Spaces:
Running
Running
Update hand.py
Browse files
hand.py
CHANGED
@@ -1,150 +1,153 @@
|
|
1 |
-
import drawing
|
2 |
-
from rnn import rnn
|
3 |
-
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import svgwrite
|
7 |
-
|
8 |
-
|
9 |
-
import logging
|
10 |
-
import os
|
11 |
-
|
12 |
-
|
13 |
-
class Hand(object):
|
14 |
-
|
15 |
-
def __init__(self):
|
16 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
17 |
-
self.nn = rnn(
|
18 |
-
log_dir='logs',
|
19 |
-
checkpoint_dir='checkpoints',
|
20 |
-
prediction_dir='predictions',
|
21 |
-
learning_rates=[.0001, .00005, .00002],
|
22 |
-
batch_sizes=[32, 64, 64],
|
23 |
-
patiences=[1500, 1000, 500],
|
24 |
-
beta1_decays=[.9, .9, .9],
|
25 |
-
validation_batch_size=32,
|
26 |
-
optimizer='rms',
|
27 |
-
num_training_steps=100000,
|
28 |
-
warm_start_init_step=17900,
|
29 |
-
regularization_constant=0.0,
|
30 |
-
keep_prob=1.0,
|
31 |
-
enable_parameter_averaging=False,
|
32 |
-
min_steps_to_checkpoint=2000,
|
33 |
-
log_interval=20,
|
34 |
-
logging_level=logging.CRITICAL,
|
35 |
-
grad_clip=10,
|
36 |
-
lstm_size=400,
|
37 |
-
output_mixture_components=20,
|
38 |
-
attention_mixture_components=10
|
39 |
-
)
|
40 |
-
self.nn.restore()
|
41 |
-
|
42 |
-
def write(self, filename, lines, biases=None, styles=None, stroke_colors=None, stroke_widths=None):
|
43 |
-
valid_char_set = set(drawing.alphabet)
|
44 |
-
for line_num, line in enumerate(lines):
|
45 |
-
if len(line) > 75:
|
46 |
-
raise ValueError(
|
47 |
-
(
|
48 |
-
"Each line must be at most 75 characters. "
|
49 |
-
"Line {} contains {}"
|
50 |
-
).format(line_num, len(line))
|
51 |
-
)
|
52 |
-
|
53 |
-
for char in line:
|
54 |
-
if char not in valid_char_set:
|
55 |
-
raise ValueError(
|
56 |
-
(
|
57 |
-
"Invalid character {} detected in line {}. "
|
58 |
-
"Valid character set is {}"
|
59 |
-
).format(char, line_num, valid_char_set)
|
60 |
-
)
|
61 |
-
|
62 |
-
strokes = self._sample(lines, biases=biases, styles=styles)
|
63 |
-
self._draw(strokes, lines, filename, stroke_colors=stroke_colors, stroke_widths=stroke_widths)
|
64 |
-
|
65 |
-
def _sample(self, lines, biases=None, styles=None):
|
66 |
-
num_samples = len(lines)
|
67 |
-
max_tsteps = 40*max([len(i) for i in lines])
|
68 |
-
biases = biases if biases is not None else [0.5]*num_samples
|
69 |
-
|
70 |
-
x_prime = np.zeros([num_samples, 1200, 3])
|
71 |
-
x_prime_len = np.zeros([num_samples])
|
72 |
-
chars = np.zeros([num_samples, 120])
|
73 |
-
chars_len = np.zeros([num_samples])
|
74 |
-
|
75 |
-
if styles is not None:
|
76 |
-
for i, (cs, style) in enumerate(zip(lines, styles)):
|
77 |
-
x_p = np.load('styles/style-{}-strokes.npy'.format(style))
|
78 |
-
c_p = np.load('styles/style-{}-chars.npy'.format(style)).tostring().decode('utf-8')
|
79 |
-
|
80 |
-
c_p = str(c_p) + " " + cs
|
81 |
-
c_p = drawing.encode_ascii(c_p)
|
82 |
-
c_p = np.array(c_p)
|
83 |
-
|
84 |
-
x_prime[i, :len(x_p), :] = x_p
|
85 |
-
x_prime_len[i] = len(x_p)
|
86 |
-
chars[i, :len(c_p)] = c_p
|
87 |
-
chars_len[i] = len(c_p)
|
88 |
-
|
89 |
-
else:
|
90 |
-
for i in range(num_samples):
|
91 |
-
encoded = drawing.encode_ascii(lines[i])
|
92 |
-
chars[i, :len(encoded)] = encoded
|
93 |
-
chars_len[i] = len(encoded)
|
94 |
-
|
95 |
-
[samples] = self.nn.session.run(
|
96 |
-
[self.nn.sampled_sequence],
|
97 |
-
feed_dict={
|
98 |
-
self.nn.prime: styles is not None,
|
99 |
-
self.nn.x_prime: x_prime,
|
100 |
-
self.nn.x_prime_len: x_prime_len,
|
101 |
-
self.nn.num_samples: num_samples,
