Spaces:
Sleeping
Sleeping
File size: 12,105 Bytes
0836e11 0dd86af 1d9fafc a577704 0836e11 c6074bd 0836e11 0968051 0dd86af 0836e11 ff94921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import pandas as pd
import os
from sklearn.preprocessing import MinMaxScaler
import random
import re
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
def assign_main_accounts(updated_data=None):
global UPDATED_ASSIGNMENTS
creators_file = os.path.join(UPLOAD_FOLDER, "creators_file.xlsx")
chatter_files = [
os.path.join(UPLOAD_FOLDER, "overnight_file.xlsx"),
os.path.join(UPLOAD_FOLDER, "day_file.xlsx"),
os.path.join(UPLOAD_FOLDER, "prime_file.xlsx"),
]
if not all(os.path.exists(path) for path in [creators_file] + chatter_files):
return "Missing required files. Please upload all necessary files.", None
try:
# Step 1: Assign main accounts
updated_chatter_files, account_data = assign_main_accounts(creators_file, chatter_files)
print("DEBUG: Updated Chatter Files and Account Data Successfully Generated")
# Save processed files
UPDATED_ASSIGNMENTS = {
"chatter_files": updated_chatter_files,
"account_data": account_data
}
for idx, chatter_df in enumerate(updated_chatter_files):
chatter_df.to_excel(
os.path.join(PROCESSED_FOLDER, f"Updated_{['overnight', 'day', 'prime'][idx]}_file.xlsx"),
index=False
)
account_data.to_excel(os.path.join(PROCESSED_FOLDER, "creators_file.xlsx"), index=False)
# Step 2: Combine for preview
preview_data = []
shift_names = ["Overnight", "Day", "Prime"]
for idx, chatter_df in enumerate(updated_chatter_files):
chatter_df["Shift"] = shift_names[idx]
preview_data.append(chatter_df)
preview_df = pd.concat(preview_data, ignore_index=True)
return "Main accounts generated successfully!", preview_df
except Exception as e:
print(f"Error during main account generation: {e}")
return f"Error during main account generation: {e}", None
def save_processed_files(assignments, output_dir):
"""
Save processed files for main assignments, ensuring chatter names and main accounts are preserved correctly.
"""
for shift, data in assignments.items():
if shift == "creator_names":
continue
# Create a DataFrame from the assignment data
df = pd.DataFrame(data)
# Handle multiple 'Main Account' columns and ensure there's only one
if "Main Account_x" in df.columns and "Main Account_y" in df.columns:
df["Main Account"] = df["Main Account_x"].fillna(df["Main Account_y"])
df.drop(columns=["Main Account_x", "Main Account_y"], inplace=True)
elif "Main Account_x" in df.columns:
df.rename(columns={"Main Account_x": "Main Account"}, inplace=True)
elif "Main Account_y" in df.columns:
df.rename(columns={"Main Account_y": "Main Account"}, inplace=True)
# Ensure all other columns (like 'Final Rating', 'Desired Off Day', etc.) are retained
required_columns = ["Name", "Main Account", "Final Rating", "Available Work Days", "Desired Off Day"]
for col in required_columns:
if col not in df.columns:
df[col] = None # Add missing columns as empty
# Ensure proper ordering of columns for consistency
column_order = ["Name", "Main Account", "Final Rating", "Available Work Days", "Desired Off Day"]
df = df[[col for col in column_order if col in df.columns] + [col for col in df.columns if col not in column_order]]
# Save the cleaned DataFrame
output_path = os.path.join(output_dir, f"Updated_{shift}_file.xlsx")
df.to_excel(output_path, index=False)
# Debugging: Verify the saved file contains the right columns
print(f"DEBUG: Saved File for {shift}: {output_path}")
print(df.head())
def generate_schedule(chatter_files, account_data):
"""
Generate schedules for different shifts (Overnight, Day, Prime) using chatter and account data.
"""
schedules = {}
# Validate required columns in the account data
if not {"Creator", "ActiveFans"}.issubset(account_data.columns):
raise KeyError("The account data must contain 'Creator' and 'ActiveFans' columns.")
shift_names = ["Overnight", "Day", "Prime"]
for idx, chatter_df in enumerate(chatter_files):
shift_name = shift_names[idx]
# Debugging: Print initial chatter data
print(f"DEBUG: Initial {shift_name} Chatter Data:")
print(chatter_df.head())
# Clean chatter data
chatter_df = clean_chatter_data(chatter_df)
# Debugging: Print cleaned chatter data
print(f"DEBUG: Cleaned {shift_name} Chatter Data:")
print(chatter_df.head())
# Create a blank schedule template
schedule = create_schedule_template(account_data)
# Debugging: Print initial schedule template
print(f"DEBUG: Initial Schedule Template for {shift_name}:")
print(schedule.head())
# Assign main accounts to the schedule
schedule = assign_main_accounts_to_schedule(schedule, chatter_df)
# Debugging: Print schedule after assigning main accounts
print(f"DEBUG: Schedule After Assigning Main Accounts for {shift_name}:")
print(schedule.head())
# Assign days off based on chatter preferences
schedule = assign_off_days(schedule, chatter_df)
# Debugging: Print schedule after assigning off days
print(f"DEBUG: Schedule After Assigning Off Days for {shift_name}:")
print(schedule.head())
# Randomly fill the remaining slots while respecting constraints
schedule = randomly_fill_slots(schedule, chatter_df)
# Debugging: Print final schedule for the shift
print(f"DEBUG: Final Schedule for {shift_name}:")
print(schedule.head())
# Save the schedule
schedules[shift_name] = schedule.to_dict(orient="records")
return schedules
def create_schedule_template(account_data):
"""
Create a blank schedule template with required columns.
