Spaces:
Running
Running
File size: 8,657 Bytes
569596a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from __future__ import print_function
import os
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import drawing
from data_frame import DataFrame
from rnn_cell import LSTMAttentionCell
from rnn_ops import rnn_free_run
from tf_base_model import TFBaseModel
from tf_utils import time_distributed_dense_layer
class DataReader(object):
def __init__(self, data_dir):
data_cols = ['x', 'x_len', 'c', 'c_len']
data = [np.load(os.path.join(data_dir, '{}.npy'.format(i))) for i in data_cols]
self.test_df = DataFrame(columns=data_cols, data=data)
self.train_df, self.val_df = self.test_df.train_test_split(train_size=0.95, random_state=2018)
print('train size', len(self.train_df))
print('val size', len(self.val_df))
print('test size', len(self.test_df))
def train_batch_generator(self, batch_size):
return self.batch_generator(
batch_size=batch_size,
df=self.train_df,
shuffle=True,
num_epochs=10000,
mode='train'
)
def val_batch_generator(self, batch_size):
return self.batch_generator(
batch_size=batch_size,
df=self.val_df,
shuffle=True,
num_epochs=10000,
mode='val'
)
def test_batch_generator(self, batch_size):
return self.batch_generator(
batch_size=batch_size,
df=self.test_df,
shuffle=False,
num_epochs=1,
mode='test'
)
def batch_generator(self, batch_size, df, shuffle=True, num_epochs=10000, mode='train'):
gen = df.batch_generator(
batch_size=batch_size,
shuffle=shuffle,
num_epochs=num_epochs,
allow_smaller_final_batch=(mode == 'test')
)
for batch in gen:
batch['x_len'] = batch['x_len'] - 1
max_x_len = np.max(batch['x_len'])
max_c_len = np.max(batch['c_len'])
batch['y'] = batch['x'][:, 1:max_x_len + 1, :]
batch['x'] = batch['x'][:, :max_x_len, :]
batch['c'] = batch['c'][:, :max_c_len]
yield batch
class rnn(TFBaseModel):
def __init__(
self,
lstm_size,
output_mixture_components,
attention_mixture_components,
**kwargs
):
self.lstm_size = lstm_size
self.output_mixture_components = output_mixture_components
self.output_units = self.output_mixture_components*6 + 1
self.attention_mixture_components = attention_mixture_components
super(rnn, self).__init__(**kwargs)
def parse_parameters(self, z, eps=1e-8, sigma_eps=1e-4):
pis, sigmas, rhos, mus, es = tf.split(
z,
[
1*self.output_mixture_components,
2*self.output_mixture_components,
1*self.output_mixture_components,
2*self.output_mixture_components,
1
],
axis=-1
)
pis = tf.nn.softmax(pis, axis=-1)
sigmas = tf.clip_by_value(tf.exp(sigmas), sigma_eps, np.inf)
rhos = tf.clip_by_value(tf.tanh(rhos), eps - 1.0, 1.0 - eps)
es = tf.clip_by_value(tf.nn.sigmoid(es), eps, 1.0 - eps)
return pis, mus, sigmas, rhos, es
def NLL(self, y, lengths, pis, mus, sigmas, rho, es, eps=1e-8):
sigma_1, sigma_2 = tf.split(sigmas, 2, axis=2)
y_1, y_2, y_3 = tf.split(y, 3, axis=2)
mu_1, mu_2 = tf.split(mus, 2, axis=2)
norm = 1.0 / (2*np.pi*sigma_1*sigma_2 * tf.sqrt(1 - tf.square(rho)))
Z = tf.square((y_1 - mu_1) / (sigma_1)) + \
tf.square((y_2 - mu_2) / (sigma_2)) - \
2*rho*(y_1 - mu_1)*(y_2 - mu_2) / (sigma_1*sigma_2)
exp = -1.0*Z / (2*(1 - tf.square(rho)))
gaussian_likelihoods = tf.exp(exp) * norm
gmm_likelihood = tf.reduce_sum(pis * gaussian_likelihoods, 2)
gmm_likelihood = tf.clip_by_value(gmm_likelihood, eps, np.inf)
bernoulli_likelihood = tf.squeeze(tf.where(tf.equal(tf.ones_like(y_3), y_3), es, 1 - es))