|
102 |
-
self.nn.sample_tsteps: max_tsteps,
|
103 |
-
self.nn.c: chars,
|
104 |
-
self.nn.c_len: chars_len,
|
105 |
-
self.nn.bias: biases
|
106 |
-
}
|
107 |
-
)
|
108 |
-
samples = [sample[~np.all(sample == 0.0, axis=1)] for sample in samples]
|
109 |
-
return samples
|
110 |
-
|
111 |
-
def _draw(self, strokes, lines, filename, stroke_colors=None, stroke_widths=None):
|
112 |
-
stroke_colors = stroke_colors or ['black']*len(lines)
|
113 |
-
stroke_widths = stroke_widths or [
|
114 |
-
|
115 |
-
line_height = 60
|
116 |
-
view_width = 1000
|
117 |
-
view_height = line_height*(len(strokes) + 1)
|
118 |
-
|
119 |
-
dwg = svgwrite.Drawing(filename=filename)
|
120 |
-
dwg.viewbox(width=view_width, height=view_height)
|
121 |
-
dwg.add(dwg.rect(insert=(0, 0), size=(view_width, view_height), fill='white'))
|
122 |
-
|
123 |
-
initial_coord = np.array([0, -(3*line_height / 4)])
|
124 |
-
for offsets, line, color, width in zip(strokes, lines, stroke_colors, stroke_widths):
|
125 |
-
|
126 |
-
if not line:
|
127 |
-
initial_coord[1] -= line_height
|
128 |
-
continue
|
129 |
-
|
130 |
-
offsets[:, :2] *= 1.5
|
131 |
-
strokes = drawing.offsets_to_coords(offsets)
|
132 |
-
strokes = drawing.denoise(strokes)
|
133 |
-
strokes[:, :2] = drawing.align(strokes[:, :2])
|
134 |
-
|
135 |
-
strokes[:, 1] *= -1
|
136 |
-
strokes[:, :2] -= strokes[:, :2].min() + initial_coord
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
150 |
dwg.save()
|
|
|
1 |
+
import drawing
|
2 |
+
from rnn import rnn
|
3 |
+
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import svgwrite
|
7 |
+
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
|
12 |
+
|
13 |
+
class Hand(object):
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
17 |
+
self.nn = rnn(
|
18 |
+
log_dir='logs',
|
19 |
+
checkpoint_dir='checkpoints',
|
20 |
+
prediction_dir='predictions',
|
21 |
+
learning_rates=[.0001, .00005, .00002],
|
22 |
+
batch_sizes=[32, 64, 64],
|
23 |
+
patiences=[1500, 1000, 500],
|
24 |
+
beta1_decays=[.9, .9, .9],
|
25 |
+
validation_batch_size=32,
|
26 |
+
optimizer='rms',
|
27 |
+
num_training_steps=100000,
|
28 |
+
warm_start_init_step=17900,
|
29 |
+
regularization_constant=0.0,
|
30 |
+
keep_prob=1.0,
|
31 |
+
enable_parameter_averaging=False,
|
32 |
+
min_steps_to_checkpoint=2000,
|
33 |
+
log_interval=20,
|
34 |
+
logging_level=logging.CRITICAL,
|
35 |
+
grad_clip=10,
|
36 |
+
lstm_size=400,
|
37 |
+
output_mixture_components=20,
|
38 |
+
attention_mixture_components=10
|
39 |
+
)
|
40 |
+
self.nn.restore()
|
41 |
+
|
42 |
+
def write(self, filename, lines, biases=None, styles=None, stroke_colors=None, stroke_widths=None):
|
43 |
+
valid_char_set = set(drawing.alphabet)
|
44 |
+
for line_num, line in enumerate(lines):
|
45 |
+
if len(line) > 75:
|
46 |
+
raise ValueError(
|
47 |
+
(
|
48 |
+
"Each line must be at most 75 characters. "
|
49 |
+
"Line {} contains {}"
|
50 |
+
).format(line_num, len(line))
|
51 |
+
)
|
52 |
+
|
53 |
+
for char in line:
|
54 |
+
if char not in valid_char_set:
|
55 |
+
raise ValueError(
|
56 |
+
(
|
57 |
+
"Invalid character {} detected in line {}. "
|
58 |
+
"Valid character set is {}"
|
59 |
+
).format(char, line_num, valid_char_set)
|
60 |
+
)
|
61 |
+
|
62 |
+
strokes = self._sample(lines, biases=biases, styles=styles)
|
63 |
+
self._draw(strokes, lines, filename, stroke_colors=stroke_colors, stroke_widths=stroke_widths)
|
64 |
+
|
65 |
+
def _sample(self, lines, biases=None, styles=None):
|
66 |
+
