Spaces:
Running
Running
File size: 19,142 Bytes
569596a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
from __future__ import print_function
from collections import deque
from datetime import datetime
import logging
import os
import pprint as pp
import time
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from tf_utils import shape
class TFBaseModel(object):
"""Interface containing some boilerplate code for training tensorflow models.
Subclassing models must implement self.calculate_loss(), which returns a tensor for the batch loss.
Code for the training loop, parameter updates, checkpointing, and inference are implemented here and
subclasses are mainly responsible for building the computational graph beginning with the placeholders
and ending with the loss tensor.
Args:
reader: Class with attributes train_batch_generator, val_batch_generator, and test_batch_generator
that yield dictionaries mapping tf.placeholder names (as strings) to batch data (numpy arrays).
batch_size: Minibatch size.
learning_rate: Learning rate.
optimizer: 'rms' for RMSProp, 'adam' for Adam, 'sgd' for SGD
grad_clip: Clip gradients elementwise to have norm at most equal to grad_clip.
regularization_constant: Regularization constant applied to all trainable parameters.
keep_prob: 1 - p, where p is the dropout probability
early_stopping_steps: Number of steps to continue training after validation loss has
stopped decreasing.
warm_start_init_step: If nonzero, model will resume training a restored model beginning
at warm_start_init_step.
num_restarts: After validation loss plateaus, the best checkpoint will be restored and the
learning rate will be halved. This process will repeat num_restarts times.
enable_parameter_averaging: If true, model saves exponential weighted averages of parameters
to separate checkpoint file.
min_steps_to_checkpoint: Model only saves after min_steps_to_checkpoint training steps
have passed.
log_interval: Train and validation accuracies are logged every log_interval training steps.
loss_averaging_window: Train/validation losses are averaged over the last loss_averaging_window
training steps.
num_validation_batches: Number of batches to be used in validation evaluation at each step.
log_dir: Directory where logs are written.
checkpoint_dir: Directory where checkpoints are saved.
prediction_dir: Directory where predictions/outputs are saved.
"""
def __init__(
self,
reader=None,
batch_sizes=[128],
num_training_steps=20000,
learning_rates=[.01],
beta1_decays=[.99],
optimizer='adam',
grad_clip=5,
regularization_constant=0.0,
keep_prob=1.0,
patiences=[3000],
warm_start_init_step=0,
enable_parameter_averaging=False,
min_steps_to_checkpoint=100,
log_interval=20,
logging_level=logging.INFO,
loss_averaging_window=100,
validation_batch_size=64,
log_dir='logs',
checkpoint_dir='checkpoints',
prediction_dir='predictions',
):
assert len(batch_sizes) == len(learning_rates) == len(patiences)
self.batch_sizes = batch_sizes
self.learning_rates = learning_rates
self.beta1_decays = beta1_decays
self.patiences = patiences
self.num_restarts = len(batch_sizes) - 1
self.restart_idx = 0
self.update_train_params()
self.reader = reader
self.num_training_steps = num_training_steps
self.optimizer = optimizer
self.grad_clip = grad_clip
self.regularization_constant = regularization_constant
self.warm_start_init_step = warm_start_init_step
self.keep_prob_scalar = keep_prob
self.enable_parameter_averaging = enable_parameter_averaging
self.min_steps_to_checkpoint = min_steps_to_checkpoint
self.log_interval = log_interval
self.loss_averaging_window = loss_averaging_window
self.validation_batch_size = validation_batch_size
self.log_dir = log_dir
self.logging_level = logging_level
self.prediction_dir = prediction_dir
self.checkpoint_dir = checkpoint_dir
if self.enable_parameter_averaging:
self.checkpoint_dir_averaged = checkpoint_dir + '_avg'
self.init_logging(self.log_dir)
logging.info('\nnew run with parameters:\n{}'.format(pp.pformat(self.__dict__)))
self.graph = self.build_graph()
self.session = tf.Session(graph=self.graph)
logging.info('built graph')
def update_train_params(self):
self.batch_size = self.batch_sizes[self.restart_idx]
self.learning_rate = self.learning_rates[self.restart_idx]
self.beta1_decay = self.beta1_decays[self.restart_idx]
