File size: 18,310 Bytes
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ceacf4
6d737eb
 
 
 
 
 
 
01664b3
5ceacf4
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ceacf4
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ceacf4
 
 
 
 
 
 
 
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ceacf4
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ceacf4
01664b3
5ceacf4
 
01664b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
"""
inference.py
------------
Provides functionality to run the OPDMulti model on an input image, independent of dataset and ground truth, and 
visualize the output. Large portions of the code originate from get_prediction.py, rgbd_to_pcd_vis.py, 
evaluate_on_log.py, and other related files. The primary goal was to create a more standalone script which could be 
converted more easily into a public demo, thus the goal was to sever most dependencies on existing ground truth or 
datasets.

Example usage:
python inference.py \
    --rgb path/to/59-4860.png \
    --depth path/to/59-4860_d.png \
    --model path/to/model.pth \
    --output path/to/output_dir
"""

import argparse
import logging
import os
import time
from typing import Any

import imageio
import open3d as o3d
import numpy as np
import torch
import torch.nn as nn
from detectron2 import engine, evaluation
from detectron2.modeling import build_model
from detectron2.config import get_cfg, CfgNode
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.structures import instances
from detectron2.utils import comm
from detectron2.utils.logger import setup_logger

from mask2former import (
    add_maskformer2_config,
    add_motionnet_config,
)
from utilities import prediction_to_json
from visualization import (
    draw_line,
    generate_rotation_visualization,
    generate_translation_visualization,
    batch_trim,
    create_gif,
)

# import based on torch version. Required for model loading. Code is taken from fvcore.common.checkpoint, in order to
# replicate model loading without the overhead of setting up an OPDTrainer

TORCH_VERSION: tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
if TORCH_VERSION >= (1, 11):
    from torch.ao import quantization
    from torch.ao.quantization import FakeQuantizeBase, ObserverBase
elif (
    TORCH_VERSION >= (1, 8)
    and hasattr(torch.quantization, "FakeQuantizeBase")
    and hasattr(torch.quantization, "ObserverBase")
):
    from torch import quantization
    from torch.quantization import FakeQuantizeBase, ObserverBase

# TODO: find a global place for this instead of in many places in code
TYPE_CLASSIFICATION = {
    0: "rotation",
    1: "translation",
}

ARROW_COLOR = [0, 1, 0]  # green


def get_parser() -> argparse.ArgumentParser:
    """
    Specfy command-line arguments.

    The primary inputs to the script should be the image paths (RGBD) and camera intrinsics. Other arguments are
    provided to facilitate script testing and model changes. Run file with -h/--help to see all arguments.

    :return: parser for extracting command-line arguments
    """
    parser = argparse.ArgumentParser(description="Inference for OPDMulti")
    # The main arguments which should be specified by the user
    parser.add_argument(
        "--rgb",
        dest="rgb_image",
        metavar="FILE",
        help="path to RGB image file on which to run model",
    )
    parser.add_argument(
        "--depth",
        dest="depth_image",
        metavar="FILE",
        help="path to depth image file on which to run model",
    )
    parser.add_argument(  # FIXME: might make more sense to make this a path
        "-i",
        "--intrinsics",
        nargs=9,
        default=[
            214.85935872395834,
            0.0,
            0.0,
            0.0,
            214.85935872395834,
            0.0,
            125.90160319010417,
            95.13726399739583,
            1.0,
        ],
        dest="intrinsics",
        help="camera intrinsics matrix, as a list of values",
    )

    # optional parameters for user to specify
    parser.add_argument(
        "-n",
        "--num-samples",
        default=10,
        dest="num_samples",
        metavar="NUM",
        help="number of sample states to generate in visualization",
    )
    parser.add_argument(
        "--crop",
        action="store_true",
        dest="crop",
        help="crop whitespace out of images for visualization",
    )