num_samples = len(lines)
|
67 |
+
max_tsteps = 40*max([len(i) for i in lines])
|
68 |
+
biases = biases if biases is not None else [0.5]*num_samples
|
69 |
+
|
70 |
+
x_prime = np.zeros([num_samples, 1200, 3])
|
71 |
+
x_prime_len = np.zeros([num_samples])
|
72 |
+
chars = np.zeros([num_samples, 120])
|
73 |
+
chars_len = np.zeros([num_samples])
|
74 |
+
|
75 |
+
if styles is not None:
|
76 |
+
for i, (cs, style) in enumerate(zip(lines, styles)):
|
77 |
+
x_p = np.load('styles/style-{}-strokes.npy'.format(style))
|
78 |
+
c_p = np.load('styles/style-{}-chars.npy'.format(style)).tostring().decode('utf-8')
|
79 |
+
|
80 |
+
c_p = str(c_p) + " " + cs
|
81 |
+
c_p = drawing.encode_ascii(c_p)
|
82 |
+
c_p = np.array(c_p)
|
83 |
+
|
84 |
+
x_prime[i, :len(x_p), :] = x_p
|
85 |
+
x_prime_len[i] = len(x_p)
|
86 |
+
chars[i, :len(c_p)] = c_p
|
87 |
+
chars_len[i] = len(c_p)
|
88 |
+
|
89 |
+
else:
|
90 |
+
for i in range(num_samples):
|
91 |
+
encoded = drawing.encode_ascii(lines[i])
|
92 |
+
chars[i, :len(encoded)] = encoded
|
93 |
+
chars_len[i] = len(encoded)
|
94 |
+
|
95 |
+
[samples] = self.nn.session.run(
|
96 |
+
[self.nn.sampled_sequence],
|
97 |
+
feed_dict={
|
98 |
+
self.nn.prime: styles is not None,
|
99 |
+
self.nn.x_prime: x_prime,
|
100 |
+
self.nn.x_prime_len: x_prime_len,
|
101 |
+
self.nn.num_samples: num_samples,
|
102 |
+
self.nn.sample_tsteps: max_tsteps,
|
103 |
+
self.nn.c: chars,
|
104 |
+
self.nn.c_len: chars_len,
|
105 |
+
self.nn.bias: biases
|
106 |
+
}
|
107 |
+
)
|
108 |
+
samples = [sample[~np.all(sample == 0.0, axis=1)] for sample in samples]
|
109 |
+
return samples
|
110 |
+
|
111 |
+
def _draw(self, strokes, lines, filename, stroke_colors=None, stroke_widths=None):
|
112 |
+
stroke_colors = stroke_colors or ['black']*len(lines)
|
113 |
+
stroke_widths = stroke_widths or [4]*len(lines) # Increased default from 2 to 4
|
114 |
+
|
115 |
+
line_height = 80 # Increased from 60 to 80
|
116 |
+
view_width = 800 # Reduced from 1000 to 800
|
117 |
+
view_height = line_height*(len(strokes) + 1)
|
118 |
+
|
119 |
+
dwg = svgwrite.Drawing(filename=filename)
|
120 |
+
dwg.viewbox(width=view_width, height=view_height)
|
121 |
+
dwg.add(dwg.rect(insert=(0, 0), size=(view_width, view_height), fill='white'))
|
122 |
+
|
123 |
+
initial_coord = np.array([0, -(3*line_height / 4)])
|
124 |
+
for offsets, line, color, width in zip(strokes, lines, stroke_colors, stroke_widths):
|
125 |
+
|
126 |
+
if not line:
|
127 |
+
initial_coord[1] -= line_height
|
128 |
+
continue
|
129 |
+
|
130 |
+
offsets[:, :2] *= 3.0 # Increased from 1.5 to 3.0
|
131 |
+
strokes = drawing.offsets_to_coords(offsets)
|
132 |
+
strokes = drawing.denoise(strokes)
|
133 |
+
strokes[:, :2] = drawing.align(strokes[:, :2])
|
134 |
+
|
135 |
+
strokes[:, 1] *= -1
|
136 |
+
strokes[:, :2] -= strokes[:, :2].min() + initial_coord
|
137 |
+
|
138 |
+
# Adjust centering to make text larger relative to the canvas
|
139 |
+
horizontal_padding = 50 # Fixed padding instead of centering
|
140 |
+
strokes[:, 0] += horizontal_padding
|
141 |
+
|
142 |
+
prev_eos = 1.0
|
143 |
+
p = "M{},{} ".format(0, 0)
|
144 |
+
for x, y, eos in zip(*strokes.T):
|
145 |
+
p += '{}{},{} '.format('M' if prev_eos == 1.0 else 'L', x, y)
|
146 |
+
prev_eos = eos
|
147 |
+
path = svgwrite.path.Path(p)
|
148 |
+
path = path.stroke(color=color, width=width, linecap='round').fill("none")
|
149 |
+
dwg.add(path)
|
150 |
+
|
151 |
+
initial_coord[1] -= line_height
|
152 |
+
|
153 |
dwg.save()
|