Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/matcher.py | |
""" | |
Modules to compute the matching cost and solve the corresponding LSAP. | |
""" | |
import torch | |
import torch.nn.functional as F | |
from scipy.optimize import linear_sum_assignment | |
from torch import nn | |
from torch.cuda.amp import autocast | |
from detectron2.projects.point_rend.point_features import point_sample | |
def batch_dice_loss(inputs: torch.Tensor, targets: torch.Tensor): | |
""" | |
Compute the DICE loss, similar to generalized IOU for masks | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs | |
(0 for the negative class and 1 for the positive class). | |
""" | |
inputs = inputs.sigmoid() | |
inputs = inputs.flatten(1) | |
numerator = 2 * torch.einsum("nc,mc->nm", inputs, targets) | |
denominator = inputs.sum(-1)[:, None] + targets.sum(-1)[None, :] | |
loss = 1 - (numerator + 1) / (denominator + 1) | |
return loss | |
batch_dice_loss_jit = torch.jit.script( | |
batch_dice_loss | |
) # type: torch.jit.ScriptModule | |
def batch_sigmoid_ce_loss(inputs: torch.Tensor, targets: torch.Tensor): | |
""" | |
Args: | |
inputs: A float tensor of arbitrary shape. | |
The predictions for each example. | |
targets: A float tensor with the same shape as inputs. Stores the binary | |
classification label for each element in inputs | |
(0 for the negative class and 1 for the positive class). | |
Returns: | |
Loss tensor | |
""" | |
hw = inputs.shape[1] | |
pos = F.binary_cross_entropy_with_logits( | |
inputs, torch.ones_like(inputs), reduction="none" | |
) | |
neg = F.binary_cross_entropy_with_logits( | |
inputs, torch.zeros_like(inputs), reduction="none" | |
) | |
loss = torch.einsum("nc,mc->nm", pos, targets) + torch.einsum( | |
"nc,mc->nm", neg, (1 - targets) | |
) | |
return loss / hw | |
batch_sigmoid_ce_loss_jit = torch.jit.script( | |
batch_sigmoid_ce_loss | |
) # type: torch.jit.ScriptModule | |
class HungarianMatcher(nn.Module): | |
"""This class computes an assignment between the targets and the predictions of the network | |
For efficiency reasons, the targets don't include the no_object. Because of this, in general, | |
there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, | |
while the others are un-matched (and thus treated as non-objects). | |
""" | |
def __init__(self, cost_class: float = 1, cost_mask: float = 1, cost_dice: float = 1, num_points: int = 0): | |
"""Creates the matcher | |
Params: | |
cost_class: This is the relative weight of the classification error in the matching cost | |
cost_mask: This is the relative weight of the focal loss of the binary mask in the matching cost | |
cost_dice: This is the relative weight of the dice loss of the binary mask in the matching cost | |
""" | |
super().__init__() | |
self.cost_class = cost_class | |
self.cost_mask = cost_mask | |
self.cost_dice = cost_dice | |
assert cost_class != 0 or cost_mask != 0 or cost_dice != 0, "all costs cant be 0" | |
self.num_points = num_points | |
def memory_efficient_forward(self, outputs, targets): | |
"""More memory-friendly matching""" | |
bs, num_queries = outputs["pred_logits"].shape[:2] | |
indices = [] | |
# Iterate through batch size | |
for b in range(bs): | |
out_prob = outputs["pred_logits"][b].softmax(-1) # [num_queries, num_classes] | |
tgt_ids = targets[b]["labels"] | |
# Compute the classification cost. Contrary to the loss, we don't use the NLL, | |
# but approximate it in 1 - proba[target class]. | |
# The 1 is a constant that doesn't change the matching, it can be ommitted. | |
cost_class = -out_prob[:, tgt_ids] | |
out_mask = outputs["pred_masks"][b] # [num_queries, H_pred, W_pred] | |
# gt masks are already padded when preparing target | |
tgt_mask = targets[b]["masks"].to(out_mask) | |
out_mask = out_mask[:, None] | |
tgt_mask = tgt_mask[:, None] | |
# all masks share the same set of points for efficient matching! | |
point_coords = torch.rand(1, self.num_points, 2, device=out_mask.device) | |
# get gt labels | |
tgt_mask = point_sample( | |
tgt_mask, | |
point_coords.repeat(tgt_mask.shape[0], 1, 1), | |
align_corners=False, | |
).squeeze(1) | |
out_mask = point_sample( | |
out_mask, | |
point_coords.repeat(out_mask.shape[0], 1, 1), | |
align_corners=False, | |
).squeeze(1) | |
with autocast(enabled=False): | |
out_mask = out_mask.float() | |
tgt_mask = tgt_mask.float() | |
# Compute the focal loss between masks | |
if out_mask.shape[0] == 0 or tgt_mask.shape[0] == 0: | |
cost_mask = batch_sigmoid_ce_loss(out_mask, tgt_mask) | |
# Compute the dice loss betwen masks | |
cost_dice = batch_dice_loss(out_mask, tgt_mask) | |
else: | |
cost_mask = batch_sigmoid_ce_loss_jit(out_mask, tgt_mask) | |
# Compute the dice loss betwen masks | |
cost_dice = batch_dice_loss_jit(out_mask, tgt_mask) | |
# Final cost matrix | |
C = ( | |
self.cost_mask * cost_mask | |
+ self.cost_class * cost_class | |
+ self.cost_dice * cost_dice | |
) | |
C = C.reshape(num_queries, -1).cpu() | |
indices.append(linear_sum_assignment(C)) | |
return [ | |
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) | |
for i, j in indices | |
] | |
def forward(self, outputs, targets): | |
"""Performs the matching | |
Params: | |
outputs: This is a dict that contains at least these entries: | |
"pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits | |
"pred_masks": Tensor of dim [batch_size, num_queries, H_pred, W_pred] with the predicted masks | |
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: | |
"labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth | |
objects in the target) containing the class labels | |
"masks": Tensor of dim [num_target_boxes, H_gt, W_gt] containing the target masks | |
Returns: | |
A list of size batch_size, containing tuples of (index_i, index_j) where: | |
- index_i is the indices of the selected predictions (in order) | |
- index_j is the indices of the corresponding selected targets (in order) | |
For each batch element, it holds: | |
len(index_i) = len(index_j) = min(num_queries, num_target_boxes) | |
""" | |
return self.memory_efficient_forward(outputs, targets) | |
def __repr__(self, _repr_indent=4): | |
head = "Matcher " + self.__class__.__name__ | |
body = [ | |
"cost_class: {}".format(self.cost_class), | |
"cost_mask: {}".format(self.cost_mask), | |
"cost_dice: {}".format(self.cost_dice), | |
] | |
lines = [head] + [" " * _repr_indent + line for line in body] | |
return "\n".join(lines) | |