    # local script development arguments
    parser.add_argument(
        "-m",
        "--model",
        default="path/to/model/file",  # FIXME: set a good default path
        dest="model",
        metavar="FILE",
        help="path to model file to run",
    )
    parser.add_argument(
        "-c",
        "--config",
        default="configs/coco/instance-segmentation/swin/opd_v1_real.yaml",
        metavar="FILE",
        dest="config_file",
        help="path to config file",
    )
    parser.add_argument(
        "-o",
        "--output",
        default="output",  # FIXME: set a good default path
        dest="output",
        help="path to output directory in which to save results",
    )
    parser.add_argument(
        "--num-processes",
        default=1,
        dest="num_processes",
        help="number of processes per machine. When using GPUs, this should be the number of GPUs.",
    )
    parser.add_argument(
        "-s",
        "--score-threshold",
        default=0.8,
        type=float,
        dest="score_threshold",
        help="threshold between 0.0 and 1.0 by which to filter out bad predictions",
    )
    parser.add_argument(
        "--input-format",
        default="RGB",
        dest="input_format",
        help="input format of image. Must be one of RGB, RGBD, or depth",
    )
    parser.add_argument(
        "--cpu",
        action="store_true",
        help="flag to require code to use CPU only",
    )

    return parser


def setup_cfg(args: argparse.Namespace) -> CfgNode:
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    # add model configurations
    add_deeplab_config(cfg)
    add_maskformer2_config(cfg)
    add_motionnet_config(cfg)
    cfg.merge_from_file(args.config_file)

    # set additional config parameters
    cfg.MODEL.WEIGHTS = args.model
    cfg.OBJ_DETECT = False  # TODO: figure out if this is needed, and parameterize it
    cfg.MODEL.MOTIONNET.VOTING = "none"
    # Output directory
    cfg.OUTPUT_DIR = args.output
    cfg.MODEL.DEVICE = "cpu" if args.cpu else "cuda"

    cfg.MODEL.MODELATTRPATH = None

    # Input format
    cfg.INPUT.FORMAT = args.input_format
    if args.input_format == "RGB":
        cfg.MODEL.PIXEL_MEAN = cfg.MODEL.PIXEL_MEAN[0:3]
        cfg.MODEL.PIXEL_STD = cfg.MODEL.PIXEL_STD[0:3]
    elif args.input_format == "depth":
        cfg.MODEL.PIXEL_MEAN = cfg.MODEL.PIXEL_MEAN[3:4]
        cfg.MODEL.PIXEL_STD = cfg.MODEL.PIXEL_STD[3:4]
    elif args.input_format == "RGBD":
        pass
    else:
        raise ValueError("Invalid input format")

    cfg.freeze()
    engine.default_setup(cfg, args)

    # Setup logger for "mask_former" module
    setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="opdformer")
    return cfg


def format_input(rgb_path: str) -> list[dict[str, Any]]:
    """
    Read and format input image into detectron2 form so that it can be passed to the model.

    :param rgb_path: path to RGB image file
    :return: list of dictionaries per image, where each dictionary is of the form
        {
            "file_name": path to RGB image,
            "image": torch.Tensor of dimensions [channel, height, width] representing the image
        }
    """
    image = imageio.imread(rgb_path).astype(np.float32)
    image_tensor = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))  # dim: [channel, height, width]
    return [{"file_name": rgb_path, "image": image_tensor}]


def load_model(model: nn.Module, checkpoint: Any) -> None:
    """
    Load weights from a checkpoint.

    The majority of the function definition is taken from the DetectionCheckpointer implementation provided in
    detectron2. While not all of this code is necessarily needed for model loading, it was ported with the intention
    of keeping the implementation and output as close to the original as possible, and reusing the checkpoint class here
    in isolation was determined to be infeasible.

    :param model: model for which to load weights
    :param checkpoint: checkpoint contains the weights.
    """

    def _strip_prefix_if_present(state_dict: dict[str, Any], prefix: str) -> None:
        """If prefix is found on all keys in state dict, remove prefix."""
        keys = sorted(state_dict.keys())
        if not all(len(key) == 0 or key.startswith(prefix) for key in keys):
            return

        for key in keys:
            newkey = key[len(prefix) :]
            state_dict[newkey] = state_dict.pop(key)

    checkpoint_state_dict = checkpoint.pop("model")

    # convert from numpy to tensor
    for k, v in checkpoint_state_dict.items():
        if not isinstance(v, np.ndarray) and not isinstance(v, torch.Tensor):
            raise ValueError("Unsupported type found in checkpoint! {}: {}".format(k, type(v)))
        if not isinstance(v, torch.Tensor):
            checkpoint_state_dict[k] = torch.from_numpy(v)

    # if the state_dict comes from a model that was wrapped in a
    # DataParallel or DistributedDataParallel during serialization,
    # remove the "module" prefix before performing the matching.
    _strip_prefix_if_present(checkpoint_state_dict, "module.")