self.early_stopping_steps = self.patiences[self.restart_idx]
def calculate_loss(self):
raise NotImplementedError('subclass must implement this')
def fit(self):
with self.session.as_default():
if self.warm_start_init_step:
self.restore(self.warm_start_init_step)
step = self.warm_start_init_step
else:
self.session.run(self.init)
step = 0
train_generator = self.reader.train_batch_generator(self.batch_size)
val_generator = self.reader.val_batch_generator(self.validation_batch_size)
train_loss_history = deque(maxlen=self.loss_averaging_window)
val_loss_history = deque(maxlen=self.loss_averaging_window)
train_time_history = deque(maxlen=self.loss_averaging_window)
val_time_history = deque(maxlen=self.loss_averaging_window)
if not hasattr(self, 'metrics'):
self.metrics = {}
metric_histories = {
metric_name: deque(maxlen=self.loss_averaging_window) for metric_name in self.metrics
}
best_validation_loss, best_validation_tstep = float('inf'), 0
while step < self.num_training_steps:
# validation evaluation
val_start = time.time()
val_batch_df = next(val_generator)
val_feed_dict = {
getattr(self, placeholder_name, None): data
for placeholder_name, data in val_batch_df.items() if hasattr(self, placeholder_name)
}
val_feed_dict.update({self.learning_rate_var: self.learning_rate, self.beta1_decay_var: self.beta1_decay})
if hasattr(self, 'keep_prob'):
val_feed_dict.update({self.keep_prob: 1.0})
if hasattr(self, 'is_training'):
val_feed_dict.update({self.is_training: False})
results = self.session.run(
fetches=[self.loss] + self.metrics.values(),
feed_dict=val_feed_dict
)
val_loss = results[0]
val_metrics = results[1:] if len(results) > 1 else []
val_metrics = dict(zip(self.metrics.keys(), val_metrics))
val_loss_history.append(val_loss)
val_time_history.append(time.time() - val_start)
for key in val_metrics:
metric_histories[key].append(val_metrics[key])
if hasattr(self, 'monitor_tensors'):
for name, tensor in self.monitor_tensors.items():
[np_val] = self.session.run([tensor], feed_dict=val_feed_dict)
print(name)
print('min', np_val.min())
print('max', np_val.max())
print('mean', np_val.mean())
print('std', np_val.std())
print('nans', np.isnan(np_val).sum())
print()
print()
print()
# train step
train_start = time.time()
train_batch_df = next(train_generator)
train_feed_dict = {
getattr(self, placeholder_name, None): data
for placeholder_name, data in train_batch_df.items() if hasattr(self, placeholder_name)
}
train_feed_dict.update({self.learning_rate_var: self.learning_rate, self.beta1_decay_var: self.beta1_decay})
if hasattr(self, 'keep_prob'):
train_feed_dict.update({self.keep_prob: self.keep_prob_scalar})
if hasattr(self, 'is_training'):
train_feed_dict.update({self.is_training: True})
train_loss, _ = self.session.run(
fetches=[self.loss, self.step],
feed_dict=train_feed_dict
)
train_loss_history.append(train_loss)
train_time_history.append(time.time() - train_start)
if step % self.log_interval == 0:
avg_train_loss = sum(train_loss_history) / len(train_loss_history)
avg_val_loss = sum(val_loss_history) / len(val_loss_history)
avg_train_time = sum(train_time_history) / len(train_time_history)
avg_val_time = sum(val_time_history) / len(val_time_history)
metric_log = (
"[[step {:>8}]] "
"[[train {:>4}s]] loss: {:<12} "
"[[val {:>4}s]] loss: {:<12} "
).format(
step,
round(avg_train_time, 4),
round(avg_train_loss, 8),
round(avg_val_time, 4),
round(avg_val_loss, 8),
)
early_stopping_metric = avg_val_loss
for metric_name, metric_history in metric_histories.items():
metric_val = sum(metric_history) / len(metric_history)
metric_log += '{}: {:<4} '.format(metric_name, round(metric_val, 4))
if metric_name == self.early_stopping_metric:
early_stopping_metric = metric_val
logging.info(metric_log)
if early_stopping_metric < best_validation_loss:
best_validation_loss = early_stopping_metric
best_validation_tstep = step
if step > self.min_steps_to_checkpoint:
self.save(step)
if self.enable_parameter_averaging:
self.save(step, averaged=True)
if step - best_validation_tstep > self.early_stopping_steps:
if self.num_restarts is None or self.restart_idx >= self.num_restarts:
logging.info('best validation loss of {} at training step {}'.format(
best_validation_loss, best_validation_tstep))
logging.info('early stopping - ending training.')