"""
if "Account" not in account_data.columns or "ActiveFans" not in account_data.columns:
raise KeyError("Account data must contain 'Account' and 'ActiveFans' columns.")
schedule_template = account_data[["Account", "ActiveFans"]].copy()
for day in ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]:
schedule_template[day] = None # Initialize all days as None
return schedule_template
def assign_main_accounts_to_schedule(schedule, chatter_data):
"""
Assign main accounts to the schedule based on chatter data.
"""
days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
# Dynamically detect the correct column for the main account
main_account_col = next(
(col for col in ["Main Account", "Main_Account_x", "Main_Account_y"] if col in chatter_data.columns), None
)
if not main_account_col:
raise KeyError("Main Account column not found in chatter data.")
# Iterate over each chatter and assign their main account to the schedule
for _, chatter in chatter_data.iterrows():
chatter_name = chatter["Name"]
main_account = chatter[main_account_col]
if pd.notnull(main_account):
# Locate the row in the schedule that matches the main account
matching_row = schedule[schedule["Account"].str.lower() == main_account.lower()]
if not matching_row.empty:
row_index = matching_row.index[0]
# Assign the chatter's name to all days where the slot is empty
for day in days_of_week:
if pd.isnull(schedule.at[row_index, day]):
schedule.at[row_index, day] = chatter_name
# Debugging: Output updated schedule for verification
print("DEBUG: Updated Schedule after assigning main accounts:")
print(schedule)
return schedule
def clean_chatter_data(chatter_data):
"""
Clean and prepare chatter data for scheduling.
"""
# Merge any duplicate 'Main Account' columns
if "Main Account_x" in chatter_data.columns and "Main Account_y" in chatter_data.columns:
chatter_data["Main Account"] = chatter_data["Main Account_x"].fillna(chatter_data["Main Account_y"])
chatter_data.drop(columns=["Main Account_x", "Main Account_y"], inplace=True)
elif "Main Account_x" in chatter_data.columns:
chatter_data.rename(columns={"Main Account_x": "Main Account"}, inplace=True)
elif "Main Account_y" in chatter_data.columns:
chatter_data.rename(columns={"Main Account_y": "Main Account"}, inplace=True)
# Validate required columns
required_columns = ["Name", "Main Account", "Final Rating", "Available Work Days"]
for col in required_columns:
if col not in chatter_data.columns:
raise KeyError(f"Missing required column in chatter data: {col}")
# Clean and format other data fields if needed
chatter_data["WorkDays"] = pd.to_numeric(chatter_data.get("Available Work Days", 6), errors="coerce").fillna(6).astype(int)
chatter_data["Desired Off Day"] = chatter_data["Desired Off Day"].fillna("").apply(
lambda x: [day.strip().capitalize() for day in re.split(r"[ ,]+", x) if day.strip()]
)
return chatter_data
def assign_off_days(schedule, chatter_data):
"""
Assign days off for each chatter based on their 'Desired Off Day' field.
"""
if "Desired Off Day" not in chatter_data.columns:
chatter_data["Desired Off Day"] = ""
days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
for _, chatter in chatter_data.iterrows():
chatter_name = chatter["Name"]
desired_off_days = chatter["Desired Off Day"]
# Ensure desired_off_days is parsed into a list
if isinstance(desired_off_days, str):
desired_off_days = [
day.strip().capitalize()
for day in desired_off_days.split(",")
if day.strip().capitalize() in days_of_week
]
# Assign None to the schedule for each desired off day
for day in desired_off_days:
if day in days_of_week:
schedule.loc[schedule[day] == chatter_name, day] = None
# Debugging: Verify schedule after assigning off days
print("DEBUG: Schedule After Assigning Off Days:")
print(schedule.head())
return schedule
def randomly_fill_slots(schedule, chatter_data, max_accounts_per_day=3, max_fans_per_day=1000):
"""
Randomly fill remaining slots in the schedule while respecting constraints.
"""
days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
daily_accounts = {chatter: {day: 0 for day in days_of_week} for chatter in chatter_data["Name"]}
daily_fans = {chatter: {day: 0 for day in days_of_week} for chatter in chatter_data["Name"]}
chatters_list = chatter_data["Name"].tolist()
for day in days_of_week:
for i, row in schedule.iterrows():
if pd.isnull(schedule.at[i, day]): # If the slot is empty
random.shuffle(chatters_list) # Shuffle chatters to randomize assignments
for chatter in chatters_list:
active_fans = row["ActiveFans"]
if (
daily_accounts[chatter][day] < max_accounts_per_day and
daily_fans[chatter][day] + active_fans <= max_fans_per_day
):
schedule.at[i, day] = chatter
daily_accounts[chatter][day] += 1
daily_fans[chatter][day] += active_fans
break
# Debugging: Verify schedule after filling slots
print("DEBUG: Schedule After Randomly Filling Slots:")
print(schedule.head())
return schedule |