    # workaround https://github.com/pytorch/pytorch/issues/24139
    model_state_dict = model.state_dict()
    incorrect_shapes = []
    for k in list(checkpoint_state_dict.keys()):  # state dict is modified in loop, so list op is necessary
        if k in model_state_dict:
            model_param = model_state_dict[k]
            # Allow mismatch for uninitialized parameters
            if TORCH_VERSION >= (1, 8) and isinstance(model_param, nn.parameter.UninitializedParameter):
                continue
            shape_model = tuple(model_param.shape)
            shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
            if shape_model != shape_checkpoint:
                has_observer_base_classes = (
                    TORCH_VERSION >= (1, 8)
                    and hasattr(quantization, "ObserverBase")
                    and hasattr(quantization, "FakeQuantizeBase")
                )
                if has_observer_base_classes:
                    # Handle the special case of quantization per channel observers,
                    # where buffer shape mismatches are expected.
                    def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
                        # foo.bar.param_or_buffer_name -> [foo, bar]
                        key_parts = key.split(".")[:-1]
                        cur_module = model
                        for key_part in key_parts:
                            cur_module = getattr(cur_module, key_part)
                        return cur_module

                    cls_to_skip = (
                        ObserverBase,
                        FakeQuantizeBase,
                    )
                    target_module = _get_module_for_key(model, k)
                    if isinstance(target_module, cls_to_skip):
                        # Do not remove modules with expected shape mismatches
                        # them from the state_dict loading. They have special logic
                        # in _load_from_state_dict to handle the mismatches.
                        continue

                incorrect_shapes.append((k, shape_checkpoint, shape_model))
                checkpoint_state_dict.pop(k)

    model.load_state_dict(checkpoint_state_dict, strict=False)


def predict(model: nn.Module, inp: list[dict[str, Any]]) -> list[dict[str, instances.Instances]]:
    """
    Compute model predictions.

    :param model: model to run on input
    :param inp: input, in the form
        {
            "image_file": path to image,
            "image": float32 torch.tensor of dimensions [channel, height, width] as RGB/RGBD/depth image
        }
    :return: list of detected instances and predicted openable parameters
    """
    with torch.no_grad(), evaluation.inference_context(model):
        out = model(inp)
    return out


def main(
    cfg: CfgNode,
    rgb_image: str,
    depth_image: str,
    intrinsics: list[float],
    num_samples: int,
    crop: bool,
    score_threshold: float,
) -> None:
    """
    Main inference method.

    :param cfg: configuration object
    :param rgb_image: local path to RGB image
    :param depth_image: local path to depth image
    :param intrinsics: camera intrinsics matrix as a list of 9 values
    :param num_samples: number of sample visualization states to generate
    :param crop: if True, images will be cropped to remove whitespace before visualization
    :param score_threshold: float between 0 and 1 representing threshold at which to filter instances based on score
    """
    logger = logging.getLogger("detectron2")

    # setup data
    logger.info("Loading image.")
    inp = format_input(rgb_image)

    # setup model
    logger.info("Loading model.")
    model = build_model(cfg)
    weights = torch.load(cfg.MODEL.WEIGHTS, map_location=torch.device("cpu"))
    if "model" not in weights:
        weights = {"model": weights}
    load_model(model, weights)

    # run model on data
    logger.info("Running model.")
    prediction = predict(model, inp)[0]  # index 0 since there is only one image
    pred_instances = prediction["instances"]

    # log results
    image_id = os.path.splitext(os.path.basename(rgb_image))[0]
    pred_dict = {"image_id": image_id}
    instances = pred_instances.to(torch.device("cpu"))
    pred_dict["instances"] = prediction_to_json(instances, image_id)
    torch.save(pred_dict, os.path.join(cfg.OUTPUT_DIR, f"{image_id}_prediction.pth"))

