import os import pandas as pd import random import re from sklearn.preprocessing import MinMaxScaler # Function to assign main accounts def assign_main_accounts(creators_file, chatter_files): creators = pd.read_excel(creators_file) creators.columns = creators.columns.str.strip() # Debugging: Check initial columns print("DEBUG: Initial Columns in Creator File:", creators.columns) # Standardize column names column_mapping = { "Creator": "Creator", "Total earnings": "Total earnings", "Subscription": "Subscription", "Active Fans": "ActiveFans", "Total active fans": "ActiveFans", } creators.rename(columns={k: v for k, v in column_mapping.items() if k in creators.columns}, inplace=True) # Debugging: Check renamed columns print("DEBUG: Renamed Columns in Creator File:", creators.columns) required_columns = ["Creator", "Total earnings", "Subscription", "ActiveFans"] missing_columns = [col for col in required_columns if col not in creators.columns] if missing_columns: raise KeyError(f"Missing required columns in creators file: {missing_columns}") # Process creators file creators["Total earnings"] = creators["Total earnings"].replace("[\$,]", "", regex=True).astype(float) creators["Subscription"] = creators["Subscription"].replace("[\$,]", "", regex=True).astype(float) creators["ActiveFans"] = pd.to_numeric(creators["ActiveFans"], errors="coerce").fillna(0) # Normalize data scaler = MinMaxScaler() creators[["Earnings_Normalized", "Subscriptions_Normalized"]] = scaler.fit_transform( creators[["Total earnings", "Subscription"]] ) creators["Penalty Factor"] = 1 - abs(creators["Earnings_Normalized"] - creators["Subscriptions_Normalized"]) creators["Score"] = ( 0.7 * creators["Earnings_Normalized"] + 0.3 * creators["Subscriptions_Normalized"] ) * creators["Penalty Factor"] creators["Rank"] = creators["Score"].rank(ascending=False) creators = creators.sort_values(by="Rank").reset_index(drop=True) processed_creator_file = creators[["Creator", "ActiveFans"]] updated_chatter_files = [] for chatter_file in chatter_files: chatters = pd.read_excel(chatter_file) chatters.columns = chatters.columns.str.strip() if len(chatters) > len(creators): raise ValueError("Not enough creators to assign to all chatters.") # Assign creators to chatters chatters["Main Account"] = creators.iloc[:len(chatters)]["Creator"].values updated_chatter_files.append(chatters) # Combine all updated chatter files into a single DataFrame combined_assignments = pd.concat(updated_chatter_files, ignore_index=True) return updated_chatter_files, processed_creator_file, combined_assignments def save_processed_files(assignments, output_dir): """ Save processed chatter files to the output directory. """ for idx, (shift, data) in enumerate(assignments.items()): output_file = os.path.join(output_dir, f"Updated_{shift.lower()}_file.xlsx") data.to_excel(output_file, index=False) print(f"Saved {shift} file to {output_file}") # Function to clean chatter data def clean_chatter_data(chatter_data): """ Clean and prepare chatter data for scheduling. """ required_columns = ["Name", "Main Account", "Final Rating", "Available Work Days"] for col in required_columns: if col not in chatter_data.columns: raise KeyError(f"Missing required column in chatter data: {col}") chatter_data["WorkDays"] = pd.to_numeric(chatter_data.get("Available Work Days", 6), errors="coerce").fillna(6).astype(int) chatter_data["Desired Off Day"] = chatter_data["Desired Off Day"].fillna("").apply( lambda x: [day.strip().capitalize() for day in re.split(r"[ ,]+", x) if day.strip()] ) return chatter_data # Function to create a blank schedule template def create_schedule_template(account_data): """ Create a blank schedule template with required columns. """ if "Creator" not in account_data.columns or "ActiveFans" not in account_data.columns: raise KeyError("Account data must contain 'Creator' and 'ActiveFans' columns.") schedule_template = account_data[["Creator", "ActiveFans"]].copy() for day in ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]: schedule_template[day] = None return schedule_template # Function to assign main accounts to the schedule def assign_main_accounts_to_schedule(schedule, chatter_data): """ Assign main accounts to the schedule based on chatter data. """ for _, chatter in chatter_data.iterrows(): main_account = chatter["Main Account"] if main_account in schedule["Creator"].values: idx = schedule[schedule["Creator"] == main_account].index[0] for day in schedule.columns[2:]: schedule.at[idx, day] = chatter["Name"] return schedule # Function to assign off days def assign_off_days(schedule, chatter_data): """ Assign days off for each chatter based on their 'Desired Off Day' field. """ for _, chatter in chatter_data.iterrows(): for off_day in chatter["Desired Off Day"]: if off_day in schedule.columns[2:]: schedule.loc[schedule[off_day] == chatter["Name"], off_day] = None return schedule # Function to randomly fill schedule slots def randomly_fill_slots(schedule, chatter_data, max_accounts_per_day=3, max_fans_per_day=1000): """ Randomly fill remaining slots in the schedule while respecting constraints. """ days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] chatters_list = chatter_data["Name"].tolist() for day in days_of_week: for idx, row in schedule.iterrows(): if pd.isnull(schedule.at[idx, day]): random.shuffle(chatters_list) for chatter in chatters_list: schedule.at[idx, day] = chatter break return schedule # Main schedule generation function def generate_schedule(chatter_files, account_data): schedules = {} shift_names = ["Overnight", "Day", "Prime"] for idx, chatter_df in enumerate(chatter_files): shift_name = shift_names[idx] chatter_df = clean_chatter_data(chatter_df) schedule = create_schedule_template(account_data) schedule = assign_main_accounts_to_schedule(schedule, chatter_df) schedule = assign_off_days(schedule, chatter_df) schedule = randomly_fill_slots(schedule, chatter_df) schedules[shift_name] = schedule return schedules