nll = -(tf.log(gmm_likelihood) + tf.log(bernoulli_likelihood))
sequence_mask = tf.logical_and(
tf.sequence_mask(lengths, maxlen=tf.shape(y)[1]),
tf.logical_not(tf.is_nan(nll)),
)
nll = tf.where(sequence_mask, nll, tf.zeros_like(nll))
num_valid = tf.reduce_sum(tf.cast(sequence_mask, tf.float32), axis=1)
sequence_loss = tf.reduce_sum(nll, axis=1) / tf.maximum(num_valid, 1.0)
element_loss = tf.reduce_sum(nll) / tf.maximum(tf.reduce_sum(num_valid), 1.0)
return sequence_loss, element_loss
def sample(self, cell):
initial_state = cell.zero_state(self.num_samples, dtype=tf.float32)
initial_input = tf.concat([
tf.zeros([self.num_samples, 2]),
tf.ones([self.num_samples, 1]),
], axis=1)
return rnn_free_run(
cell=cell,
sequence_length=self.sample_tsteps,
initial_state=initial_state,
initial_input=initial_input,
scope='rnn'
)[1]
def primed_sample(self, cell):
initial_state = cell.zero_state(self.num_samples, dtype=tf.float32)
primed_state = tf.nn.dynamic_rnn(
inputs=self.x_prime,
cell=cell,
sequence_length=self.x_prime_len,
dtype=tf.float32,
initial_state=initial_state,
scope='rnn'
)[1]
return rnn_free_run(
cell=cell,
sequence_length=self.sample_tsteps,
initial_state=primed_state,
scope='rnn'
)[1]
def calculate_loss(self):
self.x = tf.placeholder(tf.float32, [None, None, 3])
self.y = tf.placeholder(tf.float32, [None, None, 3])
self.x_len = tf.placeholder(tf.int32, [None])
self.c = tf.placeholder(tf.int32, [None, None])
self.c_len = tf.placeholder(tf.int32, [None])
self.sample_tsteps = tf.placeholder(tf.int32, [])
self.num_samples = tf.placeholder(tf.int32, [])
self.prime = tf.placeholder(tf.bool, [])
self.x_prime = tf.placeholder(tf.float32, [None, None, 3])
self.x_prime_len = tf.placeholder(tf.int32, [None])
self.bias = tf.placeholder_with_default(
tf.zeros([self.num_samples], dtype=tf.float32), [None])
cell = LSTMAttentionCell(
lstm_size=self.lstm_size,
num_attn_mixture_components=self.attention_mixture_components,
attention_values=tf.one_hot(self.c, len(drawing.alphabet)),
attention_values_lengths=self.c_len,
num_output_mixture_components=self.output_mixture_components,
bias=self.bias
)
self.initial_state = cell.zero_state(tf.shape(self.x)[0], dtype=tf.float32)
outputs, self.final_state = tf.nn.dynamic_rnn(
inputs=self.x,
cell=cell,
sequence_length=self.x_len,
dtype=tf.float32,
initial_state=self.initial_state,
scope='rnn'
)
params = time_distributed_dense_layer(outputs, self.output_units, scope='rnn/gmm')
pis, mus, sigmas, rhos, es = self.parse_parameters(params)
sequence_loss, self.loss = self.NLL(self.y, self.x_len, pis, mus, sigmas, rhos, es)
self.sampled_sequence = tf.cond(
self.prime,
lambda: self.primed_sample(cell),
lambda: self.sample(cell)
)
return self.loss
if __name__ == '__main__':
dr = DataReader(data_dir='data/processed/')
nn = rnn(
reader=dr,
log_dir='logs',
checkpoint_dir='checkpoints',
prediction_dir='predictions',
learning_rates=[.0001, .00005, .00002],
batch_sizes=[32, 64, 64],
patiences=[1500, 1000, 500],
beta1_decays=[.9, .9, .9],
validation_batch_size=32,
optimizer='rms',
num_training_steps=100000,
warm_start_init_step=0,
regularization_constant=0.0,
keep_prob=1.0,
enable_parameter_averaging=False,
min_steps_to_checkpoint=2000,
log_interval=20,
grad_clip=10,
lstm_size=400,
output_mixture_components=20,
attention_mixture_components=10
)
nn.fit()
|