    # select best prediction to visualize
    score_ranking = np.argsort([-1 * pred_instances[i].scores.item() for i in range(len(pred_instances))])
    score_ranking = [idx for idx in score_ranking if pred_instances[int(idx)].scores.item() > score_threshold]
    if len(score_ranking) == 0:
        logging.warning("The model did not predict any moving parts above the score threshold.")
        return

    for idx in score_ranking:  # iterate through all best predictions, by score threshold
        pred = pred_instances[int(idx)]  # take highest predicted one
        logger.info("Rendering prediction for instance %d", int(idx))
        output_dir = os.path.join(cfg.OUTPUT_DIR, str(idx))
        os.makedirs(output_dir, exist_ok=True)

        # extract predicted values for visualization
        mask = np.squeeze(pred.pred_masks.cpu().numpy())  # dim: [height, width]
        origin = pred.morigin.cpu().numpy().flatten()  # dim: [3, ]
        axis_vector = pred.maxis.cpu().numpy().flatten()  # dim: [3, ]
        pred_type = TYPE_CLASSIFICATION.get(pred.mtype.item())
        range_min = 0 - pred.mstate.cpu().numpy()
        range_max = pred.mstatemax.cpu().numpy() - pred.mstate.cpu().numpy()

        # process visualization
        color = o3d.io.read_image(rgb_image)
        depth = o3d.io.read_image(depth_image)
        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(color, depth, convert_rgb_to_intensity=False)
        color_np = np.asarray(color)
        height, width = color_np.shape[:2]

        # generate intrinsics
        intrinsic_matrix = np.reshape(intrinsics, (3, 3), order="F")
        intrinsic_obj = o3d.camera.PinholeCameraIntrinsic(
            width,
            height,
            intrinsic_matrix[0, 0],
            intrinsic_matrix[1, 1],
            intrinsic_matrix[0, 2],
            intrinsic_matrix[1, 2],
        )

        # Convert the RGBD image to a point cloud
        pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic_obj)

        # Create a LineSet to visualize the direction vector
        axis_arrow = draw_line(origin, axis_vector + origin)
        axis_arrow.paint_uniform_color(ARROW_COLOR)

        # if USE_GT:
        #     anno_path = f"/localhome/atw7/projects/opdmulti/data/data_demo_dev/59-4860.json"
        #     part_id = 32

        #     # get annotation for the frame
        #     import json

        #     with open(anno_path, "r") as f:
        #         anno = json.load(f)

        #     articulations = anno["articulation"]
        #     for articulation in articulations:
        #         if articulation["partId"] == part_id:
        #             range_min = articulation["rangeMin"] - articulation["state"]
        #             range_max = articulation["rangeMax"] - articulation["state"]
        #             break

        if pred_type == "rotation":
            generate_rotation_visualization(
                pcd,
                axis_arrow,
                mask,
                axis_vector,
                origin,
                range_min,
                range_max,
                num_samples,
                output_dir,
            )
        elif pred_type == "translation":
            generate_translation_visualization(
                pcd,
                axis_arrow,
                mask,
                axis_vector,
                range_min,
                range_max,
                num_samples,
                output_dir,
            )
        else:
            raise ValueError(f"Invalid motion prediction type: {pred_type}")

        if pred_type:
            if crop:  # crop images to remove shared extraneous whitespace
                output_dir_cropped = f"{output_dir}_cropped"
                if not os.path.isdir(output_dir_cropped):
                    os.makedirs(output_dir_cropped)
                batch_trim(output_dir, output_dir_cropped, identical=True)
                # create_gif(output_dir_cropped, num_samples)
            else:  # leave original dimensions of image as-is
                # create_gif(output_dir, num_samples)
                pass


if __name__ == "__main__":
    # parse arguments
    start_time = time.time()
    args = get_parser().parse_args()
    cfg = setup_cfg(args)

    # run main code
    engine.launch(
        main,
        args.num_processes,
        args=(
            cfg,
            args.rgb_image,
            args.depth_image,
            args.intrinsics,
            args.num_samples,
            args.crop,
            args.score_threshold,
        ),
    )
    end_time = time.time()
    print(f"Inference time: {end_time - start_time:.2f} seconds")