Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
import random | |
import re | |
from sklearn.preprocessing import MinMaxScaler | |
# Function to assign main accounts | |
def assign_main_accounts(creators_file, chatter_files): | |
creators = pd.read_excel(creators_file) | |
creators.columns = creators.columns.str.strip() | |
# Debugging: Check initial columns | |
print("DEBUG: Initial Columns in Creator File:", creators.columns) | |
# Standardize column names | |
column_mapping = { | |
"Creator": "Creator", | |
"Total earnings": "Total earnings", | |
"Subscription": "Subscription", | |
"Active Fans": "ActiveFans", | |
"Total active fans": "ActiveFans", | |
} | |
creators.rename(columns={k: v for k, v in column_mapping.items() if k in creators.columns}, inplace=True) | |
# Debugging: Check renamed columns | |
print("DEBUG: Renamed Columns in Creator File:", creators.columns) | |
required_columns = ["Creator", "Total earnings", "Subscription", "ActiveFans"] | |
missing_columns = [col for col in required_columns if col not in creators.columns] | |
if missing_columns: | |
raise KeyError(f"Missing required columns in creators file: {missing_columns}") | |
# Process creators file | |
creators["Total earnings"] = creators["Total earnings"].replace("[\$,]", "", regex=True).astype(float) | |
creators["Subscription"] = creators["Subscription"].replace("[\$,]", "", regex=True).astype(float) | |
creators["ActiveFans"] = pd.to_numeric(creators["ActiveFans"], errors="coerce").fillna(0) | |
# Normalize data | |
scaler = MinMaxScaler() | |
creators[["Earnings_Normalized", "Subscriptions_Normalized"]] = scaler.fit_transform( | |
creators[["Total earnings", "Subscription"]] | |
) | |
creators["Penalty Factor"] = 1 - abs(creators["Earnings_Normalized"] - creators["Subscriptions_Normalized"]) | |
creators["Score"] = ( | |
0.7 * creators["Earnings_Normalized"] + 0.3 * creators["Subscriptions_Normalized"] | |
) * creators["Penalty Factor"] | |
creators["Rank"] = creators["Score"].rank(ascending=False) | |
creators = creators.sort_values(by="Rank").reset_index(drop=True) | |
processed_creator_file = creators[["Creator", "ActiveFans"]] | |
updated_chatter_files = [] | |
for chatter_file in chatter_files: | |
chatters = pd.read_excel(chatter_file) | |
chatters.columns = chatters.columns.str.strip() | |
if len(chatters) > len(creators): | |
raise ValueError("Not enough creators to assign to all chatters.") | |
# Assign creators to chatters | |
chatters["Main Account"] = creators.iloc[:len(chatters)]["Creator"].values | |
updated_chatter_files.append(chatters) | |
# Combine all updated chatter files into a single DataFrame | |
combined_assignments = pd.concat(updated_chatter_files, ignore_index=True) | |
return updated_chatter_files, processed_creator_file, combined_assignments | |
def save_processed_files(assignments, output_dir): | |
""" | |
Save processed chatter files to the output directory. | |
""" | |
for idx, (shift, data) in enumerate(assignments.items()): | |
output_file = os.path.join(output_dir, f"Updated_{shift.lower()}_file.xlsx") | |
data.to_excel(output_file, index=False) | |
print(f"Saved {shift} file to {output_file}") | |
# Function to clean chatter data | |
def clean_chatter_data(chatter_data): | |
""" | |
Clean and prepare chatter data for scheduling. | |
""" | |
required_columns = ["Name", "Main Account", "Final Rating", "Available Work Days"] | |
for col in required_columns: | |
if col not in chatter_data.columns: | |
raise KeyError(f"Missing required column in chatter data: {col}") | |
chatter_data["WorkDays"] = pd.to_numeric(chatter_data.get("Available Work Days", 6), errors="coerce").fillna(6).astype(int) | |
chatter_data["Desired Off Day"] = chatter_data["Desired Off Day"].fillna("").apply( | |
lambda x: [day.strip().capitalize() for day in re.split(r"[ ,]+", x) if day.strip()] | |
) | |
return chatter_data | |
# Function to create a blank schedule template | |
def create_schedule_template(account_data): | |
""" | |
Create a blank schedule template with required columns. | |
""" | |
if "Creator" not in account_data.columns or "ActiveFans" not in account_data.columns: | |
raise KeyError("Account data must contain 'Creator' and 'ActiveFans' columns.") | |
schedule_template = account_data[["Creator", "ActiveFans"]].copy() | |
for day in ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]: | |
schedule_template[day] = None | |
return schedule_template | |
# Function to assign main accounts to the schedule | |
def assign_main_accounts_to_schedule(schedule, chatter_data): | |
""" | |
Assign main accounts to the schedule based on chatter data. | |
""" | |
for _, chatter in chatter_data.iterrows(): | |
main_account = chatter["Main Account"] | |
if main_account in schedule["Creator"].values: | |
idx = schedule[schedule["Creator"] == main_account].index[0] | |
for day in schedule.columns[2:]: | |
schedule.at[idx, day] = chatter["Name"] | |
return schedule | |
# Function to assign off days | |
def assign_off_days(schedule, chatter_data): | |
""" | |
Assign days off for each chatter based on their 'Desired Off Day' field. | |
""" | |
for _, chatter in chatter_data.iterrows(): | |
for off_day in chatter["Desired Off Day"]: | |
if off_day in schedule.columns[2:]: | |
schedule.loc[schedule[off_day] == chatter["Name"], off_day] = None | |
return schedule | |
# Function to randomly fill schedule slots | |
def randomly_fill_slots(schedule, chatter_data, max_accounts_per_day=3, max_fans_per_day=1000): | |
""" | |
Randomly fill remaining slots in the schedule while respecting constraints. | |
""" | |
days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] | |
chatters_list = chatter_data["Name"].tolist() | |
for day in days_of_week: | |
for idx, row in schedule.iterrows(): | |
if pd.isnull(schedule.at[idx, day]): | |
random.shuffle(chatters_list) | |
for chatter in chatters_list: | |
schedule.at[idx, day] = chatter | |
break | |
return schedule | |
# Main schedule generation function | |
def generate_schedule(chatter_files, account_data): | |
schedules = {} | |
shift_names = ["Overnight", "Day", "Prime"] | |
for idx, chatter_df in enumerate(chatter_files): | |
shift_name = shift_names[idx] | |
chatter_df = clean_chatter_data(chatter_df) | |
schedule = create_schedule_template(account_data) | |
schedule = assign_main_accounts_to_schedule(schedule, chatter_df) | |
schedule = assign_off_days(schedule, chatter_df) | |
schedule = randomly_fill_slots(schedule, chatter_df) | |
schedules[shift_name] = schedule | |
return schedules | |