Spaces:
Running
Running
File size: 7,540 Bytes
569596a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from collections import namedtuple
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import tensorflow_probability as tfp
tfd = tfp.distributions
import numpy as np
from tf_utils import dense_layer, shape
LSTMAttentionCellState = namedtuple(
'LSTMAttentionCellState',
['h1', 'c1', 'h2', 'c2', 'h3', 'c3', 'alpha', 'beta', 'kappa', 'w', 'phi']
)
class LSTMAttentionCell(tf.nn.rnn_cell.RNNCell):
def __init__(
self,
lstm_size,
num_attn_mixture_components,
attention_values,
attention_values_lengths,
num_output_mixture_components,
bias,
reuse=None,
):
self.reuse = reuse
self.lstm_size = lstm_size
self.num_attn_mixture_components = num_attn_mixture_components
self.attention_values = attention_values
self.attention_values_lengths = attention_values_lengths
self.window_size = shape(self.attention_values, 2)
self.char_len = tf.shape(attention_values)[1]
self.batch_size = tf.shape(attention_values)[0]
self.num_output_mixture_components = num_output_mixture_components
self.output_units = 6*self.num_output_mixture_components + 1
self.bias = bias
@property
def state_size(self):
return LSTMAttentionCellState(
self.lstm_size,
self.lstm_size,
self.lstm_size,
self.lstm_size,
self.lstm_size,
self.lstm_size,
self.num_attn_mixture_components,
self.num_attn_mixture_components,
self.num_attn_mixture_components,
self.window_size,
self.char_len,
)
@property
def output_size(self):
return self.lstm_size
def zero_state(self, batch_size, dtype):
return LSTMAttentionCellState(
tf.zeros([batch_size, self.lstm_size]),
tf.zeros([batch_size, self.lstm_size]),
tf.zeros([batch_size, self.lstm_size]),
tf.zeros([batch_size, self.lstm_size]),
tf.zeros([batch_size, self.lstm_size]),
tf.zeros([batch_size, self.lstm_size]),
tf.zeros([batch_size, self.num_attn_mixture_components]),
tf.zeros([batch_size, self.num_attn_mixture_components]),
tf.zeros([batch_size, self.num_attn_mixture_components]),
tf.zeros([batch_size, self.window_size]),
tf.zeros([batch_size, self.char_len]),
)
def __call__(self, inputs, state, scope=None):
with tf.variable_scope(scope or type(self).__name__, reuse=tf.AUTO_REUSE):
# lstm 1
s1_in = tf.concat([state.w, inputs], axis=1)
cell1 = tf.compat.v1.nn.rnn_cell.LSTMCell(self.lstm_size)
s1_out, s1_state = cell1(s1_in, state=(state.c1, state.h1))
# attention
attention_inputs = tf.concat([state.w, inputs, s1_out], axis=1)
attention_params = dense_layer(attention_inputs, 3*self.num_attn_mixture_components, scope='attention')
alpha, beta, kappa = tf.split(tf.nn.softplus(attention_params), 3, axis=1)
kappa = state.kappa + kappa / 25.0
beta = tf.clip_by_value(beta, .01, np.inf)
kappa_flat, alpha_flat, beta_flat = kappa, alpha, beta
kappa, alpha, beta = tf.expand_dims(kappa, 2), tf.expand_dims(alpha, 2), tf.expand_dims(beta, 2)
enum = tf.reshape(tf.range(self.char_len), (1, 1, self.char_len))
u = tf.cast(tf.tile(enum, (self.batch_size, self.num_attn_mixture_components, 1)), tf.float32)
phi_flat = tf.reduce_sum(alpha*tf.exp(-tf.square(kappa - u) / beta), axis=1)
phi = tf.expand_dims(phi_flat, 2)
sequence_mask = tf.cast(tf.sequence_mask(self.attention_values_lengths, maxlen=self.char_len), tf.float32)
sequence_mask = tf.expand_dims(sequence_mask, 2)
w = tf.reduce_sum(phi*self.attention_values*sequence_mask, axis=1)
# lstm 2
s2_in = tf.concat([inputs, s1_out, w], axis=1)
cell2 = tf.compat.v1.nn.rnn_cell.LSTMCell(self.lstm_size)
s2_out, s2_state = cell2(s2_in, state=(state.c2, state.h2))
# lstm 3
s3_in = tf.concat([inputs, s2_out, w], axis=1)
cell3 = tf.compat.v1.nn.rnn_cell.LSTMCell(self.lstm_size)
s3_out, s3_state = cell3(s3_in, state=(state.c3, state.h3))
new_state = LSTMAttentionCellState(
s1_state.h,
s1_state.c,
s2_state.h,
s2_state.c,
s3_state.h,
s3_state.c,
alpha_flat,
beta_flat,
kappa_flat,
w,
phi_flat,
)
return s3_out, new_state
def output_function(self, state):
params = dense_layer(state.h3, self.output_units, scope='gmm', reuse=tf.AUTO_REUSE)
pis, mus, sigmas, rhos, es = self._parse_parameters(params)
mu1, mu2 = tf.split(mus, 2, axis=1)
mus = tf.stack([mu1, mu2], axis=2)
sigma1, sigma2 = tf.split(sigmas, 2, axis=1)
covar_matrix = [tf.square(sigma1), rhos*sigma1*sigma2,
rhos*sigma1*sigma2, tf.square(sigma2)]
covar_matrix = tf.stack(covar_matrix, axis=2)
covar_matrix = tf.reshape(covar_matrix, (self.batch_size, self.num_output_mixture_components, 2, 2))
mvn = tfd.MultivariateNormalFullCovariance(loc=mus, covariance_matrix=covar_matrix)
b = tfd.Bernoulli(probs=es)
c = tfd.Categorical(probs=pis)
sampled_e = b.sample()
sampled_coords = mvn.sample()
sampled_idx = c.sample()
idx = tf.stack([tf.range(self.batch_size), sampled_idx], axis=1)
coords = tf.gather_nd(sampled_coords, idx)
return tf.concat([coords, tf.cast(sampled_e, tf.float32)], axis=1)
def termination_condition(self, state):
char_idx = tf.cast(tf.argmax(state.phi, axis=1), tf.int32)
final_char = char_idx >= self.attention_values_lengths - 1
past_final_char = char_idx >= self.attention_values_lengths
output = self.output_function(state)
es = tf.cast(output[:, 2], tf.int32)
is_eos = tf.equal(es, tf.ones_like(es))
return tf.logical_or(tf.logical_and(final_char, is_eos), past_final_char)
def _parse_parameters(self, gmm_params, eps=1e-8, sigma_eps=1e-4):
pis, sigmas, rhos, mus, es = tf.split(
gmm_params,
[
1*self.num_output_mixture_components,
2*self.num_output_mixture_components,
1*self.num_output_mixture_components,
2*self.num_output_mixture_components,
1
],
axis=-1
)
pis = pis*(1 + tf.expand_dims(self.bias, 1))
sigmas = sigmas - tf.expand_dims(self.bias, 1)
pis = tf.nn.softmax(pis, axis=-1)
pis = tf.where(pis < .01, tf.zeros_like(pis), pis)
sigmas = tf.clip_by_value(tf.exp(sigmas), sigma_eps, np.inf)
rhos = tf.clip_by_value(tf.tanh(rhos), eps - 1.0, 1.0 - eps)
es = tf.clip_by_value(tf.nn.sigmoid(es), eps, 1.0 - eps)
es = tf.where(es < .01, tf.zeros_like(es), es)
return pis, mus, sigmas, rhos, es
|