return
if self.restart_idx < self.num_restarts:
self.restore(best_validation_tstep)
step = best_validation_tstep
self.restart_idx += 1
self.update_train_params()
train_generator = self.reader.train_batch_generator(self.batch_size)
step += 1
if step <= self.min_steps_to_checkpoint:
best_validation_tstep = step
self.save(step)
if self.enable_parameter_averaging:
self.save(step, averaged=True)
logging.info('num_training_steps reached - ending training')
def predict(self, chunk_size=256):
if not os.path.isdir(self.prediction_dir):
os.makedirs(self.prediction_dir)
if hasattr(self, 'prediction_tensors'):
prediction_dict = {tensor_name: [] for tensor_name in self.prediction_tensors}
test_generator = self.reader.test_batch_generator(chunk_size)
for i, test_batch_df in enumerate(test_generator):
if i % 10 == 0:
print(i*len(test_batch_df))
test_feed_dict = {
getattr(self, placeholder_name, None): data
for placeholder_name, data in test_batch_df.items() if hasattr(self, placeholder_name)
}
if hasattr(self, 'keep_prob'):
test_feed_dict.update({self.keep_prob: 1.0})
if hasattr(self, 'is_training'):
test_feed_dict.update({self.is_training: False})
tensor_names, tf_tensors = zip(*self.prediction_tensors.items())
np_tensors = self.session.run(
fetches=tf_tensors,
feed_dict=test_feed_dict
)
for tensor_name, tensor in zip(tensor_names, np_tensors):
prediction_dict[tensor_name].append(tensor)
for tensor_name, tensor in prediction_dict.items():
np_tensor = np.concatenate(tensor, 0)
save_file = os.path.join(self.prediction_dir, '{}.npy'.format(tensor_name))
logging.info('saving {} with shape {} to {}'.format(tensor_name, np_tensor.shape, save_file))
np.save(save_file, np_tensor)
if hasattr(self, 'parameter_tensors'):
for tensor_name, tensor in self.parameter_tensors.items():
np_tensor = tensor.eval(self.session)
save_file = os.path.join(self.prediction_dir, '{}.npy'.format(tensor_name))
logging.info('saving {} with shape {} to {}'.format(tensor_name, np_tensor.shape, save_file))
np.save(save_file, np_tensor)
def save(self, step, averaged=False):
saver = self.saver_averaged if averaged else self.saver
checkpoint_dir = self.checkpoint_dir_averaged if averaged else self.checkpoint_dir
if not os.path.isdir(checkpoint_dir):
logging.info('creating checkpoint directory {}'.format(checkpoint_dir))
os.mkdir(checkpoint_dir)
model_path = os.path.join(checkpoint_dir, 'model')
logging.info('saving model to {}'.format(model_path))
saver.save(self.session, model_path, global_step=step)
def restore(self, step=None, averaged=False):
saver = self.saver_averaged if averaged else self.saver
checkpoint_dir = self.checkpoint_dir_averaged if averaged else self.checkpoint_dir
if not step:
model_path = tf.train.latest_checkpoint(checkpoint_dir)
logging.info('restoring model parameters from {}'.format(model_path))
saver.restore(self.session, model_path)
else:
model_path = os.path.join(
checkpoint_dir, 'model{}-{}'.format('_avg' if averaged else '', step)
)
logging.info('restoring model from {}'.format(model_path))
saver.restore(self.session, model_path)
def init_logging(self, log_dir):
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
date_str = datetime.now().strftime('%Y-%m-%d_%H-%M')
log_file = 'log_{}.txt'.format(date_str)
try: # Python 2
reload(logging) # bad
except NameError: # Python 3
import logging
logging.basicConfig(
filename=os.path.join(log_dir, log_file),
level=self.logging_level,
format='[[%(asctime)s]] %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p'
)
logging.getLogger().addHandler(logging.StreamHandler())
def update_parameters(self, loss):
if self.regularization_constant != 0:
l2_norm = tf.reduce_sum([tf.sqrt(tf.reduce_sum(tf.square(param))) for param in tf.trainable_variables()])
loss = loss + self.regularization_constant*l2_norm
optimizer = self.get_optimizer(self.learning_rate_var, self.beta1_decay_var)
grads = optimizer.compute_gradients(loss)
clipped = [(tf.clip_by_value(g, -self.grad_clip, self.grad_clip), v_) for g, v_ in grads]
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
step = optimizer.apply_gradients(clipped, global_step=self.global_step)
if self.enable_parameter_averaging:
maintain_averages_op = self.ema.apply(tf.trainable_variables())
with tf.control_dependencies([step]):
self.step = tf.group(maintain_averages_op)
else:
self.step = step
logging.info('all parameters:')
logging.info(pp.pformat([(var.name, shape(var)) for var in tf.global_variables()]))
logging.info('trainable parameters:')
logging.info(pp.pformat([(var.name, shape(var)) for var in tf.trainable_variables()]))
logging.info('trainable parameter count:')
logging.info(str(np.sum(np.prod(shape(var)) for var in tf.trainable_variables())))
def get_optimizer(self, learning_rate, beta1_decay):
if self.optimizer == 'adam':
return tf.train.AdamOptimizer(learning_rate, beta1=beta1_decay)
elif self.optimizer == 'gd':
return tf.train.GradientDescentOptimizer(learning_rate)
elif self.optimizer == 'rms':
return tf.train.RMSPropOptimizer(learning_rate, decay=beta1_decay, momentum=0.9)
else:
assert False, 'optimizer must be adam, gd, or rms'
def build_graph(self):
with tf.Graph().as_default() as graph:
self.ema = tf.train.ExponentialMovingAverage(decay=0.99)
self.global_step = tf.Variable(0, trainable=False)
self.learning_rate_var = tf.Variable(0.0, trainable=False)
self.beta1_decay_var = tf.Variable(0.0, trainable=False)
self.loss = self.calculate_loss()
self.update_parameters(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)
if self.enable_parameter_averaging:
self.saver_averaged = tf.train.Saver(self.ema.variables_to_restore(), max_to_keep=1)
self.init = tf.global_variables_initializer()
return graph
|