File size: 8,112 Bytes
53c14b9
 
 
 
 
 
832d529
53c14b9
832d529
81ce00b
53c14b9
 
 
832d529
53c14b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ce00b
 
 
 
832d529
 
 
 
 
81ce00b
832d529
 
 
 
 
 
 
 
 
53c14b9
832d529
 
 
 
 
 
 
 
81ce00b
832d529
 
 
 
 
 
 
 
 
 
 
 
 
81ce00b
832d529
 
 
 
53c14b9
832d529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81ce00b
 
 
 
 
 
 
 
 
 
 
 
 
832d529
81ce00b
832d529
 
 
 
 
 
53c14b9
832d529
 
53c14b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832d529
53c14b9
 
 
 
 
 
 
 
 
 
 
 
 
832d529
 
 
 
 
 
 
 
53c14b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import streamlit as st
import joblib
import numpy as np
from predict import extract_features
import os
import tempfile
from huggingface_hub import hf_hub_download, list_repo_files
import logging
import traceback
import sklearn

# Set up logging
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Page configuration
st.set_page_config(
    page_title="Healing Music Classifier",
    page_icon="🎵",
    layout="centered"
)

@st.cache_resource
def load_model():
    """Load model from Hugging Face Hub"""
    try:
        # 检查scikit-learn版本
        logger.info(f"Using scikit-learn version: {sklearn.__version__}")
        st.write(f"Using scikit-learn version: {sklearn.__version__}")
        
        # 首先列出仓库中的所有文件
        logger.info("Listing repository files...")
        try:
            files = list_repo_files("404Brain-Not-Found-yeah/healing-music-classifier")
            logger.info(f"Repository files: {files}")
            st.write("Available files in repository:", files)
        except Exception as e:
            logger.error(f"Error listing repository files: {str(e)}\n{traceback.format_exc()}")
            st.error(f"Error listing repository files: {str(e)}")
            return None, None

        # 创建临时目录
        os.makedirs("temp_models", exist_ok=True)
        logger.info("Created temp_models directory")

        logger.info("Downloading model from Hugging Face Hub...")
        # 下载模型文件
        try:
            model_path = hf_hub_download(
                repo_id="404Brain-Not-Found-yeah/healing-music-classifier",
                filename="models/model.joblib",
                local_dir="temp_models"
            )
            logger.info(f"Model downloaded to: {model_path}")
            st.write(f"Model downloaded to: {model_path}")
        except Exception as e:
            logger.error(f"Error downloading model: {str(e)}\n{traceback.format_exc()}")
            st.error(f"Error downloading model: {str(e)}")
            return None, None

        # 下载scaler文件
        try:
            scaler_path = hf_hub_download(
                repo_id="404Brain-Not-Found-yeah/healing-music-classifier",
                filename="models/scaler.joblib",
                local_dir="temp_models"
            )
            logger.info(f"Scaler downloaded to: {scaler_path}")
            st.write(f"Scaler downloaded to: {scaler_path}")
        except Exception as e:
            logger.error(f"Error downloading scaler: {str(e)}\n{traceback.format_exc()}")
            st.error(f"Error downloading scaler: {str(e)}")
            return None, None
        
        # 加载模型文件
        try:
            logger.info("Loading model and scaler...")
            # 检查文件是否存在
            if not os.path.exists(model_path):
                logger.error(f"Model file not found at: {model_path}")
                st.error(f"Model file not found at: {model_path}")
                return None, None
            if not os.path.exists(scaler_path):
                logger.error(f"Scaler file not found at: {scaler_path}")
                st.error(f"Scaler file not found at: {scaler_path}")
                return None, None

            # 检查文件大小
            model_size = os.path.getsize(model_path)
            scaler_size = os.path.getsize(scaler_path)
            logger.info(f"Model file size: {model_size} bytes")
            logger.info(f"Scaler file size: {scaler_size} bytes")
            st.write(f"Model file size: {model_size} bytes")
            st.write(f"Scaler file size: {scaler_size} bytes")

            # 尝试使用不同的pickle协议加载
            try:
                model = joblib.load(model_path)
                scaler = joblib.load(scaler_path)
            except Exception as load_error:
                logger.warning(f"Standard loading failed: {str(load_error)}")
                # 尝试使用兼容模式加载
                import pickle
                with open(model_path, 'rb') as f:
                    model = pickle.load(f, encoding='latin1')
                with open(scaler_path, 'rb') as f:
                    scaler = pickle.load(f, encoding='latin1')

            logger.info("Model and scaler loaded successfully")
            st.success("Model and scaler loaded successfully!")
            return model, scaler
        except Exception as e:
            logger.error(f"Error loading model/scaler files: {str(e)}\n{traceback.format_exc()}")
            st.error(f"Error loading model/scaler files: {str(e)}")
            return None, None
            
    except Exception as e:
        logger.error(f"Unexpected error in load_model: {str(e)}\n{traceback.format_exc()}")
        st.error(f"Unexpected error in load_model: {str(e)}")
        return None, None

def main():
    st.title("🎵 Healing Music Classifier")
    st.write("""
    Upload your music file, and AI will analyze its healing potential!
    Supports mp3, wav formats.
    """)

    # Add file upload component
    uploaded_file = st.file_uploader("Choose an audio file...", type=['mp3', 'wav'])

    if uploaded_file is not None:
        # Create progress bar
        progress_bar = st.progress(0)
        status_text = st.empty()

        try:
            # Create temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
                # Write uploaded file content
                tmp_file.write(uploaded_file.getvalue())
                tmp_file_path = tmp_file.name

            # Update status
            status_text.text("Analyzing music...")
            progress_bar.progress(30)

            # Load model
            model, scaler = load_model()
            if model is None or scaler is None:
                st.error("Model loading failed. Please check the logs for details.")
                return

            progress_bar.progress(50)

            # Extract features
            features = extract_features(tmp_file_path)
            if features is None:
                st.error("Failed to extract audio features. Please ensure the file is a valid audio file.")
                return

            progress_bar.progress(70)

            # Predict
            try:
                scaled_features = scaler.transform([features])
                healing_probability = model.predict_proba(scaled_features)[0][1]
                progress_bar.progress(90)
            except Exception as e:
                logger.error(f"Error during prediction: {str(e)}\n{traceback.format_exc()}")
                st.error(f"Error during prediction: {str(e)}")
                return

            # Display results
            st.subheader("Analysis Results")

            # Create visualization progress bar
            healing_percentage = healing_probability * 100
            st.progress(healing_probability)

            # Display percentage
            st.write(f"Healing Index: {healing_percentage:.1f}%")

            # Provide explanation
            if healing_percentage >= 75:
                st.success("This music has strong healing properties! 🌟")
            elif healing_percentage >= 50:
                st.info("This music has moderate healing effects. ✨")
            else:
                st.warning("This music has limited healing potential. 🎵")

        except Exception as e:
            st.error(f"An unexpected error occurred: {str(e)}")
            logger.exception("Unexpected error")

        finally:
            # Clean up temporary file
            try:
                if 'tmp_file_path' in locals() and os.path.exists(tmp_file_path):
                    os.unlink(tmp_file_path)
            except Exception as e:
                logger.error(f"Failed to clean up temporary file: {str(e)}")

            # Complete progress bar
            progress_bar.progress(100)
            status_text.text("Analysis complete!")

if __name__ == "__main__":
    main()