rays, samples_per_ray, _ = z_vals.shape |
|
|
|
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) |
|
weights = weights.reshape(batch_size * num_rays, -1) |
|
|
|
|
|
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1), 2, 1, padding=1) |
|
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() |
|
weights = weights + 0.01 |
|
|
|
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) |
|
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], |
|
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) |
|
return importance_z_vals |
|
|
|
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): |
|
""" |
|
Sample @N_importance samples from @bins with distribution defined by @weights. |
|
Inputs: |
|
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" |
|
weights: (N_rays, N_samples_) |
|
N_importance: the number of samples to draw from the distribution |
|
det: deterministic or not |
|
eps: a small number to prevent division by zero |
|
Outputs: |
|
samples: the sampled samples |
|
""" |
|
N_rays, N_samples_ = weights.shape |
|
weights = weights + eps |
|
pdf = weights / torch.sum(weights, -1, keepdim=True) |
|
cdf = torch.cumsum(pdf, -1) |
|
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) |
|
|
|
|
|
if det: |
|
u = torch.linspace(0, 1, N_importance, device=bins.device) |
|
u = u.expand(N_rays, N_importance) |
|
else: |
|
u = torch.rand(N_rays, N_importance, device=bins.device) |
|
u = u.contiguous() |
|
|
|
inds = torch.searchsorted(cdf, u, right=True) |
|
below = torch.clamp_min(inds-1, 0) |
|
above = torch.clamp_max(inds, N_samples_) |
|
|
|
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) |
|
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) |
|
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) |
|
|
|
denom = cdf_g[...,1]-cdf_g[...,0] |
|
denom[denom<eps] = 1 |
|
|
|
|
|
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0]) |
|
return samples |
|
|